.cproject
New file @@ -0,0 +1,178 @@ <?xml version="1.0" encoding="UTF-8" standalone="no"?> <?fileVersion 4.0.0?><cproject storage_type_id="org.eclipse.cdt.core.XmlProjectDescriptionStorage"> <storageModule moduleId="org.eclipse.cdt.core.settings"> <cconfiguration id="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.debug.1440785723"> <storageModule buildSystemId="org.eclipse.cdt.managedbuilder.core.configurationDataProvider" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.debug.1440785723" moduleId="org.eclipse.cdt.core.settings" name="Debug"> <externalSettings/> <extensions> <extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/> <extension id="org.eclipse.cdt.core.GASErrorParser" point="org.eclipse.cdt.core.ErrorParser"/> <extension id="org.eclipse.cdt.core.GmakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/> <extension id="org.eclipse.cdt.core.GLDErrorParser" point="org.eclipse.cdt.core.ErrorParser"/> <extension id="org.eclipse.cdt.core.CWDLocator" point="org.eclipse.cdt.core.ErrorParser"/> <extension id="org.eclipse.cdt.core.GCCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/> </extensions> </storageModule> <storageModule moduleId="cdtBuildSystem" version="4.0.0"> <configuration artifactExtension="elf" artifactName="${ProjName}" buildArtefactType="org.eclipse.cdt.build.core.buildArtefactType.exe" buildProperties="org.eclipse.cdt.build.core.buildArtefactType=org.eclipse.cdt.build.core.buildArtefactType.exe,org.eclipse.cdt.build.core.buildType=org.eclipse.cdt.build.core.buildType.debug" cleanCommand="rm -rf" description="" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.debug.1440785723" name="Debug" parent="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.debug"> <folderInfo id="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.debug.1440785723." name="/" resourcePath=""> <toolChain id="com.st.stm32cube.ide.mcu.gnu.managedbuild.toolchain.exe.debug.1319988022" name="MCU ARM GCC" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.toolchain.exe.debug"> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_mcu.2109419412" name="MCU" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_mcu" useByScannerDiscovery="true" value="STM32L431RCTx" valueType="string"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_cpuid.539139276" name="CPU" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_cpuid" useByScannerDiscovery="false" value="0" valueType="string"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_coreid.121518109" name="Core" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_coreid" useByScannerDiscovery="false" value="0" valueType="string"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.fpu.1952817455" name="Floating-point unit" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.fpu" useByScannerDiscovery="true" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.fpu.value.fpv4-sp-d16" valueType="enumerated"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.floatabi.604925506" name="Floating-point ABI" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.floatabi" useByScannerDiscovery="true" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.floatabi.value.hard" valueType="enumerated"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_board.633632354" name="Board" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_board" useByScannerDiscovery="false" value="genericBoard" valueType="string"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.defaults.867885513" name="Defaults" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.defaults" useByScannerDiscovery="false" value="com.st.stm32cube.ide.common.services.build.inputs.revA.1.0.6 || Debug || true || Executable || com.st.stm32cube.ide.mcu.gnu.managedbuild.option.toolchain.value.workspace || STM32L431RCTx || 0 || 0 || arm-none-eabi- || ${gnu_tools_for_stm32_compiler_path} || ../Core/Inc | ../Drivers/STM32L4xx_HAL_Driver/Inc | ../Drivers/STM32L4xx_HAL_Driver/Inc/Legacy | ../Drivers/CMSIS/Device/ST/STM32L4xx/Include | ../Drivers/CMSIS/Include || || || USE_HAL_DRIVER | STM32L431xx || || Drivers | Core/Startup | Core || || || ${workspace_loc:/${ProjName}/STM32L431RCTX_FLASH.ld} || true || NonSecure || || secure_nsclib.o || || None || || || " valueType="string"/> <option id="com.st.stm32cube.ide.mcu.debug.option.cpuclock.1309206470" name="Cpu clock frequence" superClass="com.st.stm32cube.ide.mcu.debug.option.cpuclock" useByScannerDiscovery="false" value="80" valueType="string"/> <targetPlatform archList="all" binaryParser="org.eclipse.cdt.core.ELF" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.targetplatform.1027890793" isAbstract="false" osList="all" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.targetplatform"/> <builder buildPath="${workspace_loc:/ISKBoard}/Debug" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.builder.39284697" keepEnvironmentInBuildfile="false" managedBuildOn="true" name="Gnu Make