/*
|
* Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
|
*
|
* SPDX-License-Identifier: Apache-2.0
|
*
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
* not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
/* ----------------------------------------------------------------------
|
* Project: CMSIS NN Library
|
* Title: arm_depthwise_separable_conv_HWC_q7.c
|
* Description: Q7 depthwise separable convolution function
|
*
|
* $Date: 17. January 2018
|
* $Revision: V.1.0.0
|
*
|
* Target Processor: Cortex-M cores
|
*
|
* -------------------------------------------------------------------- */
|
|
#include "arm_math.h"
|
#include "arm_nnfunctions.h"
|
|
/**
|
* @ingroup groupNN
|
*/
|
|
/**
|
* @addtogroup NNConv
|
* @{
|
*/
|
|
/**
|
* @brief Q7 depthwise separable convolution function
|
* @param[in] Im_in pointer to input tensor
|
* @param[in] dim_im_in input tensor dimention
|
* @param[in] ch_im_in number of input tensor channels
|
* @param[in] wt pointer to kernel weights
|
* @param[in] ch_im_out number of filters, i.e., output tensor channels
|
* @param[in] dim_kernel filter kernel size
|
* @param[in] padding padding sizes
|
* @param[in] stride convolution stride
|
* @param[in] bias pointer to bias
|
* @param[in] bias_shift amount of left-shift for bias
|
* @param[in] out_shift amount of right-shift for output
|
* @param[in,out] Im_out pointer to output tensor
|
* @param[in] dim_im_out output tensor dimension
|
* @param[in,out] bufferA pointer to buffer space for input
|
* @param[in,out] bufferB pointer to buffer space for output
|
* @return The function returns either
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
*
|
* @details
|
*
|
* <b>Buffer size:</b>
|
*
|
* bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
|
*
|
* bufferB size: 0
|
*
|
* <b>Input dimension constraints:</b>
|
*
|
* ch_im_in equals ch_im_out
|
*
|
* Implementation:
|
* There are 3 nested loop here:
|
* Inner loop: calculate each output value with MAC instruction over an accumulator
|
* Mid loop: loop over different output channel
|
* Outer loop: loop over different output (x, y)
|
*/
|
|
arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
|
const uint16_t dim_im_in,
|
const uint16_t ch_im_in,
|
const q7_t * wt,
|
const uint16_t ch_im_out,
|
const uint16_t dim_kernel,
|
const uint16_t padding,
|
const uint16_t stride,
|
const q7_t * bias,
|
const uint16_t bias_shift,
|
const uint16_t out_shift,
|
q7_t * Im_out,
|
const uint16_t dim_im_out,
|
q15_t * bufferA,
|
q7_t * bufferB)
|
{
|
|
#if defined (ARM_MATH_DSP)
|
/* Run the following code for Cortex-M4 and Cortex-M7 */
|
|
int16_t i_out_y, i_out_x;
|
int16_t i_ker_y, i_ker_x;
|
