/* ----------------------------------------------------------------------
|
* Project: CMSIS DSP Library
|
* Title: arm_mat_mult_fast_q15.c
|
* Description: Q15 matrix multiplication (fast variant)
|
*
|
* $Date: 27. January 2017
|
* $Revision: V.1.5.1
|
*
|
* Target Processor: Cortex-M cores
|
* -------------------------------------------------------------------- */
|
/*
|
* Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
|
*
|
* SPDX-License-Identifier: Apache-2.0
|
*
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
* not use this file except in compliance with the License.
|
* You may obtain a copy of the License at
|
*
|
* www.apache.org/licenses/LICENSE-2.0
|
*
|
* Unless required by applicable law or agreed to in writing, software
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
* See the License for the specific language governing permissions and
|
* limitations under the License.
|
*/
|
|
#include "arm_math.h"
|
|
/**
|
* @ingroup groupMatrix
|
*/
|
|
/**
|
* @addtogroup MatrixMult
|
* @{
|
*/
|
|
|
/**
|
* @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
|
* @param[in] *pSrcA points to the first input matrix structure
|
* @param[in] *pSrcB points to the second input matrix structure
|
* @param[out] *pDst points to output matrix structure
|
* @param[in] *pState points to the array for storing intermediate results
|
* @return The function returns either
|
* <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
|
*
|
* @details
|
* <b>Scaling and Overflow Behavior:</b>
|
*
|
* \par
|
* The difference between the function arm_mat_mult_q15() and this fast variant is that
|
* the fast variant use a 32-bit rather than a 64-bit accumulator.
|
* The result of each 1.15 x 1.15 multiplication is truncated to
|
* 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
|
* format. Finally, the accumulator is saturated and converted to a 1.15 result.
|
*
|
* \par
|
* The fast version has the same overflow behavior as the standard version but provides
|
* less precision since it discards the low 16 bits of each multiplication result.
|
* In order to avoid overflows completely the input signals must be scaled down.
|
* Scale down one of the input matrices by log2(numColsA) bits to
|
* avoid overflows, as a total of numColsA additions are computed internally for each
|
* output element.
|
*
|
* \par
|
* See <code>arm_mat_mult_q15()</code> for a slower implementation of this function
|
* which uses 64-bit accumulation to provide higher precision.
|
*/
|
|
arm_status arm_mat_mult_fast_q15(
|
const arm_matrix_instance_q15 * pSrcA,
|
const arm_matrix_instance_q15 * pSrcB,
|
arm_matrix_instance_q15 * pDst,
|
q15_t * pState)
|
{
|
q31_t sum; /* accumulator */
|
q15_t *pSrcBT = pState; /* input data matrix pointer for transpose */
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A of Q15 type */
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B of Q15 type */
|
q15_t *px; /* Temporary output data matrix pointer */
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
uint16_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
|
uint32_t col, i = 0U, row = numRowsB, colCnt; /* loop counters */
|
arm_status status; /* status of matrix multiplication */
|
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
|
q31_t in; /* Temporary variable to hold the input value */
|
q31_t inA1, inA2, inB1, inB2;
|
q31_t sum2, sum3, sum4;
|
q15_t *pInA2, *pInB2, *px2;
|
uint32_t j = 0;
|
|
#else
|
|
q15_t in; /* Temporary variable to hold the input value */
|
q15_t inA1, inA2, inB1, inB2;
|
|
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
/* Check for matrix mismatch condition */
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
|
{
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
status = ARM_MATH_SIZE_MISMATCH;
|
}
|
else
|
#endif
|
{
|
/* Matrix transpose */
|
do
|
{
|
/* Apply loop unrolling and exchange the columns with row elements */
