/* ----------------------------------------------------------------------
|
* Project: CMSIS DSP Library
|
* Title: arm_fir_sparse_q15.c
|
* Description: Q15 sparse FIR filter processing function
|
*
|
* $Date: 27. January 2017
|
* $Revision: V.1.5.1
|
*
|
* Target Processor: Cortex-M cores
|
* -------------------------------------------------------------------- */
|
/*
|
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
*
|
* SPDX-License-Identifier: Apache-2.0
|
*
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
* not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "arm_math.h"
|
|
/**
|
* @addtogroup FIR_Sparse
|
* @{
|
*/
|
|
/**
|
* @brief Processing function for the Q15 sparse FIR filter.
|
* @param[in] *S points to an instance of the Q15 sparse FIR structure.
|
* @param[in] *pSrc points to the block of input data.
|
* @param[out] *pDst points to the block of output data
|
* @param[in] *pScratchIn points to a temporary buffer of size blockSize.
|
* @param[in] *pScratchOut points to a temporary buffer of size blockSize.
|
* @param[in] blockSize number of input samples to process per call.
|
* @return none.
|
*
|
* <b>Scaling and Overflow Behavior:</b>
|
* \par
|
* The function is implemented using an internal 32-bit accumulator.
|
* The 1.15 x 1.15 multiplications yield a 2.30 result and these are added to a 2.30 accumulator.
|
* Thus the full precision of the multiplications is maintained but there is only a single guard bit in the accumulator.
|
* If the accumulator result overflows it will wrap around rather than saturate.
|
* After all multiply-accumulates are performed, the 2.30 accumulator is truncated to 2.15 format and then saturated to 1.15 format.
|
* In order to avoid overflows the input signal or coefficients must be scaled down by log2(numTaps) bits.
|
*/
|
|
|
void arm_fir_sparse_q15(
|
arm_fir_sparse_instance_q15 * S,
|
q15_t * pSrc,
|
q15_t * pDst,
|
q15_t * pScratchIn,
|
q31_t * pScratchOut,
|
uint32_t blockSize)
|
{
|
|
q15_t *pState = S->pState; /* State pointer */
|
q15_t *pIn = pSrc; /* Working pointer for input */
|
q15_t *pOut = pDst; /* Working pointer for output */
|
q15_t *pCoeffs = S->pCoeffs; /* Coefficient pointer */
|
q15_t *px; /* Temporary pointers for scratch buffer */
|
q15_t *pb = pScratchIn; /* Temporary pointers for scratch buffer */
|
q15_t *py = pState; /* Temporary pointers for state buffer */
|
int32_t *pTapDelay = S->pTapDelay; /* Pointer to the array containing offset of the non-zero tap values. */
|
uint32_t delaySize = S->maxDelay + blockSize; /* state length */
|
uint16_t numTaps = S->numTaps; /* Filter order */
|
int32_t readIndex; /* Read index of the state buffer */
|
uint32_t tapCnt, blkCnt; /* loop counters */
|
q15_t coeff = *pCoeffs++; /* Read the first coefficient value */
|
q31_t *pScr2 = pScratchOut; /* Working pointer for pScratchOut */
|
|
|
#if defined (ARM_MATH_DSP)
|
|
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
q31_t in1, in2; /* Temporary variables */
|
|
|
/* BlockSize of Input samples are copied into the state buffer */
|
/* StateIndex points to the starting position to write in the state buffer */
|
arm_circularWrite_q15(py, delaySize, &S->stateIndex, 1, pIn, 1, blockSize);
|
|
/* Loop over the number of taps. */
|
tapCnt = numTaps;
|
|
/* Read Index, from where the state buffer should be read, is calculated. */
|
readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
|
|
/* Wraparound of readIndex */
|
if (readIndex < 0)
|
{
|
readIndex += (int32_t) delaySize;
|
}
|
|
/* Working pointer for state buffer is updated */
|
py = pState;
|
|
/* blockSize samples are read from the state buffer */
|
arm_circularRead_q15(py, delaySize, &readIndex, 1,
|
pb, pb, blockSize, 1, blockSize);
|
|
/* Working pointer for the scratch buffer of state values */
|
px = pb;
|
|
/* Working pointer for scratch buffer of output values */
|
pScratchOut = pScr2;
|
|
/* Loop over the blockSize. Unroll by a factor of 4.