q7_t *colBuffer = (q7_t *) bufferA;
|
q7_t *pBuffer = colBuffer;
|
const q7_t *pBias = bias;
|
q7_t *pOut = Im_out;
|
uint16_t rowCnt;
|
uint16_t row_shift;
|
|
/* do some checking here, basically ch_im_in == ch_im_out */
|
if (ch_im_in != ch_im_out)
|
{
|
return ARM_MATH_SIZE_MISMATCH;
|
}
|
|
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
{
|
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
{
|
/* we first do im2col here */
|
for (i_ker_y = i_out_y * stride - padding; i_ker_y < i_out_y * stride - padding + dim_kernel; i_ker_y++)
|
{
|
for (i_ker_x = i_out_x * stride - padding; i_ker_x < i_out_x * stride - padding + dim_kernel; i_ker_x++)
|
{
|
if (i_ker_y < 0 || i_ker_y >= dim_im_in || i_ker_x < 0 || i_ker_x >= dim_im_in)
|
{
|
/* arm_fill_q7(0, pBuffer, ch_im_in); */
|
memset(pBuffer, 0, ch_im_in);
|
} else
|
{
|
/* arm_copy_q7((q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
|
memcpy(pBuffer, (q7_t *) Im_in + (i_ker_y * dim_im_in + i_ker_x) * ch_im_in, ch_im_in);
|
}
|
pBuffer += ch_im_in;
|
}
|
}
|
|
/* we will do the computation here for each channel */
|
rowCnt = ch_im_out >> 2;
|
row_shift = 0;
|
pBias = bias;
|
|
while (rowCnt)
|
{
|
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
q31_t sum2 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
q31_t sum3 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
q31_t sum4 = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
|
uint16_t colCnt = (dim_kernel * dim_kernel) >> 1;
|
q7_t *pB = colBuffer + row_shift;
|
const q7_t *pA = wt + row_shift;
|
row_shift += 4;
|
|
#ifdef USE_INTRINSIC
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
while (colCnt)
|
{
|
q31_t inA1, inA2, inB1, inB2, opA, opB;
|
|
inB1 = *__SIMD32(pB);
|
pB += ch_im_in;
|
opB = *__SIMD32(pB);
|
pB += ch_im_in;
|
inB2 = __PKHTB(opB, inB1, 16);
|
inB1 = __PKHBT(inB1, opB, 16);
|
inA1 = *__SIMD32(pA);
|
pA += ch_im_in;
|
opB = *__SIMD32(pA);
|
pA += ch_im_in;
|
inA2 = __PKHTB(opB, inA1, 16);
|
inA1 = __PKHBT(inA1, opB, 16);
|
opA = __SXTB16(inA1);
|
opB = __SXTB16(inB1);
|
sum = __SMLAD(opA, opB, sum);
|
opA = __SXTB16(__ROR(inA1, 8));
|
opB = __SXTB16(__ROR(inB1, 8));
|
sum2 = __SMLAD(opA, opB, sum2);
|
opA = __SXTB16(inA2);
|
opB = __SXTB16(inB2);
|
sum3 = __SMLAD(opA, opB, sum3);
|
opA = __SXTB16(__ROR(inA2, 8));
|
opB = __SXTB16(__ROR(inB2, 8));
|
sum4 = __SMLAD(opA, opB, sum4);
|
colCnt--;
|
}
|
#else
|
|
while (colCnt)
|
{
|
q31_t inA1, inA2, inB1, inB2, opA, opB;
|
|
inB1 = *__SIMD32(pB);
|
pB += ch_im_in;
|
opB = *__SIMD32(pB);
|
pB += ch_im_in;
|
inB2 = __PKHBT(opB, inB1, 16);
|
inB1 = __PKHTB(inB1, opB, 16);
|
inA1 = *__SIMD32(pA);
|
pA += ch_im_in;
|
opB = *__SIMD32(pA);
|
pA += ch_im_in;
|
