/*
|
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
*
|
* SPDX-License-Identifier: Apache-2.0
|
*
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
* not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
/* ----------------------------------------------------------------------
|
* Project: CMSIS NN Library
|
* Title: arm_fully_connected_q15_opt.c
|
* Description: Q15 opt fully-connected layer function
|
*
|
* $Date: 17. January 2018
|
* $Revision: V.1.0.0
|
*
|
* Target Processor: Cortex-M cores
|
*
|
* -------------------------------------------------------------------- */
|
|
#include "arm_math.h"
|
#include "arm_nnfunctions.h"
|
|
/**
|
* @ingroup groupNN
|
*/
|
|
/**
|
* @addtogroup FC
|
* @{
|
*/
|
|
/**
|
* @brief Q15 opt fully-connected layer function
|
* @param[in] pV pointer to input vector
|
* @param[in] pM pointer to matrix weights
|
* @param[in] dim_vec length of the vector
|
* @param[in] num_of_rows number of rows in weight matrix
|
* @param[in] bias_shift amount of left-shift for bias
|
* @param[in] out_shift amount of right-shift for output
|
* @param[in] bias pointer to bias
|
* @param[in,out] pOut pointer to output vector
|
* @param[in,out] vec_buffer pointer to buffer space for input
|
* @return The function returns <code>ARM_MATH_SUCCESS</code>
|
*
|
*
|
* @details
|
*
|
* <b>Buffer size:</b>
|
*
|
* vec_buffer size: 0
|
*
|
* Here we use only one pointer to read 4 rows in the weight
|
* matrix. So if the original matrix looks like this:
|
*
|
* | a11 | a12 | a13 |
|
*
|
* | a21 | a22 | a23 |
|
*
|
* | a31 | a32 | a33 |
|
*
|
* | a41 | a42 | a43 |
|
*
|
* | a51 | a52 | a53 |
|
*
|
* | a61 | a62 | a63 |
|
*
|
* We operates on multiple-of-4 rows, so the first four rows becomes
|
*
|
* | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
|
*
|
* | a13 | a23 | a33 | a43 |
|
*
|
* Remaining rows are kept the same original order.
|
*
|
* So the stored weight matrix looks like this:
|
*
|
*
|
* | a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
|
*
|
* | a13 | a23 | a33 | a43 | a51 | a52 | a53 | a61 |
|
*
|
* | a62 | a63 |
|
*/
|
|
arm_status
|
arm_fully_connected_q15_opt(const q15_t * pV,
|
const q15_t * pM,
|
const uint16_t dim_vec,
|
const uint16_t num_of_rows,
|
const uint16_t bias_shift,
|
const uint16_t out_shift,
|
const q15_t * bias,
|
q15_t * pOut,
|
q15_t * vec_buffer)
|
{
|
|
#if defined (ARM_MATH_DSP)
|
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
|
const q15_t *pB = pM;
|
q15_t *pO = pOut;
|
const q15_t *pBias = bias;
|
const q15_t *pA = pV;
|
|
uint16_t rowCnt = num_of_rows >> 2;
|
|
while (rowCnt)
|
{
|
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
|
uint16_t colCnt = dim_vec >> 1;
|
|
pA = pV;
|
|
#ifdef USE_INTRINSIC
|
|
while (colCnt)
|
{
|
q31_t inM11, inM12, inM13, inM14;
|
q31_t inV;
|
|
inV = *__SIMD32(pA)++;
|
inM11 = *__SIMD32(pB)++;
|
sum = __SMLAD(inV, inM11, sum);
|
inM12 = *__SIMD32(pB)++;
|
sum2 = __SMLAD(inV, inM12, sum2);
|
inM13 = *__SIMD32(pB)++;
|
sum3 = __SMLAD(inV, inM13, sum3);
|
inM14 = *__SIMD32(pB)++;
|
sum4 = __SMLAD(inV, inM14, sum4);
|
colCnt--;
|
}
|
|
#else
|
|
/*
|
* register needed:
|
* loop counter: colCnt
|
* accumulators: sum, sum2, sum3, sum4
|
* pointers: pB, pA
|
* weight data: inM11, inM12, inM13, inM14
|
* activation data: inV
|
*/
|
|
asm volatile ("COL_LOOP_%=:\n"
|
"ldr.w r4, [%[pA]], #4\n"