|
* Compute 4 multiplications at a time. */
|
blkCnt = blockSize >> 2;
|
|
while (blkCnt > 0U)
|
{
|
/* Perform multiplication and store in the scratch buffer */
|
*pScratchOut++ = ((q31_t) * px++ * coeff);
|
*pScratchOut++ = ((q31_t) * px++ * coeff);
|
*pScratchOut++ = ((q31_t) * px++ * coeff);
|
*pScratchOut++ = ((q31_t) * px++ * coeff);
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* If the blockSize is not a multiple of 4,
|
* compute the remaining samples */
|
blkCnt = blockSize % 0x4U;
|
|
while (blkCnt > 0U)
|
{
|
/* Perform multiplication and store in the scratch buffer */
|
*pScratchOut++ = ((q31_t) * px++ * coeff);
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* Load the coefficient value and
|
* increment the coefficient buffer for the next set of state values */
|
coeff = *pCoeffs++;
|
|
/* Read Index, from where the state buffer should be read, is calculated. */
|
readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
|
|
/* Wraparound of readIndex */
|
if (readIndex < 0)
|
{
|
readIndex += (int32_t) delaySize;
|
}
|
|
/* Loop over the number of taps. */
|
tapCnt = (uint32_t) numTaps - 2U;
|
|
while (tapCnt > 0U)
|
{
|
/* Working pointer for state buffer is updated */
|
py = pState;
|
|
/* blockSize samples are read from the state buffer */
|
arm_circularRead_q15(py, delaySize, &readIndex, 1,
|
pb, pb, blockSize, 1, blockSize);
|
|
/* Working pointer for the scratch buffer of state values */
|
px = pb;
|
|
/* Working pointer for scratch buffer of output values */
|
pScratchOut = pScr2;
|
|
/* Loop over the blockSize. Unroll by a factor of 4.
|
* Compute 4 MACS at a time. */
|
blkCnt = blockSize >> 2;
|
|
while (blkCnt > 0U)
|
{
|
/* Perform Multiply-Accumulate */
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* If the blockSize is not a multiple of 4,
|
* compute the remaining samples */
|
blkCnt = blockSize % 0x4U;
|
|
while (blkCnt > 0U)
|
{
|
/* Perform Multiply-Accumulate */
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* Load the coefficient value and
|
* increment the coefficient buffer for the next set of state values */
|
coeff = *pCoeffs++;
|
|
/* Read Index, from where the state buffer should be read, is calculated. */
|
readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
|
|
/* Wraparound of readIndex */
|
if (readIndex < 0)
|
{
|
readIndex += (int32_t) delaySize;
|
}
|
|
/* Decrement the tap loop counter */
|
tapCnt--;
|
}
|
|
/* Compute last tap without the final read of pTapDelay */
|
|
/* Working pointer for state buffer is updated */
|
py = pState;
|
|
/* blockSize samples are read from the state buffer */
|
arm_circularRead_q15(py, delaySize, &readIndex, 1,
|
pb, pb, blockSize, 1, blockSize);
|
|
/* Working pointer for the scratch buffer of state values */
|
px = pb;
|
|
/* Working pointer for scratch buffer of output values */
|
pScratchOut = pScr2;
|
|
/* Loop over the blockSize. Unroll by a factor of 4.
|
* Compute 4 MACS at a time. */
|
blkCnt = blockSize >> 2;
|
|
while (blkCnt > 0U)
|
{
|
/* Perform Multiply-Accumulate */
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* If the blockSize is not a multiple of 4,
|
* compute the remaining samples */
|
blkCnt = blockSize % 0x4U;
|
|
while (blkCnt > 0U)
|
{
|
/* Perform Multiply-Accumulate */
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* All the output values are in pScratchOut buffer.
