| /*  | 
|  * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.  | 
|  *  | 
|  * SPDX-License-Identifier: Apache-2.0  | 
|  *  | 
|  * Licensed under the Apache License, Version 2.0 (the License); you may  | 
|  * not use this file except in compliance with the License.  | 
|  * You may obtain a copy of the License at  | 
|  *  | 
|  * www.apache.org/licenses/LICENSE-2.0  | 
|  *  | 
|  * Unless required by applicable law or agreed to in writing, software  | 
|  * distributed under the License is distributed on an AS IS BASIS, WITHOUT  | 
|  * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  | 
|  * See the License for the specific language governing permissions and  | 
|  * limitations under the License.  | 
|  */  | 
|   | 
| /* ----------------------------------------------------------------------  | 
|  * Project:      CMSIS NN Library  | 
|  * Title:        arm_convolve_HWC_q7_fast_nonsquare.c  | 
|  * Description:  Fast Q7 version of convolution (non-sqaure shape)  | 
|  *  | 
|  * $Date:        17. January 2018  | 
|  * $Revision:    V.1.0.0  | 
|  *  | 
|  * Target Processor:  Cortex-M cores  | 
|  *  | 
|  * -------------------------------------------------------------------- */  | 
|   | 
| #include "arm_math.h"  | 
| #include "arm_nnfunctions.h"  | 
|   | 
| /**  | 
|  *  @ingroup groupNN  | 
|  */  | 
|   | 
| /**  | 
|  * @addtogroup NNConv  | 
|  * @{  | 
|  */  | 
|   | 
| /**  | 
|  * @brief Fast Q7 convolution function (non-sqaure shape)  | 
|  * @param[in]       Im_in        pointer to input tensor  | 
|  * @param[in]       dim_im_in_x  input tensor dimention x  | 
|  * @param[in]       dim_im_in_y  input tensor dimention y  | 
|  * @param[in]       ch_im_in     number of input tensor channels  | 
|  * @param[in]       wt           pointer to kernel weights  | 
|  * @param[in]       ch_im_out    number of filters, i.e., output tensor channels  | 
|  * @param[in]       dim_kernel_x filter kernel size x  | 
|  * @param[in]       dim_kernel_y filter kernel size y  | 
|  * @param[in]       padding_x    padding size x  | 
|  * @param[in]       padding_y    padding size y  | 
|  * @param[in]       stride_x     convolution stride x  | 
|  * @param[in]       stride_y     convolution stride y  | 
|  * @param[in]       bias         pointer to bias  | 
|  * @param[in]       bias_shift   amount of left-shift for bias  | 
|  * @param[in]       out_shift    amount of right-shift for output  | 
|  * @param[in,out]   Im_out       pointer to output tensor  | 
|  * @param[in]       dim_im_out_x output tensor dimension x  | 
|  * @param[in]       dim_im_out_y output tensor dimension y  | 
|  * @param[in,out]   bufferA      pointer to buffer space for input   | 
|  * @param[in,out]   bufferB      pointer to buffer space for output  | 
|  * @return     The function returns either  | 
|  * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.  | 
|  *  | 
|  * This function is the version with full list of optimization tricks, but with  | 
|  * some contraints:  | 
|  *   ch_im_in is multiple of 4  | 
|  *   ch_im_out is multiple of 2  | 
|  */  | 
|   | 
| arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,  | 
|                                               const uint16_t dim_im_in_x,  | 
|                                               const uint16_t dim_im_in_y,  | 
|                                               const uint16_t ch_im_in,  | 
|                                               const q7_t * wt,  | 
|                                               const uint16_t ch_im_out,  | 
|                                               const uint16_t dim_kernel_x,  | 
|                                               const uint16_t dim_kernel_y,  | 
|                                               const uint16_t padding_x,  | 
|                                               const uint16_t padding_y,  | 
|                                               const uint16_t stride_x,  | 
|                                               const uint16_t stride_y,  | 
|                                               const q7_t * bias,  | 
|                                               const uint16_t bias_shift,  | 
|                                               const uint16_t out_shift,  | 
|                                               q7_t * Im_out,  | 
|                                               const uint16_t dim_im_out_x,  | 
|                                               const uint16_t dim_im_out_y,   | 
|                                               q15_t * bufferA,   | 
|                                               q7_t * bufferB)  | 
| {  | 
|   | 
| #if defined (ARM_MATH_DSP)  | 
|     /* Run the following code for Cortex-M4 and Cortex-M7 */  | 
|   | 
|     int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;  | 
|   | 
|     /* -----------------------  | 
|      *  Here we use bufferA as q15_t internally as computation are done with q15_t level  | 
|      *  im2col are done to output in q15_t format from q7_t input  | 
|      */  | 
|   | 
|     q15_t    *pBuffer = bufferA;  | 
|     q7_t     *pOut = Im_out;  | 
|   | 
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)  | 
|     {  | 
|         /* check if the input dimension meets the constraints */  | 
|         return ARM_MATH_SIZE_MISMATCH;  | 