inA2 = __PKHBT(opB, inA1, 16);
|
inA1 = __PKHTB(inA1, opB, 16);
|
opA = __SXTB16(inA1);
|
opB = __SXTB16(inB1);
|
sum2 = __SMLAD(opA, opB, sum2);
|
opA = __SXTB16(__ROR(inA1, 8));
|
opB = __SXTB16(__ROR(inB1, 8));
|
sum = __SMLAD(opA, opB, sum);
|
opA = __SXTB16(inA2);
|
opB = __SXTB16(inB2);
|
sum4 = __SMLAD(opA, opB, sum4);
|
opA = __SXTB16(__ROR(inA2, 8));
|
opB = __SXTB16(__ROR(inB2, 8));
|
sum3 = __SMLAD(opA, opB, sum3);
|
colCnt--;
|
}
|
|
#endif /* ARM_MATH_BIG_ENDIAN */
|
|
#else
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
/*
|
* r0 r1 r2 r3 r4 r5
|
* inA1, inA2, inB1, inB2, opA, opB
|
*/
|
|
asm volatile ("COL_LOOP_%=:\n"
|
"ldr.w r2, [%[pB], #0]\n"
|
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
"ldr.w r5, [%[pB], #0]\n"
|
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
"pkhtb r3, r5, r2, ASR #16\n"
|
"pkhbt r2, r2, r5, LSL #16\n"
|
"ldr.w r0, [%[pA], #0]\n"
|
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
"ldr.w r5, [%[pA], #0]\n"
|
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
"pkhtb r1, r5, r0, ASR #16\n"
|
"pkhbt r0, r0, r5, LSL #16\n"
|
"sxtb16 r4, r0\n"
|
"sxtb16 r5, r2\n"
|
"smlad %[sum], r4, r5, %[sum]\n"
|
"mov.w r4, r0, ror #8\n"
|
"mov.w r5, r2, ror #8\n"
|
"sxtb16 r4, r4\n"
|
"sxtb16 r5, r5\n"
|
"smlad %[sum2], r4, r5, %[sum2]\n"
|
"sxtb16 r4, r1\n"
|
"sxtb16 r5, r3\n"
|
"smlad %[sum3], r4, r5, %[sum3]\n"
|
"mov.w r4, r1, ror #8\n"
|
"mov.w r5, r3, ror #8\n"
|
"sxtb16 r4, r4\n"
|
"sxtb16 r5, r5\n"
|
"smlad %[sum4], r4, r5, %[sum4]\n"
|
"subs %[colCnt], #1\n"
|
"bne COL_LOOP_%=\n":[sum]
|
"+r"(sum),[sum2] "+r"(sum2),
|
[sum3] "+r"(sum3),
|
[sum4] "+r"(sum4),[pB] "+r"(pB),
|
[pA] "+r"(pA):[colCnt]
|
"r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
|
#else
|
/*
|
* r0 r1 r2 r3 r4 r5
|
* inA1, inA2, inB1, inB2, opA, opB
|
*/
|
asm volatile ("COL_LOOP_%=:\n"
|
"ldr.w r2, [%[pB], #0]\n"
|
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
"ldr.w r5, [%[pB], #0]\n"
|
"add.w %[pB], %[pB], %[ch_im_in]\n"
|
"pkhbt r3, r5, r2, LSL #16\n"
|
"pkhtb r2, r2, r5, ASR #16\n"
|
"ldr.w r0, [%[pA], #0]\n"
|
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
"ldr.w r5, [%[pA], #0]\n"
|
"add.w %[pA], %[pA], %[ch_im_in]\n"
|
"pkhbt r1, r5, r0, LSL #16\n"
|
"pkhtb r0, r0, r5, ASR #16\n"
|
"sxtb16 r4, r0\n"
|
"sxtb16 r5, r2\n"
|
"smlad %[sum2], r4, r5, %[sum2]\n"
|
"mov.w r4, r0, ror #8\n"
|
"mov.w r5, r2, ror #8\n"
|
"sxtb16 r4, r4\n"
|
"sxtb16 r5, r5\n"
|
"smlad %[sum], r4, r5, %[sum]\n"
|
"sxtb16 r4, r1\n"
|
"sxtb16 r5, r3\n"
|
"smlad %[sum4], r4, r5, %[sum4]\n"
|
"mov.w r4, r1, ror #8\n"
|
"mov.w r5, r3, ror #8\n"
|
"sxtb16 r4, r4\n"
|
"sxtb16 r5, r5\n"
|
"smlad %[sum3], r4, r5, %[sum3]\n"
