/* ----------------------------------------------------------------------
|
* Project: CMSIS DSP Library
|
* Title: arm_fir_fast_q31.c
|
* Description: Processing function for the Q31 Fast FIR filter
|
*
|
* $Date: 27. January 2017
|
* $Revision: V.1.5.1
|
*
|
* Target Processor: Cortex-M cores
|
* -------------------------------------------------------------------- */
|
/*
|
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
*
|
* SPDX-License-Identifier: Apache-2.0
|
*
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
* not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "arm_math.h"
|
|
/**
|
* @ingroup groupFilters
|
*/
|
|
/**
|
* @addtogroup FIR
|
* @{
|
*/
|
|
/**
|
* @param[in] *S points to an instance of the Q31 structure.
|
* @param[in] *pSrc points to the block of input data.
|
* @param[out] *pDst points to the block output data.
|
* @param[in] blockSize number of samples to process per call.
|
* @return none.
|
*
|
* <b>Scaling and Overflow Behavior:</b>
|
*
|
* \par
|
* This function is optimized for speed at the expense of fixed-point precision and overflow protection.
|
* The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.
|
* These intermediate results are added to a 2.30 accumulator.
|
* Finally, the accumulator is saturated and converted to a 1.31 result.
|
* The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.
|
* In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.
|
*
|
* \par
|
* Refer to the function <code>arm_fir_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision. Both the slow and the fast versions use the same instance structure.
|
* Use the function <code>arm_fir_init_q31()</code> to initialize the filter structure.
|
*/
|
|
IAR_ONLY_LOW_OPTIMIZATION_ENTER
|
void arm_fir_fast_q31(
|
const arm_fir_instance_q31 * S,
|
q31_t * pSrc,
|
q31_t * pDst,
|
uint32_t blockSize)
|
{
|
q31_t *pState = S->pState; /* State pointer */
|
q31_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
q31_t *pStateCurnt; /* Points to the current sample of the state */
|
q31_t x0, x1, x2, x3; /* Temporary variables to hold state */
|
q31_t c0; /* Temporary variable to hold coefficient value */
|
q31_t *px; /* Temporary pointer for state */
|
q31_t *pb; /* Temporary pointer for coefficient buffer */
|
q31_t acc0, acc1, acc2, acc3; /* Accumulators */
|
uint32_t numTaps = S->numTaps; /* Number of filter coefficients in the filter */
|
uint32_t i, tapCnt, blkCnt; /* Loop counters */
|
|
/* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
|
/* pStateCurnt points to the location where the new input data should be written */
|
pStateCurnt = &(S->pState[(numTaps - 1U)]);
|
|
/* Apply loop unrolling and compute 4 output values simultaneously.
|
* The variables acc0 ... acc3 hold output values that are being computed:
|
*
|
* acc0 = b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]
|
* acc1 = b[numTaps-1] * x[n-numTaps] + b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]
|
* acc2 = b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] + b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]
|
* acc3 = b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps] +...+ b[0] * x[3]
|
*/
|
blkCnt = blockSize >> 2;
|
|
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
** a second loop below computes the remaining 1 to 3 samples. */
|
while (blkCnt > 0U)
|
{
|
/* Copy four new input samples into the state buffer */
|
*pStateCurnt++ = *pSrc++;
|
*pStateCurnt++ = *pSrc++;
|
*pStateCurnt++ = *pSrc++;
|
*pStateCurnt++ = *pSrc++;
|
|
/* Set all accumulators to zero */
|
acc0 = 0;
|
acc1 = 0;
|
acc2 = 0;
|
acc3 = 0;
|
|
/* Initialize state pointer */
|
px = pState;
|
|
/* Initialize coefficient pointer */
|
pb = pCoeffs;
|
|
/* Read the first three samples from the state buffer:
|
* x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
|
x0 = *(px++);
|
x1 = *(px++);
|
x2 = *(px++);
|
|
/* Loop unrolling. Process 4 taps at a time. */
|
tapCnt = numTaps >> 2;
|
