/* ----------------------------------------------------------------------
|
* Project: CMSIS DSP Library
|
* Title: arm_mat_cmplx_mult_q31.c
|
* Description: Floating-point matrix multiplication
|
*
|
* $Date: 27. January 2017
|
* $Revision: V.1.5.1
|
*
|
* Target Processor: Cortex-M cores
|
* -------------------------------------------------------------------- */
|
/*
|
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
*
|
* SPDX-License-Identifier: Apache-2.0
|
*
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
* not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "arm_math.h"
|
|
/**
|
* @ingroup groupMatrix
|
*/
|
|
/**
|
* @addtogroup CmplxMatrixMult
|
* @{
|
*/
|
|
/**
|
* @brief Q31 Complex matrix multiplication
|
* @param[in] *pSrcA points to the first input complex matrix structure
|
* @param[in] *pSrcB points to the second input complex matrix structure
|
* @param[out] *pDst points to output complex matrix structure
|
* @return The function returns either
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
*
|
* @details
|
* <b>Scaling and Overflow Behavior:</b>
|
*
|
* \par
|
* The function is implemented using an internal 64-bit accumulator.
|
* The accumulator has a 2.62 format and maintains full precision of the intermediate
|
* multiplication results but provides only a single guard bit. There is no saturation
|
* on intermediate additions. Thus, if the accumulator overflows it wraps around and
|
* distorts the result. The input signals should be scaled down to avoid intermediate
|
* overflows. The input is thus scaled down by log2(numColsA) bits
|
* to avoid overflows, as a total of numColsA additions are performed internally.
|
* The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
|
*
|
*
|
*/
|
|
arm_status arm_mat_cmplx_mult_q31(
|
const arm_matrix_instance_q31 * pSrcA,
|
const arm_matrix_instance_q31 * pSrcB,
|
arm_matrix_instance_q31 * pDst)
|
{
|
q31_t *pIn1 = pSrcA->pData; /* input data matrix pointer A */
|
q31_t *pIn2 = pSrcB->pData; /* input data matrix pointer B */
|
q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
q31_t *pOut = pDst->pData; /* output data matrix pointer */
|
q31_t *px; /* Temporary output data matrix pointer */
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
q63_t sumReal1, sumImag1; /* accumulator */
|
q31_t a0, b0, c0, d0;
|
q31_t a1, b1, c1, d1;
|
|
|
/* Run the below code for Cortex-M4 and Cortex-M3 */
|
|
uint16_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
|
arm_status status; /* status of matrix multiplication */
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
/* Check for matrix mismatch condition */
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
status = ARM_MATH_SIZE_MISMATCH;
|
}
|
else
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
{
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
/* row loop */
|
do
|
{
|
/* Output pointer is set to starting address of the row being processed */
|
px = pOut + 2 * i;
|
|
/* For every row wise process, the column loop counter is to be initiated */
|
col = numColsB;
|
|
/* For every row wise process, the pIn2 pointer is set
|
** to the starting address of the pSrcB data */
|
pIn2 = pSrcB->pData;
|
|
j = 0U;
|
|
/* column loop */
|
do
|
{
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sumReal1 = 0.0;