|     }  | 
|   | 
|     /*  | 
|      *  Here we split the entire matrix into three regions depending on the padding situation  | 
|      *    Top: i_out_y from 0 to padding - 1  | 
|      * Middle: i_out_y from padding to dim_im_out-padding-1  | 
|      * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1  | 
|      */  | 
|   | 
|     /* top part */  | 
|     for (i_out_y = 0; i_out_y < padding_y; i_out_y++)  | 
|     {  | 
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)  | 
|         {  | 
|             /* This part implements the im2col function */  | 
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;  | 
|                  i_ker_y++)  | 
|             {  | 
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;  | 
|                      i_ker_x++)  | 
|                 {  | 
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)  | 
|                     {  | 
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */  | 
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);  | 
|                     } else  | 
|                     {  | 
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,  | 
|                                                          pBuffer, ch_im_in);  | 
|                     }  | 
|                     pBuffer += ch_im_in;  | 
|                 }  | 
|             }  | 
|   | 
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)  | 
|             {  | 
|                 pOut =  | 
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,  | 
|                                                   bias_shift, out_shift, bias, pOut);  | 
|                 /* counter reset */  | 
|                 pBuffer = bufferA;  | 
|             }  | 
|         }  | 
|     }  | 
|   | 
|     /* middle part, here we also divide the x into left, mid and right */  | 
|     for (; i_out_y < dim_im_out_y - padding_y; i_out_y++)  | 
|     {  | 
|   | 
|         /* left part */  | 
|         for (i_out_x = 0; i_out_x < padding_x; i_out_x++)  | 
|         {  | 
|             /* This part implements the im2col function */  | 
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;  | 
|                  i_ker_y++)  | 
|             {  | 
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;  | 
|                      i_ker_x++)  | 
|                 {  | 
|                     if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)  | 
|                     {  | 
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */  | 
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);  | 
|                     } else  | 
|                     {  | 
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,  | 
|                                                          pBuffer, ch_im_in);  | 
|                     }  | 
|                     pBuffer += ch_im_in;  | 
|                 }  | 
|             }  | 
|   | 
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)  | 
|             {  | 
|                 pOut =  | 
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,  | 
|                                                   bias_shift, out_shift, bias, pOut);  | 
|                 /* counter reset */  | 
|                 pBuffer = bufferA;  | 
|             }  | 
|         }  | 
|   | 
|         /* mid part */  | 
|         for (; i_out_x < dim_im_out_x - padding_x; i_out_x++)  | 
|         {  | 
|             /* This part implements the im2col function */  | 
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;  | 
|                  i_ker_y++)  | 
|             {  | 
|                 arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in +  | 
|                                                  (i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in,  | 
|                                                  pBuffer, ch_im_in * dim_kernel_x);  | 
|                 pBuffer += ch_im_in * dim_kernel_x;  | 
|             }  | 
|   | 
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)  | 
|             {  | 
|                 pOut =  | 
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,  | 
|                                                   bias_shift, out_shift, bias, pOut);  | 
|                 /* counter reset */  | 
|                 pBuffer = bufferA;  | 
|             }  | 
|         }  | 
|   | 
|         /* right part */  | 
|         for (; i_out_x < dim_im_out_x; i_out_x++)  | 
|         {  | 
|             /* This part implements the im2col function */  | 
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;  | 
|                  i_ker_y++)  | 
|             {  | 
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;  | 
|                      i_ker_x++)  | 
|                 {  | 
|                     if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)  | 
|                     {  | 
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */  | 
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);  | 
|                     } else  | 
|                     {  | 
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,  | 
|                                                          pBuffer, ch_im_in);  | 
|                     }  | 
|                     pBuffer += ch_im_in;  | 
|                 }  | 
|             }  | 
|   | 
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)  | 