|
"ldr.w r0, [%[pB]], #16\n"
|
"smlad %[sum], r4, r0, %[sum]\n"
|
"ldr.w r1, [%[pB] , #-12]\n"
|
"smlad %[sum2], r4, r1, %[sum2]\n"
|
"ldr.w r2, [%[pB] , #-8]\n"
|
"smlad %[sum3], r4, r2, %[sum3]\n"
|
"ldr.w r3, [%[pB] , #-4]\n"
|
"smlad %[sum4], r4, r3, %[sum4]\n"
|
"subs %[colCnt], #1\n"
|
"bne COL_LOOP_%=\n":[sum] "+r"(sum),
|
[sum2] "+r"(sum2),[sum3] "+r"(sum3),
|
[sum4] "+r"(sum4),[pB] "+r"(pB),[pA] "+r"(pA):[colCnt] "r"(colCnt):"r0", "r1", "r2", "r3", "r4");
|
|
#endif /* USE_INTRINSIC */
|
|
colCnt = dim_vec & 0x1;
|
while (colCnt)
|
{
|
|
q15_t inV = *pA++;
|
q15_t inM = *pB++;
|
q15_t inM2 = *pB++;
|
q15_t inM3 = *pB++;
|
q15_t inM4 = *pB++;
|
|
sum += inV * inM;
|
sum2 += inV * inM2;
|
sum3 += inV * inM3;
|
sum4 += inV * inM4;
|
colCnt--;
|
} /* while over colCnt */
|
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
*pO++ = (q15_t) (__SSAT((sum2 >> out_shift), 16));
|
*pO++ = (q15_t) (__SSAT((sum3 >> out_shift), 16));
|
*pO++ = (q15_t) (__SSAT((sum4 >> out_shift), 16));
|
|
/* adjust the pointers and counters */
|
rowCnt--;
|
}
|
|
/* left-over part of the rows */
|
rowCnt = num_of_rows & 0x3;
|
|
while (rowCnt)
|
{
|
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
|
uint16_t colCnt = dim_vec >> 2;
|
|
pA = pV;
|
|
while (colCnt)
|
{
|
q31_t inV1, inV2, inM1, inM2;
|
|
inM1 = *__SIMD32(pB)++;
|
inV1 = *__SIMD32(pA)++;
|
sum = __SMLAD(inV1, inM1, sum);
|
|
inM2 = *__SIMD32(pB)++;
|
inV2 = *__SIMD32(pA)++;
|
sum = __SMLAD(inV2, inM2, sum);
|
|
colCnt--;
|
}
|
|
/* left-over of the vector */
|
colCnt = dim_vec & 0x3;
|
while (colCnt)
|
{
|
q15_t inV = *pA++;
|
q15_t inM = *pB++;
|
sum += inV * inM;
|
colCnt--;
|
}
|
|
*pO++ = (q15_t) (__SSAT((sum >> out_shift), 16));
|
|
rowCnt--;
|
}
|
|
#else
|
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
uint16_t rowCnt = num_of_rows >> 2;
|
const q15_t *pB = pM;
|
const q15_t *pA;
|
q15_t *pO = pOut;
|
const q15_t *pBias = bias;
|
|
while (rowCnt)
|
{
|
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
|
uint16_t colCnt = dim_vec >> 1;
|
|
pA = pV;
|
while (colCnt)
|
{
|
q15_t inA1 = *pA++;
|
q15_t inA2 = *pA++;
|
|
q15_t inB1 = *pB++;
|
q15_t inB2 = *pB++;
|
sum += inA1 * inB1 + inA2 * inB2;
|
|
inB1 = *pB++;
|
inB2 = *pB++;
|
sum2 += inA1 * inB1 + inA2 * inB2;
|
|
inB1 = *pB++;
|
inB2 = *pB++;
|
sum3 += inA1 * inB1 + inA2 * inB2;
|
|
inB1 = *pB++;
|
inB2 = *pB++;
|
sum4 += inA1 * inB1 + inA2 * inB2;
|
|
colCnt--;
|
}
|
colCnt = dim_vec & 0x1;
|
while (colCnt)
|
{
|
q15_t inA = *pA++;
|
q15_t inB = *pB++;
|
sum += inA * inB;
|
inB = *pB++;
|
sum2 += inA * inB;
|
inB = *pB++;
|
sum3 += inA * inB;
|
inB = *pB++;
|
sum4 += inA * inB;
|
colCnt--;
|
}
|
*pO++ = (q15_t) __SSAT((sum >> out_shift), 16);
|
*pO++ = (q15_t) __SSAT((sum2 >> out_shift), 16);
|
*pO++ = (q15_t) __SSAT((sum3 >> out_shift), 16);
|
*pO++ = (q15_t) __SSAT((sum4 >> out_shift), 16);
|
|
rowCnt--;
|
}
|
rowCnt = num_of_rows & 0x3;
|
|
while (rowCnt)
|
{
|
int ip_out = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
int j;
|
|
pA = pV;
|
for (j = 0; j < dim_vec; j++)
|
{
|
q15_t inA = *pA++;
|
q15_t inB = *pB++;
|
ip_out += inA * inB;
|
}
|
*pO++ = (q15_t) __SSAT((ip_out >> out_shift), 16);
|
|
rowCnt--;
|
}
|
|
#endif /* ARM_MATH_DSP */
|
|
/* Return to ARM_MATH_SUCCESS */
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
/**
|
* @} end of FC group
|
*/
|