|
sumImag1 = 0.0;
|
|
/* Initiate the pointer pIn1 to point to the starting address of the column being processed */
|
pIn1 = pInA;
|
|
/* Apply loop unrolling and compute 4 MACs simultaneously. */
|
colCnt = numColsA >> 2;
|
|
/* matrix multiplication */
|
while (colCnt > 0U)
|
{
|
|
/* Reading real part of complex matrix A */
|
a0 = *pIn1;
|
|
/* Reading real part of complex matrix B */
|
c0 = *pIn2;
|
|
/* Reading imaginary part of complex matrix A */
|
b0 = *(pIn1 + 1U);
|
|
/* Reading imaginary part of complex matrix B */
|
d0 = *(pIn2 + 1U);
|
|
/* Multiply and Accumlates */
|
sumReal1 += (q63_t) a0 *c0;
|
sumImag1 += (q63_t) b0 *c0;
|
|
/* update pointers */
|
pIn1 += 2U;
|
pIn2 += 2 * numColsB;
|
|
/* Multiply and Accumlates */
|
sumReal1 -= (q63_t) b0 *d0;
|
sumImag1 += (q63_t) a0 *d0;
|
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
a1 = *pIn1;
|
c1 = *pIn2;
|
b1 = *(pIn1 + 1U);
|
d1 = *(pIn2 + 1U);
|
|
/* Multiply and Accumlates */
|
sumReal1 += (q63_t) a1 *c1;
|
sumImag1 += (q63_t) b1 *c1;
|
|
/* update pointers */
|
pIn1 += 2U;
|
pIn2 += 2 * numColsB;
|
|
/* Multiply and Accumlates */
|
sumReal1 -= (q63_t) b1 *d1;
|
sumImag1 += (q63_t) a1 *d1;
|
|
a0 = *pIn1;
|
c0 = *pIn2;
|
|
b0 = *(pIn1 + 1U);
|
d0 = *(pIn2 + 1U);
|
|
/* Multiply and Accumlates */
|
sumReal1 += (q63_t) a0 *c0;
|
sumImag1 += (q63_t) b0 *c0;
|
|
/* update pointers */
|
pIn1 += 2U;
|
pIn2 += 2 * numColsB;
|
|
/* Multiply and Accumlates */
|
sumReal1 -= (q63_t) b0 *d0;
|
sumImag1 += (q63_t) a0 *d0;
|
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
|
a1 = *pIn1;
|
c1 = *pIn2;
|
|
b1 = *(pIn1 + 1U);
|
d1 = *(pIn2 + 1U);
|
|
/* Multiply and Accumlates */
|
sumReal1 += (q63_t) a1 *c1;
|
sumImag1 += (q63_t) b1 *c1;
|
|
/* update pointers */
|
pIn1 += 2U;
|
pIn2 += 2 * numColsB;
|
|
/* Multiply and Accumlates */
|
sumReal1 -= (q63_t) b1 *d1;
|
sumImag1 += (q63_t) a1 *d1;
|
|
/* Decrement the loop count */
|
colCnt--;
|
}
|
|
/* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
|
** No loop unrolling is used. */
|
colCnt = numColsA % 0x4U;
|
|
while (colCnt > 0U)
|
{
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
a1 = *pIn1;
|
c1 = *pIn2;
|
|
b1 = *(pIn1 + 1U);
|
d1 = *(pIn2 + 1U);
|
|
/* Multiply and Accumlates */
|
sumReal1 += (q63_t) a1 *c1;
|
sumImag1 += (q63_t) b1 *c1;
|
|
/* update pointers */
|
pIn1 += 2U;
|
pIn2 += 2 * numColsB;
|
|
/* Multiply and Accumlates */
|
sumReal1 -= (q63_t) b1 *d1;
|
sumImag1 += (q63_t) a1 *d1;
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
/* Store the result in the destination buffer */
|
*px++ = (q31_t) clip_q63_to_q31(sumReal1 >> 31);
|
*px++ = (q31_t) clip_q63_to_q31(sumImag1 >> 31);
|
|
/* Update the pointer pIn2 to point to the starting address of the next column */
|
j++;
|
pIn2 = pSrcB->pData + 2U * j;
|
|
/* Decrement the column loop counter */
|
col--;
|
|
} while (col > 0U);
|
|
/* Update the pointer pInA to point to the starting address of the next row */
|
i = i + numColsB;
|
pInA = pInA + 2 * numColsA;
|
|
/* Decrement the row loop counter */
|
row--;
|
|
} while (row > 0U);
|
|
/* Set status as ARM_MATH_SUCCESS */
|
status = ARM_MATH_SUCCESS;
|
}
|
|
/* Return to application */
|
return (status);
|
}
|
|
/**
|
* @} end of MatrixMult group
|
*/
|