|
"subs %[colCnt], #1\n"
|
"bne COL_LOOP_%=\n":[sum]
|
"+r"(sum),[sum2] "+r"(sum2),
|
[sum3] "+r"(sum3),
|
[sum4] "+r"(sum4),[pB] "+r"(pB),
|
[pA] "+r"(pA):[colCnt]
|
"r"(colCnt),[ch_im_in] "r"(ch_im_in):"r0", "r1", "r2", "r3", "r4", "r5");
|
|
#endif /* ARM_MATH_BIG_ENDIAN */
|
|
#endif /* USE_INTRINSIC */
|
|
colCnt = (dim_kernel * dim_kernel) & 0x1;
|
while (colCnt)
|
{
|
union arm_nnword inA, inB;
|
inA.word = *__SIMD32(pA);
|
pA += ch_im_in;
|
inB.word = *__SIMD32(pB);
|
pB += ch_im_in;
|
sum += inA.bytes[0] * inB.bytes[0];
|
sum2 += inA.bytes[1] * inB.bytes[1];
|
sum3 += inA.bytes[2] * inB.bytes[2];
|
sum4 += inA.bytes[3] * inB.bytes[3];
|
colCnt--;
|
}
|
|
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
*pOut++ = (q7_t) __SSAT((sum2 >> out_shift), 8);
|
*pOut++ = (q7_t) __SSAT((sum3 >> out_shift), 8);
|
*pOut++ = (q7_t) __SSAT((sum4 >> out_shift), 8);
|
|
rowCnt--;
|
}
|
|
rowCnt = ch_im_out & 0x3;
|
while (rowCnt)
|
{
|
q7_t *pB = colBuffer + row_shift;
|
const q7_t *pA = wt + row_shift;
|
q31_t sum = ((q31_t)(*pBias++) << bias_shift) + NN_ROUND(out_shift);
|
uint16_t colCnt = (dim_kernel * dim_kernel);
|
|
row_shift += 1;
|
|
while (colCnt)
|
{
|
q7_t A1 = *pA;
|
q7_t B1 = *pB;
|
pA += ch_im_in;
|
pB += ch_im_in;
|
sum += A1 * B1;
|
|
colCnt--;
|
}
|
*pOut++ = (q7_t) __SSAT((sum >> out_shift), 8);
|
rowCnt--;
|
}
|
|
/* clear counter and pointers */
|
pBuffer = colBuffer;
|
}
|
}
|
|
#else
|
/* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
|
int i_out_y, i_out_x, i_ch_out, i_ker_x, i_ker_y;
|
int conv_out;
|
|
/* do some checking here, basically ch_im_in == ch_im_out */
|
if (ch_im_in != ch_im_out)
|
{
|
return ARM_MATH_SIZE_MISMATCH;
|
}
|
|
for (i_out_y = 0; i_out_y < dim_im_out; i_out_y++)
|
{
|
for (i_out_x = 0; i_out_x < dim_im_out; i_out_x++)
|
{
|
for (i_ch_out = 0; i_ch_out < ch_im_out; i_ch_out++)
|
{
|
// for each output
|
conv_out = ((q31_t)(bias[i_ch_out]) << bias_shift) + NN_ROUND(out_shift);
|
for (i_ker_y = 0; i_ker_y < dim_kernel; i_ker_y++)
|
{
|
for (i_ker_x = 0; i_ker_x < dim_kernel; i_ker_x++)
|
{
|
int in_row = stride * i_out_y + i_ker_y - padding;
|
int in_col = stride * i_out_x + i_ker_x - padding;
|
if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in && in_col < dim_im_in)
|
{
|
conv_out +=
|
Im_in[(in_row *
|
dim_im_in +
|
in_col) *
|
ch_im_in +
|
i_ch_out] * wt[(i_ker_y * dim_kernel + i_ker_x) * ch_im_out + i_ch_out];
|
}
|
}
|
}
|
Im_out[(i_out_y * dim_im_out +
|
i_out_x) * ch_im_out + i_ch_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
|
}
|
}
|
}
|
|
#endif /* ARM_MATH_DSP */
|
|
/* Return to application */
|
return ARM_MATH_SUCCESS;
|
|
}
|
|
/**
|
* @} end of NNConv group
|
*/
|