Builder" parallelBuildOn="true" parallelizationNumber="optimal" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.builder"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.1657580118" name="MCU/MPU GCC Assembler" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler"> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.option.debuglevel.1049458785" name="Debug level" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.option.debuglevel" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.option.debuglevel.value.g3" valueType="enumerated"/> <option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.option.definedsymbols.1007972477" name="Define symbols (-D)" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.option.definedsymbols" valueType="definedSymbols"> <listOptionValue builtIn="false" value="DEBUG"/> </option> <inputType id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.input.591849237" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.input"/> </tool> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.1704521504" name="MCU/MPU GCC Compiler" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler"> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.debuglevel.1901558252" name="Debug level" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.debuglevel" useByScannerDiscovery="false" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.debuglevel.value.g3" valueType="enumerated"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.optimization.level.1223513171" name="Optimization level" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.optimization.level" useByScannerDiscovery="false"/> <option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.definedsymbols.247130693" name="Define symbols (-D)" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.definedsymbols" useByScannerDiscovery="false" valueType="definedSymbols"> <listOptionValue builtIn="false" value="DEBUG"/> <listOptionValue builtIn="false" value="USE_HAL_DRIVER"/> <listOptionValue builtIn="false" value="STM32L431xx"/> </option> <option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.includepaths.1198345192" name="Include paths (-I)" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.includepaths" useByScannerDiscovery="false" valueType="includePath"> <listOptionValue builtIn="false" value="../Core/Inc"/> <listOptionValue builtIn="false" value=""${workspace_loc:/${ProjName}/Core/Src/board}""/> <listOptionValue builtIn="false" value="../Drivers/STM32L4xx_HAL_Driver/Inc"/> <listOptionValue builtIn="false" value="../Drivers/STM32L4xx_HAL_Driver/Inc/Legacy"/> <listOptionValue builtIn="false" value="../Drivers/CMSIS/Device/ST/STM32L4xx/Include"/> <listOptionValue builtIn="false" value="../Drivers/CMSIS/Include"/> </option> <inputType id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.input.c.1560561163" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.input.c"/> </tool> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.866732240" name="MCU/MPU G++ Compiler" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler"> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.option.debuglevel.1416430550" name="Debug level" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.option.debuglevel" useByScannerDiscovery="false" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.option.debuglevel.value.g3" valueType="enumerated"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.option.optimization.level.1784876846" name="Optimization level" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.option.optimization.level" useByScannerDiscovery="false"/> </tool> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker.1449997475" name="MCU/MPU GCC Linker" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker"> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker.option.script.1098456646" name="Linker Script (-T)" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker.option.script" value="${workspace_loc:/${ProjName}/STM32L431RCTX_FLASH.ld}" valueType="string"/> <inputType id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker.input.1988127802" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker.input"> <additionalInput kind="additionalinputdependency" paths="$(USER_OBJS)"/> <additionalInput kind="additionalinput" paths="$(LIBS)"/> </inputType> </tool> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.linker.2017967811" name="MCU/MPU G++ Linker" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.linker"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.archiver.1990793055" name="MCU/MPU GCC Archiver" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.archiver"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.size.914944988" name="MCU Size" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.size"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objdump.listfile.1280151345" name="MCU Output Converter list file" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objdump.listfile"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.hex.1652768593" name="MCU Output Converter Hex" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.hex"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.binary.869053972" name="MCU Output Converter Binary" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.binary"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.verilog.1115442135" name="MCU Output Converter Verilog" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.verilog"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.srec.1921089583" name="MCU Output Converter Motorola S-rec" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.srec"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.symbolsrec.1228287271" name="MCU Output Converter Motorola S-rec with symbols" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.symbolsrec"/> </toolChain> </folderInfo> <sourceEntries> <entry flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name="Core"/> <entry flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name="Drivers"/> </sourceEntries> </configuration> </storageModule> <storageModule moduleId="org.eclipse.cdt.core.externalSettings"/> </cconfiguration> <cconfiguration id="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.release.1182940198"> <storageModule buildSystemId="org.eclipse.cdt.managedbuilder.core.configurationDataProvider" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.release.1182940198" moduleId="org.eclipse.cdt.core.settings" name="Release"> <externalSettings/> <extensions> <extension id="org.eclipse.cdt.core.ELF" point="org.eclipse.cdt.core.BinaryParser"/> <extension id="org.eclipse.cdt.core.GASErrorParser" point="org.eclipse.cdt.core.ErrorParser"/> <extension id="org.eclipse.cdt.core.GmakeErrorParser" point="org.eclipse.cdt.core.ErrorParser"/> <extension id="org.eclipse.cdt.core.GLDErrorParser" point="org.eclipse.cdt.core.ErrorParser"/> <extension id="org.eclipse.cdt.core.CWDLocator" point="org.eclipse.cdt.core.ErrorParser"/> <extension id="org.eclipse.cdt.core.GCCErrorParser" point="org.eclipse.cdt.core.ErrorParser"/> </extensions> </storageModule> <storageModule moduleId="cdtBuildSystem" version="4.0.0"> <configuration artifactExtension="elf" artifactName="${ProjName}" buildArtefactType="org.eclipse.cdt.build.core.buildArtefactType.exe" buildProperties="org.eclipse.cdt.build.core.buildArtefactType=org.eclipse.cdt.build.core.buildArtefactType.exe,org.eclipse.cdt.build.core.buildType=org.eclipse.cdt.build.core.buildType.release" cleanCommand="rm -rf" description="" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.release.1182940198" name="Release" parent="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.release"> <folderInfo id="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.release.1182940198." name="/" resourcePath=""> <toolChain id="com.st.stm32cube.ide.mcu.gnu.managedbuild.toolchain.exe.release.2001786176" name="MCU ARM GCC" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.toolchain.exe.release"> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_mcu.19397152" name="MCU" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_mcu" useByScannerDiscovery="true" value="STM32L431RCTx" valueType="string"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_cpuid.710342136" name="CPU" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_cpuid" useByScannerDiscovery="false" value="0" valueType="string"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_coreid.1158520394" name="Core" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_coreid" useByScannerDiscovery="false" value="0" valueType="string"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.fpu.1977974573" name="Floating-point unit" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.fpu" useByScannerDiscovery="true" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.fpu.value.fpv4-sp-d16" valueType="enumerated"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.floatabi.412326786" name="Floating-point ABI" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.floatabi" useByScannerDiscovery="true" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.floatabi.value.hard" valueType="enumerated"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_board.1940148723" name="Board" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.target_board" useByScannerDiscovery="false" value="genericBoard" valueType="string"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.defaults.2030539094" name="Defaults" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.option.defaults" useByScannerDiscovery="false" value="com.st.stm32cube.ide.common.services.build.inputs.revA.1.0.6 || Release || false || Executable || com.st.stm32cube.ide.mcu.gnu.managedbuild.option.toolchain.value.workspace || STM32L431RCTx || 0 || 0 || arm-none-eabi- || ${gnu_tools_for_stm32_compiler_path} || ../Core/Inc | ../Drivers/STM32L4xx_HAL_Driver/Inc | ../Drivers/STM32L4xx_HAL_Driver/Inc/Legacy | ../Drivers/CMSIS/Device/ST/STM32L4xx/Include | ../Drivers/CMSIS/Include || || || USE_HAL_DRIVER | STM32L431xx || || Drivers | Core/Startup | Core || || || ${workspace_loc:/${ProjName}/STM32L431RCTX_FLASH.ld} || true || NonSecure || || secure_nsclib.o || || None || || || " valueType="string"/> <option id="com.st.stm32cube.ide.mcu.debug.option.cpuclock.761102998" name="Cpu clock frequence" superClass="com.st.stm32cube.ide.mcu.debug.option.cpuclock" useByScannerDiscovery="false" value="80" valueType="string"/> <targetPlatform archList="all" binaryParser="org.eclipse.cdt.core.ELF" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.targetplatform.25990899" isAbstract="false" osList="all" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.targetplatform"/> <builder buildPath="${workspace_loc:/ISKBoard}/Release" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.builder.612889065" keepEnvironmentInBuildfile="false" managedBuildOn="true" name="Gnu Make Builder" parallelBuildOn="true" parallelizationNumber="optimal" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.builder"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.1216832335" name="MCU/MPU GCC Assembler" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler"> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.option.debuglevel.865088972" name="Debug level" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.option.debuglevel" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.option.debuglevel.value.g0" valueType="enumerated"/> <inputType id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.input.2111903355" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.assembler.input"/> </tool> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.1882249976" name="MCU/MPU GCC Compiler" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler"> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.debuglevel.274522929" name="Debug level" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.debuglevel" useByScannerDiscovery="false" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.debuglevel.value.g0" valueType="enumerated"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.optimization.level.617185940" name="Optimization level" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.optimization.level" useByScannerDiscovery="false" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.optimization.level.value.os" valueType="enumerated"/> <option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.definedsymbols.1511093748" name="Define symbols (-D)" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.definedsymbols" useByScannerDiscovery="false" valueType="definedSymbols"> <listOptionValue builtIn="false" value="USE_HAL_DRIVER"/> <listOptionValue builtIn="false" value="STM32L431xx"/> </option> <option IS_BUILTIN_EMPTY="false" IS_VALUE_EMPTY="false" id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.includepaths.980434746" name="Include paths (-I)" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.option.includepaths" useByScannerDiscovery="false" valueType="includePath"> <listOptionValue builtIn="false" value="../Core/Inc"/> <listOptionValue builtIn="false" value="../Drivers/STM32L4xx_HAL_Driver/Inc"/> <listOptionValue builtIn="false" value="../Drivers/STM32L4xx_HAL_Driver/Inc/Legacy"/> <listOptionValue builtIn="false" value="../Drivers/CMSIS/Device/ST/STM32L4xx/Include"/> <listOptionValue builtIn="false" value="../Drivers/CMSIS/Include"/> </option> <inputType id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.input.c.334379336" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.input.c"/> </tool> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.203341881" name="MCU/MPU G++ Compiler" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler"> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.option.debuglevel.1306686662" name="Debug level" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.option.debuglevel" useByScannerDiscovery="false" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.option.debuglevel.value.g0" valueType="enumerated"/> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.option.optimization.level.278919005" name="Optimization level" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.option.optimization.level" useByScannerDiscovery="false" value="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.compiler.option.optimization.level.value.os" valueType="enumerated"/> </tool> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker.464747160" name="MCU/MPU GCC Linker" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker"> <option id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker.option.script.1949029738" name="Linker Script (-T)" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker.option.script" value="${workspace_loc:/${ProjName}/STM32L431RCTX_FLASH.ld}" valueType="string"/> <inputType