/* ----------------------------------------------------------------------
|
* Project: CMSIS DSP Library
|
* Title: arm_mat_mult_fast_q31.c
|
* Description: Q31 matrix multiplication (fast variant)
|
*
|
* $Date: 27. January 2017
|
* $Revision: V.1.5.1
|
*
|
* Target Processor: Cortex-M cores
|
* -------------------------------------------------------------------- */
|
/*
|
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
*
|
* SPDX-License-Identifier: Apache-2.0
|
*
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
* not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "arm_math.h"
|
|
/**
|
* @ingroup groupMatrix
|
*/
|
|
/**
|
* @addtogroup MatrixMult
|
* @{
|
*/
|
|
/**
|
* @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
|
* @param[in] *pSrcA points to the first input matrix structure
|
* @param[in] *pSrcB points to the second input matrix structure
|
* @param[out] *pDst points to output matrix structure
|
* @return The function returns either
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
*
|
* @details
|
* <b>Scaling and Overflow Behavior:</b>
|
*
|
* \par
|
* The difference between the function arm_mat_mult_q31() and this fast variant is that
|
* the fast variant use a 32-bit rather than a 64-bit accumulator.
|
* The result of each 1.31 x 1.31 multiplication is truncated to
|
* 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
|
* format. Finally, the accumulator is saturated and converted to a 1.31 result.
|
*
|
* \par
|
* The fast version has the same overflow behavior as the standard version but provides
|
* less precision since it discards the low 32 bits of each multiplication result.
|
* In order to avoid overflows completely the input signals must be scaled down.
|
* Scale down one of the input matrices by log2(numColsA) bits to
|
* avoid overflows, as a total of numColsA additions are computed internally for each
|
* output element.
|
*
|
* \par
|
* See <code>arm_mat_mult_q31()</code> for a slower implementation of this function
|
* which uses 64-bit accumulation to provide higher precision.
|
*/
|
|
arm_status arm_mat_mult_fast_q31(
|
const arm_matrix_instance_q31 * pSrcA,
|
const arm_matrix_instance_q31 * pSrcB,
|
arm_matrix_instance_q31 * pDst)
|
{
|
q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
q31_t *px; /* Temporary output data matrix pointer */
|
q31_t sum; /* Accumulator */
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
|
arm_status status; /* status of matrix multiplication */
|
q31_t inA1, inB1;
|
|
#if defined (ARM_MATH_DSP)
|
|
q31_t sum2, sum3, sum4;
|
q31_t inA2, inB2;
|
q31_t *pInA2;
|
q31_t *px2;
|
|
#endif
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
/* Check for matrix mismatch condition */
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
|
{
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
status = ARM_MATH_SIZE_MISMATCH;
|
}
|
else
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
{
|
|
px = pDst->pData;
|
|
#if defined (ARM_MATH_DSP)
|
row = row >> 1;
|
px2 = px + numColsB;
|
#endif
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
/* row loop */
|
while (row > 0U)
|
{
|
|
/* For every row wise process, the column loop counter is to be initiated */
|
col = numColsB;
|
|
/* For every row wise process, the pIn2 pointer is set
|
** to the starting address of the pSrcB data */
|
pInB = pSrcB->pData;
|
|
j = 0U;
|
|
#if defined (ARM_MATH_DSP)
|
col = col >> 1;
|
#endif
|
|
/* column loop */
|
while (col > 0U)
|
{
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sum = 0;
|
|
/* Initiate data pointers */
|
pInA = pSrcA->pData + i;
|
pInB = pSrcB->pData + j;
|
|
#if defined (ARM_MATH_DSP)
|
sum2 = 0;
|
sum3 = 0;
|
sum4 = 0;
|
pInA2 = pInA + numColsA;
|
colCnt = numColsA;
|
#else
|
colCnt = numColsA >> 2;
|
#endif
|
|
/* matrix multiplication */
|
while (colCnt > 0U)
|
{
|
|
#if defined (ARM_MATH_DSP)
|
inA1 = *pInA++;
|
inB1 = pInB[0];
|
inA2 = *pInA2++;
|
inB2 = pInB[1];
|
pInB += numColsB;
|
|
sum = __SMMLA(inA1, inB1, sum);
|
sum2 = __SMMLA(inA1, inB2, sum2);
|
sum3 = __SMMLA(inA2, inB1, sum3);