|
col = numColsB >> 2;
|
|
/* The pointer px is set to starting address of the column being processed */
|
px = pSrcBT + i;
|
|
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
** a second loop below computes the remaining 1 to 3 samples. */
|
while (col > 0U)
|
{
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
/* Read two elements from the row */
|
in = *__SIMD32(pInB)++;
|
|
/* Unpack and store one element in the destination */
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) in;
|
|
#else
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Unpack and store the second element in the destination */
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#else
|
|
*px = (q15_t) in;
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Read two elements from the row */
|
in = *__SIMD32(pInB)++;
|
|
/* Unpack and store one element in the destination */
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) in;
|
|
#else
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Unpack and store the second element in the destination */
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#else
|
|
*px = (q15_t) in;
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
#else
|
|
/* Read one element from the row */
|
in = *pInB++;
|
|
/* Store one element in the destination */
|
*px = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Read one element from the row */
|
in = *pInB++;
|
|
/* Store one element in the destination */
|
*px = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Read one element from the row */
|
in = *pInB++;
|
|
/* Store one element in the destination */
|
*px = in;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Read one element from the row */
|
in = *pInB++;
|
|
/* Store one element in the destination */
|
*px = in;
|
|
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Decrement the column loop counter */
|
col--;
|
}
|
|
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
|
** No loop unrolling is used. */
|
col = numColsB % 0x4U;
|
|
while (col > 0U)
|
{
|
/* Read and store the input element in the destination */
|
*px = *pInB++;
|
|
/* Update the pointer px to point to the next row of the transposed matrix */
|
px += numRowsB;
|
|
/* Decrement the column loop counter */
|
col--;
|
}
|
|
i++;
|
|
/* Decrement the row loop counter */
|
row--;
|
|
} while (row > 0U);
|
|
/* Reset the variables for the usage in the following multiplication process */
|
row = numRowsA;
|
i = 0U;
|
px = pDst->pData;
|
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
/* Process two rows from matrix A at a time and output two rows at a time */
|
row = row >> 1;
|
px2 = px + numColsB;
|
#endif
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
/* row loop */
|
while (row > 0U)
|
{
|
/* For every row wise process, the column loop counter is to be initiated */
|
col = numColsB;
|
|
/* For every row wise process, the pIn2 pointer is set
|
** to the starting address of the transposed pSrcB data */
|
pInB = pSrcBT;
|
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
/* Process two (transposed) columns from matrix B at a time */
|
col = col >> 1;
|
j = 0;
|
#endif
|
|
/* column loop */
|
while (col > 0U)
|
{
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sum = 0;
|
|
/* Initiate the pointer pInA to point to the starting address of the column being processed */
|
pInA = pSrcA->pData + i;
|
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
sum2 = 0;
|
sum3 = 0;
|
sum4 = 0;
|
pInB = pSrcBT + j;
|
pInA2 = pInA + numColsA;
|
pInB2 = pInB + numRowsB;
|
|
/* Read in two elements at once - alows dual MAC instruction */
|
colCnt = numColsA >> 1;
|
#else
|
colCnt = numColsA >> 2;
|
#endif
|
|
/* matrix multiplication */
|
while (colCnt > 0U)
|
{
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
|
inA1 = *__SIMD32(pInA)++;
|
inB1 = *__SIMD32(pInB)++;
|
inA2 = *__SIMD32(pInA2)++;
|