i = tapCnt;
|
|
while (i > 0U)
|
{
|
/* Read the b[numTaps] coefficient */
|
c0 = *pb;
|
|
/* Read x[n-numTaps-3] sample */
|
x3 = *px;
|
|
/* acc0 += b[numTaps] * x[n-numTaps] */
|
multAcc_32x32_keep32_R(acc0, x0, c0);
|
|
/* acc1 += b[numTaps] * x[n-numTaps-1] */
|
multAcc_32x32_keep32_R(acc1, x1, c0);
|
|
/* acc2 += b[numTaps] * x[n-numTaps-2] */
|
multAcc_32x32_keep32_R(acc2, x2, c0);
|
|
/* acc3 += b[numTaps] * x[n-numTaps-3] */
|
multAcc_32x32_keep32_R(acc3, x3, c0);
|
|
/* Read the b[numTaps-1] coefficient */
|
c0 = *(pb + 1U);
|
|
/* Read x[n-numTaps-4] sample */
|
x0 = *(px + 1U);
|
|
/* Perform the multiply-accumulates */
|
multAcc_32x32_keep32_R(acc0, x1, c0);
|
multAcc_32x32_keep32_R(acc1, x2, c0);
|
multAcc_32x32_keep32_R(acc2, x3, c0);
|
multAcc_32x32_keep32_R(acc3, x0, c0);
|
|
/* Read the b[numTaps-2] coefficient */
|
c0 = *(pb + 2U);
|
|
/* Read x[n-numTaps-5] sample */
|
x1 = *(px + 2U);
|
|
/* Perform the multiply-accumulates */
|
multAcc_32x32_keep32_R(acc0, x2, c0);
|
multAcc_32x32_keep32_R(acc1, x3, c0);
|
multAcc_32x32_keep32_R(acc2, x0, c0);
|
multAcc_32x32_keep32_R(acc3, x1, c0);
|
|
/* Read the b[numTaps-3] coefficients */
|
c0 = *(pb + 3U);
|
|
/* Read x[n-numTaps-6] sample */
|
x2 = *(px + 3U);
|
|
/* Perform the multiply-accumulates */
|
multAcc_32x32_keep32_R(acc0, x3, c0);
|
multAcc_32x32_keep32_R(acc1, x0, c0);
|
multAcc_32x32_keep32_R(acc2, x1, c0);
|
multAcc_32x32_keep32_R(acc3, x2, c0);
|
|
/* update coefficient pointer */
|
pb += 4U;
|
px += 4U;
|
|
/* Decrement the loop counter */
|
i--;
|
}
|
|
/* If the filter length is not a multiple of 4, compute the remaining filter taps */
|
|
i = numTaps - (tapCnt * 4U);
|
while (i > 0U)
|
{
|
/* Read coefficients */
|
c0 = *(pb++);
|
|
/* Fetch 1 state variable */
|
x3 = *(px++);
|
|
/* Perform the multiply-accumulates */
|
multAcc_32x32_keep32_R(acc0, x0, c0);
|
multAcc_32x32_keep32_R(acc1, x1, c0);
|
multAcc_32x32_keep32_R(acc2, x2, c0);
|
multAcc_32x32_keep32_R(acc3, x3, c0);
|
|
/* Reuse the present sample states for next sample */
|
x0 = x1;
|
x1 = x2;
|
x2 = x3;
|
|
/* Decrement the loop counter */
|
i--;
|
}
|
|
/* Advance the state pointer by 4 to process the next group of 4 samples */
|
pState = pState + 4;
|
|
/* The results in the 4 accumulators are in 2.30 format. Convert to 1.31
|
** Then store the 4 outputs in the destination buffer. */
|
*pDst++ = (q31_t) (acc0 << 1);
|
*pDst++ = (q31_t) (acc1 << 1);
|
*pDst++ = (q31_t) (acc2 << 1);
|
*pDst++ = (q31_t) (acc3 << 1);
|
|
/* Decrement the samples loop counter */
|
blkCnt--;
|
}
|
|
|
/* If the blockSize is not a multiple of 4, compute any remaining output samples here.
|
** No loop unrolling is used. */
|
blkCnt = blockSize % 4U;
|
|
while (blkCnt > 0U)
|
{
|
/* Copy one sample at a time into state buffer */
|
*pStateCurnt++ = *pSrc++;
|
|
/* Set the accumulator to zero */
|
acc0 = 0;
|
|
/* Initialize state pointer */
|
px = pState;
|
|
/* Initialize Coefficient pointer */
|
pb = (pCoeffs);
|
|
i = numTaps;
|
|
/* Perform the multiply-accumulates */
|
do
|
{
|
multAcc_32x32_keep32_R(acc0, (*px++), (*(pb++)));
|
i--;
|
} while (i > 0U);
|
|
/* The result is in 2.30 format. Convert to 1.31
|
** Then store the output in the destination buffer. */
|
*pDst++ = (q31_t) (acc0 << 1);
|
|
/* Advance state pointer by 1 for the next sample */
|
pState = pState + 1;
|
|
/* Decrement the samples loop counter */
|
blkCnt--;
|
}
|
|
/* Processing is complete.
|
** Now copy the last numTaps - 1 samples to the start of the state buffer.
|
** This prepares the state buffer for the next function call. */
|
|
/* Points to the start of the state buffer */
|
pStateCurnt = S->pState;
|
|
/* Calculate remaining number of copies */
|
tapCnt = (numTaps - 1U);
|
|
/* Copy the remaining q31_t data */
|
while (tapCnt > 0U)
|
{
|
*pStateCurnt++ = *pState++;
|
|
/* Decrement the loop counter */
|
tapCnt--;
|
}
|
|
|
}
|
IAR_ONLY_LOW_OPTIMIZATION_EXIT
|
/**
|
* @} end of FIR group
|
*/
|