|
sum4 = __SMMLA(inA2, inB2, sum4);
|
#else
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
/* Perform the multiply-accumulates */
|
inB1 = *pInB;
|
pInB += numColsB;
|
inA1 = pInA[0];
|
sum = __SMMLA(inA1, inB1, sum);
|
|
inB1 = *pInB;
|
pInB += numColsB;
|
inA1 = pInA[1];
|
sum = __SMMLA(inA1, inB1, sum);
|
|
inB1 = *pInB;
|
pInB += numColsB;
|
inA1 = pInA[2];
|
sum = __SMMLA(inA1, inB1, sum);
|
|
inB1 = *pInB;
|
pInB += numColsB;
|
inA1 = pInA[3];
|
sum = __SMMLA(inA1, inB1, sum);
|
|
pInA += 4U;
|
#endif
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
#ifdef ARM_MATH_CM0_FAMILY
|
/* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. */
|
colCnt = numColsA % 0x4U;
|
while (colCnt > 0U)
|
{
|
sum = __SMMLA(*pInA++, *pInB, sum);
|
pInB += numColsB;
|
colCnt--;
|
}
|
j++;
|
#endif
|
|
/* Convert the result from 2.30 to 1.31 format and store in destination buffer */
|
*px++ = sum << 1;
|
|
#if defined (ARM_MATH_DSP)
|
*px++ = sum2 << 1;
|
*px2++ = sum3 << 1;
|
*px2++ = sum4 << 1;
|
j += 2;
|
#endif
|
|
/* Decrement the column loop counter */
|
col--;
|
|
}
|
|
i = i + numColsA;
|
|
#if defined (ARM_MATH_DSP)
|
i = i + numColsA;
|
px = px2 + (numColsB & 1U);
|
px2 = px + numColsB;
|
#endif
|
|
/* Decrement the row loop counter */
|
row--;
|
|
}
|
|
/* Compute any remaining odd row/column below */
|
|
#if defined (ARM_MATH_DSP)
|
|
/* Compute remaining output column */
|
if (numColsB & 1U) {
|
|
/* Avoid redundant computation of last element */
|
row = numRowsA & (~0x1);
|
|
/* Point to remaining unfilled column in output matrix */
|
px = pDst->pData+numColsB-1;
|
pInA = pSrcA->pData;
|
|
/* row loop */
|
while (row > 0)
|
{
|
|
/* point to last column in matrix B */
|
pInB = pSrcB->pData + numColsB-1;
|
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sum = 0;
|
|
/* Compute 4 columns at once */
|
colCnt = numColsA >> 2;
|
|
/* matrix multiplication */
|
while (colCnt > 0U)
|
{
|
inA1 = *pInA++;
|
inA2 = *pInA++;
|
inB1 = *pInB;
|
pInB += numColsB;
|
inB2 = *pInB;
|
pInB += numColsB;
|
sum = __SMMLA(inA1, inB1, sum);
|
sum = __SMMLA(inA2, inB2, sum);
|
|
inA1 = *pInA++;
|
inA2 = *pInA++;
|
inB1 = *pInB;
|
pInB += numColsB;
|
inB2 = *pInB;
|
pInB += numColsB;
|
sum = __SMMLA(inA1, inB1, sum);
|
sum = __SMMLA(inA2, inB2, sum);
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
colCnt = numColsA & 3U;
|
while (colCnt > 0U) {
|
sum = __SMMLA(*pInA++, *pInB, sum);
|
pInB += numColsB;
|
colCnt--;
|
}
|
|
/* Convert the result from 2.30 to 1.31 format and store in destination buffer */
|
*px = sum << 1;
|
px += numColsB;
|
|
/* Decrement the row loop counter */
|
row--;
|
}
|
}
|
|
/* Compute remaining output row */
|
if (numRowsA & 1U) {
|
|
/* point to last row in output matrix */
|
px = pDst->pData+(numColsB)*(numRowsA-1);
|
|
col = numColsB;
|
i = 0U;
|
|
/* col loop */
|
while (col > 0)
|
{
|
|
/* point to last row in matrix A */
|
pInA = pSrcA->pData + (numRowsA-1)*numColsA;
|
pInB = pSrcB->pData + i;
|
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sum = 0;
|
|
/* Compute 4 columns at once */
|
colCnt = numColsA >> 2;
|
|
/* matrix multiplication */
|
while (colCnt > 0U)
|
{
|
inA1 = *pInA++;
|
inA2 = *pInA++;
|
inB1 = *pInB;
|
pInB += numColsB;
|
inB2 = *pInB;
|
pInB += numColsB;
|
sum = __SMMLA(inA1, inB1, sum);
|
sum = __SMMLA(inA2, inB2, sum);
|
|
inA1 = *pInA++;
|
inA2 = *pInA++;
|
inB1 = *pInB;
|
pInB += numColsB;
|
inB2 = *pInB;
|
pInB += numColsB;
|
sum = __SMMLA(inA1, inB1, sum);
|
sum = __SMMLA(inA2, inB2, sum);
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
colCnt = numColsA & 3U;
|
while (colCnt > 0U) {
|
sum = __SMMLA(*pInA++, *pInB, sum);
|
pInB += numColsB;
|
colCnt--;
|
}
|
|
/* Saturate and store the result in the destination buffer */
|
*px++ = sum << 1;
|
i++;
|
|
/* Decrement the col loop counter */
|
col--;
|
}
|
}
|
|
#endif /* #if defined (ARM_MATH_DSP) */
|
|
/* set status as ARM_MATH_SUCCESS */
|
status = ARM_MATH_SUCCESS;
|
}
|
|
/* Return to application */
|
return (status);
|
}
|
|
/**
|
* @} end of MatrixMult group
|
*/
|