|
Convert them into 1.15 format, saturate and store in the destination buffer. */
|
/* Loop over the blockSize. */
|
blkCnt = blockSize >> 2;
|
|
while (blkCnt > 0U)
|
{
|
in1 = *pScr2++;
|
in2 = *pScr2++;
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*__SIMD32(pOut)++ =
|
__PKHBT((q15_t) __SSAT(in1 >> 15, 16), (q15_t) __SSAT(in2 >> 15, 16),
|
16);
|
|
#else
|
*__SIMD32(pOut)++ =
|
__PKHBT((q15_t) __SSAT(in2 >> 15, 16), (q15_t) __SSAT(in1 >> 15, 16),
|
16);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
in1 = *pScr2++;
|
|
in2 = *pScr2++;
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*__SIMD32(pOut)++ =
|
__PKHBT((q15_t) __SSAT(in1 >> 15, 16), (q15_t) __SSAT(in2 >> 15, 16),
|
16);
|
|
#else
|
|
*__SIMD32(pOut)++ =
|
__PKHBT((q15_t) __SSAT(in2 >> 15, 16), (q15_t) __SSAT(in1 >> 15, 16),
|
16);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
|
blkCnt--;
|
|
}
|
|
/* If the blockSize is not a multiple of 4,
|
remaining samples are processed in the below loop */
|
blkCnt = blockSize % 0x4U;
|
|
while (blkCnt > 0U)
|
{
|
*pOut++ = (q15_t) __SSAT(*pScr2++ >> 15, 16);
|
blkCnt--;
|
}
|
|
#else
|
|
/* Run the below code for Cortex-M0 */
|
|
/* BlockSize of Input samples are copied into the state buffer */
|
/* StateIndex points to the starting position to write in the state buffer */
|
arm_circularWrite_q15(py, delaySize, &S->stateIndex, 1, pIn, 1, blockSize);
|
|
/* Loop over the number of taps. */
|
tapCnt = numTaps;
|
|
/* Read Index, from where the state buffer should be read, is calculated. */
|
readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
|
|
/* Wraparound of readIndex */
|
if (readIndex < 0)
|
{
|
readIndex += (int32_t) delaySize;
|
}
|
|
/* Working pointer for state buffer is updated */
|
py = pState;
|
|
/* blockSize samples are read from the state buffer */
|
arm_circularRead_q15(py, delaySize, &readIndex, 1,
|
pb, pb, blockSize, 1, blockSize);
|
|
/* Working pointer for the scratch buffer of state values */
|
px = pb;
|
|
/* Working pointer for scratch buffer of output values */
|
pScratchOut = pScr2;
|
|
blkCnt = blockSize;
|
|
while (blkCnt > 0U)
|
{
|
/* Perform multiplication and store in the scratch buffer */
|
*pScratchOut++ = ((q31_t) * px++ * coeff);
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* Load the coefficient value and
|
* increment the coefficient buffer for the next set of state values */
|
coeff = *pCoeffs++;
|
|
/* Read Index, from where the state buffer should be read, is calculated. */
|
readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
|
|
/* Wraparound of readIndex */
|
if (readIndex < 0)
|
{
|
readIndex += (int32_t) delaySize;
|
}
|
|
/* Loop over the number of taps. */
|
tapCnt = (uint32_t) numTaps - 2U;
|
|
while (tapCnt > 0U)
|
{
|
/* Working pointer for state buffer is updated */
|
py = pState;
|
|
/* blockSize samples are read from the state buffer */
|
arm_circularRead_q15(py, delaySize, &readIndex, 1,
|
pb, pb, blockSize, 1, blockSize);
|
|
/* Working pointer for the scratch buffer of state values */
|
px = pb;
|
|
/* Working pointer for scratch buffer of output values */
|
pScratchOut = pScr2;
|
|
blkCnt = blockSize;
|
|
while (blkCnt > 0U)
|
{
|
/* Perform Multiply-Accumulate */
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* Load the coefficient value and
|
* increment the coefficient buffer for the next set of state values */
|
coeff = *pCoeffs++;
|
|
/* Read Index, from where the state buffer should be read, is calculated. */
|
readIndex = (S->stateIndex - blockSize) - *pTapDelay++;
|
|
/* Wraparound of readIndex */
|
if (readIndex < 0)
|
{
|
readIndex += (int32_t) delaySize;
|
}
|
|
/* Decrement the tap loop counter */
|
tapCnt--;
|
}
|
|
/* Compute last tap without the final read of pTapDelay */
|
|
/* Working pointer for state buffer is updated */
|
py = pState;
|
|
/* blockSize samples are read from the state buffer */
|
arm_circularRead_q15(py, delaySize, &readIndex, 1,
|
pb, pb, blockSize, 1, blockSize);
|
|
/* Working pointer for the scratch buffer of state values */
|
px = pb;
|
|
/* Working pointer for scratch buffer of output values */
|
pScratchOut = pScr2;
|
|
blkCnt = blockSize;
|
|
while (blkCnt > 0U)
|
{
|
/* Perform Multiply-Accumulate */
|
*pScratchOut++ += (q31_t) * px++ * coeff;
|
|
/* Decrement the loop counter */
|
blkCnt--;
|
}
|
|
/* All the output values are in pScratchOut buffer.
|
Convert them into 1.15 format, saturate and store in the destination buffer. */
|
/* Loop over the blockSize. */
|
blkCnt = blockSize;
|
|
while (blkCnt > 0U)
|
{
|
*pOut++ = (q15_t) __SSAT(*pScr2++ >> 15, 16);
|
blkCnt--;
|
}
|
|
#endif /* #if defined (ARM_MATH_DSP) */
|
|
}
|
|
/**
|
* @} end of FIR_Sparse group
|
*/
|