|             {  | 
|                 pOut =  | 
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,  | 
|                                                   bias_shift, out_shift, bias, pOut);  | 
|                 /* counter reset */  | 
|                 pBuffer = bufferA;  | 
|             }  | 
|         }  | 
|     }  | 
|   | 
|     for (; i_out_y < dim_im_out_y; i_out_y++)  | 
|     {  | 
|         for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)  | 
|         {  | 
|             /* This part implements the im2col function */  | 
|             for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;  | 
|                  i_ker_y++)  | 
|             {  | 
|                 for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;  | 
|                      i_ker_x++)  | 
|                 {  | 
|                     if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)  | 
|                     {  | 
|                         /* arm_fill_q15(0, pBuffer, ch_im_in); */  | 
|                         memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);  | 
|                     } else  | 
|                     {  | 
|                         arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,  | 
|                                                          pBuffer, ch_im_in);  | 
|                     }  | 
|                     pBuffer += ch_im_in;  | 
|                 }  | 
|             }  | 
|   | 
|             if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)  | 
|             {  | 
|                 pOut =  | 
|                     arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,  | 
|                                                   bias_shift, out_shift, bias, pOut);  | 
|                 /* counter reset */  | 
|                 pBuffer = bufferA;  | 
|             }  | 
|         }  | 
|     }  | 
|   | 
|     /* check if there is left-over for compute */  | 
|     if (pBuffer != bufferA)  | 
|     {  | 
|         const q7_t *pA = wt;  | 
|         int       i;  | 
|         for (i = 0; i < ch_im_out; i++)  | 
|         {  | 
|             q31_t     sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);  | 
|             q15_t    *pB = bufferA;  | 
|             /* basically each time it process 4 entries */  | 
|             uint16_t  colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;  | 
|   | 
|             while (colCnt)  | 
|             {  | 
|   | 
|                 q31_t     inA1, inA2;  | 
|                 q31_t     inB1, inB2;  | 
|   | 
|                 pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2);  | 
|   | 
|                 inB1 = *__SIMD32(pB)++;  | 
|                 sum = __SMLAD(inA1, inB1, sum);  | 
|                 inB2 = *__SIMD32(pB)++;  | 
|                 sum = __SMLAD(inA2, inB2, sum);  | 
|   | 
|                 colCnt--;  | 
|             }  | 
|             colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3;  | 
|             while (colCnt)  | 
|             {  | 
|                 q7_t      inA1 = *pA++;  | 
|                 q15_t     inB1 = *pB++;  | 
|                 sum += inA1 * inB1;  | 
|                 colCnt--;  | 
|             }  | 
|             *pOut = (q7_t) __SSAT((sum >> out_shift), 8);  | 
|             pOut++;  | 
|   | 
|         }  | 
|   | 
|     }  | 
|   | 
| #else  | 
|     /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */  | 
|     int       i, j, k, l, m, n;  | 
|     int       conv_out;  | 
|     int       in_row, in_col;  | 
|   | 
|     if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)  | 
|     {  | 
|         /* check if the input dimension meets the constraints */  | 
|         return ARM_MATH_SIZE_MISMATCH;  | 
|     }  | 
|   | 
|     for (i = 0; i < ch_im_out; i++)  | 
|     {  | 
|         for (j = 0; j < dim_im_out_y; j++)  | 
|         {  | 
|             for (k = 0; k < dim_im_out_x; k++)  | 
|             {  | 
|                 conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);  | 
|                 for (m = 0; m < dim_kernel_y; m++)  | 
|                 {  | 
|                     for (n = 0; n < dim_kernel_x; n++)  | 
|                     {  | 
|                         /* if-for implementation */  | 
|                         in_row = stride_y * j + m - padding_y;  | 
|                         in_col = stride_x * k + n - padding_x;  | 
|                         if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)  | 
|                         {  | 
|                             for (l = 0; l < ch_im_in; l++)  | 
|                             {  | 
|                                 conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *  | 
|                                     wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in + l];        | 
|                             }  | 
|                         }  | 
|                     }  | 
|                 }  | 
|                 Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);  | 
|             }  | 
|         }  | 
|     }  | 
|   | 
|   | 
| #endif                          /* ARM_MATH_DSP */  | 
|   | 
|     /* Return to application */  | 
|     return ARM_MATH_SUCCESS;  | 
| }  | 
|   | 
| /**  | 
|  * @} end of NNConv group  | 
|  */  |