inB2 = *__SIMD32(pInB2)++;
|
|
sum = __SMLAD(inA1, inB1, sum);
|
sum2 = __SMLAD(inA1, inB2, sum2);
|
sum3 = __SMLAD(inA2, inB1, sum3);
|
sum4 = __SMLAD(inA2, inB2, sum4);
|
|
#else
|
|
inA1 = *pInA;
|
inB1 = *pInB;
|
sum += inA1 * inB1;
|
|
inA2 = pInA[1];
|
inB2 = pInB[1];
|
sum += inA2 * inB2;
|
|
inA1 = pInA[2];
|
inB1 = pInB[2];
|
sum += inA1 * inB1;
|
|
inA2 = pInA[3];
|
inB2 = pInB[3];
|
sum += inA2 * inB2;
|
|
pInA += 4;
|
pInB += 4;
|
|
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
/* process odd column samples */
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
if (numColsA & 1U) {
|
inA1 = *pInA++;
|
inB1 = *pInB++;
|
inA2 = *pInA2++;
|
inB2 = *pInB2++;
|
sum += inA1 * inB1;
|
sum2 += inA1 * inB2;
|
sum3 += inA2 * inB1;
|
sum4 += inA2 * inB2;
|
}
|
#else
|
colCnt = numColsA % 0x4U;
|
|
while (colCnt > 0U)
|
{
|
/* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
|
sum += (q31_t) (*pInA++) * (*pInB++);
|
|
colCnt--;
|
}
|
#endif
|
|
/* Saturate and store the result in the destination buffer */
|
*px++ = (q15_t) (sum >> 15);
|
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
*px++ = (q15_t) (sum2 >> 15);
|
*px2++ = (q15_t) (sum3 >> 15);
|
*px2++ = (q15_t) (sum4 >> 15);
|
j += numRowsB * 2;
|
#endif
|
|
/* Decrement the column loop counter */
|
col--;
|
|
}
|
|
i = i + numColsA;
|
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
i = i + numColsA;
|
px = px2 + (numColsB & 1U);
|
px2 = px + numColsB;
|
#endif
|
|
/* Decrement the row loop counter */
|
row--;
|
|
}
|
|
/* Compute any remaining odd row/column below */
|
|
#ifndef UNALIGNED_SUPPORT_DISABLE
|
|
/* Compute remaining output column */
|
if (numColsB & 1U) {
|
|
/* Avoid redundant computation of last element */
|
row = numRowsA & (~0x1);
|
|
/* Point to remaining unfilled column in output matrix */
|
px = pDst->pData+numColsB-1;
|
pInA = pSrcA->pData;
|
|
/* row loop */
|
while (row > 0)
|
{
|
|
/* point to last column in matrix B */
|
pInB = pSrcBT + numRowsB*(numColsB-1);
|
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sum = 0;
|
|
/* Compute 4 columns at once */
|
colCnt = numColsA >> 2;
|
|
/* matrix multiplication */
|
while (colCnt > 0U)
|
{
|
inA1 = *__SIMD32(pInA)++;
|
inA2 = *__SIMD32(pInA)++;
|
inB1 = *__SIMD32(pInB)++;
|
inB2 = *__SIMD32(pInB)++;
|
|
sum = __SMLAD(inA1, inB1, sum);
|
sum = __SMLAD(inA2, inB2, sum);
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
colCnt = numColsA & 3U;
|
while (colCnt > 0U) {
|
sum += (q31_t) (*pInA++) * (*pInB++);
|
colCnt--;
|
}
|
|
/* Store the result in the destination buffer */
|
*px = (q15_t) (sum >> 15);
|
px += numColsB;
|
|
/* Decrement the row loop counter */
|
row--;
|
}
|
}
|
|
/* Compute remaining output row */
|
if (numRowsA & 1U) {
|
|
/* point to last row in output matrix */
|
px = pDst->pData+(numColsB)*(numRowsA-1);
|
|
pInB = pSrcBT;
|
col = numColsB;
|
i = 0U;
|
|
/* col loop */
|
while (col > 0)
|
{
|
|
/* point to last row in matrix A */
|
pInA = pSrcA->pData + (numRowsA-1)*numColsA;
|
|
/* Set the variable sum, that acts as accumulator, to zero */
|
sum = 0;
|
|
/* Compute 4 columns at once */
|
colCnt = numColsA >> 2;
|
|
/* matrix multiplication */
|
while (colCnt > 0U)
|
{
|
inA1 = *__SIMD32(pInA)++;
|
inA2 = *__SIMD32(pInA)++;
|
inB1 = *__SIMD32(pInB)++;
|
inB2 = *__SIMD32(pInB)++;
|
|
sum = __SMLAD(inA1, inB1, sum);
|
sum = __SMLAD(inA2, inB2, sum);
|
|
/* Decrement the loop counter */
|
colCnt--;
|
}
|
|
colCnt = numColsA & 3U;
|
while (colCnt > 0U) {
|
sum += (q31_t) (*pInA++) * (*pInB++);
|
colCnt--;
|
}
|
|
/* Store the result in the destination buffer */
|
*px++ = (q15_t) (sum >> 15);
|
|
/* Decrement the col loop counter */
|
col--;
|
}
|
}
|
|
#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
|
|
/* set status as ARM_MATH_SUCCESS */
|
status = ARM_MATH_SUCCESS;
|
}
|
|
/* Return to application */
|
return (status);
|
}
|
|
/**
|
* @} end of MatrixMult group
|
*/
|