id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker.input.303129119" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.linker.input"> <additionalInput kind="additionalinputdependency" paths="$(USER_OBJS)"/> <additionalInput kind="additionalinput" paths="$(LIBS)"/> </inputType> </tool> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.linker.1750164405" name="MCU/MPU G++ Linker" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.cpp.linker"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.archiver.58950317" name="MCU/MPU GCC Archiver" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.archiver"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.size.1953671752" name="MCU Size" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.size"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objdump.listfile.2042408725" name="MCU Output Converter list file" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objdump.listfile"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.hex.1734007895" name="MCU Output Converter Hex" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.hex"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.binary.1161259790" name="MCU Output Converter Binary" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.binary"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.verilog.2102947128" name="MCU Output Converter Verilog" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.verilog"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.srec.323126272" name="MCU Output Converter Motorola S-rec" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.srec"/> <tool id="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.symbolsrec.1446724780" name="MCU Output Converter Motorola S-rec with symbols" superClass="com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.objcopy.symbolsrec"/> </toolChain> </folderInfo> <sourceEntries> <entry flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name="Core"/> <entry flags="VALUE_WORKSPACE_PATH|RESOLVED" kind="sourcePath" name="Drivers"/> </sourceEntries> </configuration> </storageModule> <storageModule moduleId="org.eclipse.cdt.core.externalSettings"/> </cconfiguration> </storageModule> <storageModule moduleId="org.eclipse.cdt.core.pathentry"/> <storageModule moduleId="cdtBuildSystem" version="4.0.0"> <project id="ISKBoard.null.642390107" name="ISKBoard"/> </storageModule> <storageModule moduleId="org.eclipse.cdt.core.LanguageSettingsProviders"/> <storageModule moduleId="org.eclipse.cdt.make.core.buildtargets"/> <storageModule moduleId="scannerConfiguration"> <autodiscovery enabled="true" problemReportingEnabled="true" selectedProfileId=""/> <scannerConfigBuildInfo instanceId="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.debug.1440785723;com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.debug.1440785723.;com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.1704521504;com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.input.c.1560561163"> <autodiscovery enabled="false" problemReportingEnabled="true" selectedProfileId=""/> </scannerConfigBuildInfo> <scannerConfigBuildInfo instanceId="com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.release.1182940198;com.st.stm32cube.ide.mcu.gnu.managedbuild.config.exe.release.1182940198.;com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.1882249976;com.st.stm32cube.ide.mcu.gnu.managedbuild.tool.c.compiler.input.c.334379336"> <autodiscovery enabled="false" problemReportingEnabled="true" selectedProfileId=""/> </scannerConfigBuildInfo> </storageModule> <storageModule moduleId="refreshScope"/> </cproject> .project
New file @@ -0,0 +1,32 @@ <?xml version="1.0" encoding="UTF-8"?> <projectDescription> <name>ISKBoard</name> <comment></comment> <projects> </projects> <buildSpec> <buildCommand> <name>org.eclipse.cdt.managedbuilder.core.genmakebuilder</name> <triggers>clean,full,incremental,</triggers> <arguments> </arguments> </buildCommand> <buildCommand> <name>org.eclipse.cdt.managedbuilder.core.ScannerConfigBuilder</name> <triggers>full,incremental,</triggers> <arguments> </arguments> </buildCommand> </buildSpec> <natures> <nature>com.st.stm32cube.ide.mcu.MCUProjectNature</nature> <nature>com.st.stm32cube.ide.mcu.MCUCubeProjectNature</nature> <nature>org.eclipse.cdt.core.cnature</nature> <nature>com.st.stm32cube.ide.mcu.MCUCubeIdeServicesRevAev2ProjectNature</nature> <nature>com.st.stm32cube.ide.mcu.MCUAdvancedStructureProjectNature</nature> <nature>com.st.stm32cube.ide.mcu.MCUSingleCpuProjectNature</nature> <nature>com.st.stm32cube.ide.mcu.MCURootProjectNature</nature> <nature>org.eclipse.cdt.managedbuilder.core.managedBuildNature</nature> <nature>org.eclipse.cdt.managedbuilder.core.ScannerConfigNature</nature> </natures> </projectDescription> Core/Inc/gpio.h
