DIO
anheng
2024-05-13 7b91b8528e4370b58b228feb51fee4417f98a023
RK3568_Android_SDK开发文档/RK3568_Android_SDK开发文档.md
@@ -643,42 +643,6 @@
## 3.8 RK3568自带的NPU
### 3.8.1 应用程序测试
测试的程序是一个yolov5的目标识别demo,编译环境是Linux arm64系统
先去github下载RKNPU2并解压生成rknpu2-master文件夹
[GitHub - rockchip-linux/rknpu2](https://github.com/rockchip-linux/rknpu2?tab=readme-ov-file)
1. 进入/home/anheng/rk3568/rknpu2-master/examples/rknn_yolov5_demo目录
2. `vim build-linux_RK3566_RK3568.sh`
3. 更改交叉编译器路径
   ![image-20240425173202774](./images/image-20240425173202774.png)
4. 授予build-linux_RK3566_RK3568.sh执行权限,./build-linux_RK3566_RK3568.sh
​       编译好了之后会生成install文件,里面就有官方提供的rknn模型,可执行程序,以及相应的动态库文件,如下
![image-20240425173407578](./images/image-20240425173407578.png)
5. 用adb命令将/home/anheng/rk3568/rknpu2-master/examples/rknn_yolov5_demo/install目录下的rknn_yolov5_demo_Linux文件夹上传到开发板的/data目录下
6. 指定库文件路径 `export LD_LIBRARY_PATH=/data/rknn_yolov5_demo_Linux/lib `
7. 运行程序识别相应的图片中物体的类别。`./rknn_yolov5_demo ./model/RV1106/yolov5s-640-640.rknn ./model/bus.jpg `
   ![eb02125fb19e15ed9b3fdd421be39b5](./images/eb02125fb19e15ed9b3fdd421be39b5.png)
   识别的结果会以out.jpg保存在当前目录
   ![b2a248d83fc722b08b2d0bfb24f84a0](./images/b2a248d83fc722b08b2d0bfb24f84a0.png)
# 4.  ADB调试工具
1. 下载解压platform-tools-latest-windows.zip