New file @@ -0,0 +1,49 @@ /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file gpio.h * @brief This file contains all the function prototypes for * the gpio.c file ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __GPIO_H__ #define __GPIO_H__ #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "main.h" /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* USER CODE BEGIN Private defines */ /* USER CODE END Private defines */ void MX_GPIO_Init(void); /* USER CODE BEGIN Prototypes */ /* USER CODE END Prototypes */ #ifdef __cplusplus } #endif #endif /*__ GPIO_H__ */ Core/Inc/main.h
New file @@ -0,0 +1,69 @@ /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.h * @brief : Header for main.c file. * This file contains the common defines of the application. ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __MAIN_H #define __MAIN_H #ifdef __cplusplus extern "C" { #endif /* Includes ------------------------------------------------------------------*/ #include "stm32l4xx_hal.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Exported types ------------------------------------------------------------*/ /* USER CODE BEGIN ET */ /* USER CODE END ET */ /* Exported constants --------------------------------------------------------*/ /* USER CODE BEGIN EC */ /* USER CODE END EC */ /* Exported macro ------------------------------------------------------------*/ /* USER CODE BEGIN EM */ /* USER CODE END EM */ /* Exported functions prototypes ---------------------------------------------*/ void Error_Handler(void); /* USER CODE BEGIN EFP */ /* USER CODE END EFP */ /* Private defines -----------------------------------------------------------*/ /* USER CODE BEGIN Private defines */ /* USER CODE END Private defines */ #ifdef __cplusplus } #endif #endif /* __MAIN_H */ Core/Inc/stm32l4xx_hal_conf.h
New file @@ -0,0 +1,482 @@ /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file stm32l4xx_hal_conf.h * @author MCD Application Team * @brief HAL configuration template file. * This file should be copied to the application folder and renamed * to stm32l4xx_hal_conf.h. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef STM32L4xx_HAL_CONF_H #define STM32L4xx_HAL_CONF_H #ifdef __cplusplus extern "C" { #endif /* Exported types ------------------------------------------------------------*/ /* Exported constants --------------------------------------------------------*/ /* ########################## Module Selection ############################## */ /** * @brief This is the list of modules to be used in the HAL driver */ #define HAL_MODULE_ENABLED /*#define HAL_ADC_MODULE_ENABLED */ /*#define HAL_CRYP_MODULE_ENABLED */ /*#define HAL_CAN_MODULE_ENABLED */ /*#define HAL_COMP_MODULE_ENABLED */ /*#define HAL_I2C_MODULE_ENABLED */ /*#define HAL_CRC_MODULE_ENABLED */ /*#define HAL_CRYP_MODULE_ENABLED */ /*#define HAL_DAC_MODULE_ENABLED */ /*#define HAL_DCMI_MODULE_ENABLED */ /*#define HAL_DMA2D_MODULE_ENABLED */ /*#define HAL_DFSDM_MODULE_ENABLED */ /*#define HAL_DSI_MODULE_ENABLED */ /*#define HAL_FIREWALL_MODULE_ENABLED */ /*#define HAL_GFXMMU_MODULE_ENABLED */ /*#define HAL_HCD_MODULE_ENABLED */ /*#define HAL_HASH_MODULE_ENABLED */ /*#define HAL_I2S_MODULE_ENABLED */ /*#define HAL_IRDA_MODULE_ENABLED */ /*#define HAL_IWDG_MODULE_ENABLED */ /*#define HAL_LTDC_MODULE_ENABLED */ /*#define HAL_LCD_MODULE_ENABLED */ /*#define HAL_LPTIM_MODULE_ENABLED */ /*#define HAL_MMC_MODULE_ENABLED */ /*#define HAL_NAND_MODULE_ENABLED */ /*#define HAL_NOR_MODULE_ENABLED */ /*#define HAL_OPAMP_MODULE_ENABLED */ /*#define HAL_OSPI_MODULE_ENABLED */ /*#define HAL_OSPI_MODULE_ENABLED */ /*#define HAL_PCD_MODULE_ENABLED */ /*#define HAL_PKA_MODULE_ENABLED */ /*#define HAL_QSPI_MODULE_ENABLED */ /*#define HAL_QSPI_MODULE_ENABLED */ /*#define HAL_RNG_MODULE_ENABLED */ /*#define HAL_RTC_MODULE_ENABLED */ /*#define HAL_SAI_MODULE_ENABLED */ /*#define HAL_SD_MODULE_ENABLED */ /*#define HAL_SMBUS_MODULE_ENABLED */ /*#define HAL_SMARTCARD_MODULE_ENABLED */ /*#define HAL_SPI_MODULE_ENABLED */ /*#define HAL_SRAM_MODULE_ENABLED */ /*#define HAL_SWPMI_MODULE_ENABLED */ /*#define HAL_TIM_MODULE_ENABLED */ /*#define HAL_TSC_MODULE_ENABLED */ /*#define HAL_UART_MODULE_ENABLED */ /*#define HAL_USART_MODULE_ENABLED */ /*#define HAL_WWDG_MODULE_ENABLED */ /*#define HAL_EXTI_MODULE_ENABLED */ /*#define HAL_PSSI_MODULE_ENABLED */ #define HAL_GPIO_MODULE_ENABLED #define HAL_EXTI_MODULE_ENABLED #define HAL_DMA_MODULE_ENABLED #define HAL_RCC_MODULE_ENABLED #define HAL_FLASH_MODULE_ENABLED #define HAL_PWR_MODULE_ENABLED #define HAL_CORTEX_MODULE_ENABLED /* ########################## Oscillator Values adaptation ####################*/ /** * @brief Adjust the value of External High Speed oscillator (HSE) used in your application. * This value is used by the RCC HAL module to compute the system frequency * (when HSE is used as system clock source, directly or through the PLL). */ #if !defined (HSE_VALUE) #define HSE_VALUE ((uint32_t)8000000U) /*!< Value of the External oscillator in Hz */ #endif /* HSE_VALUE */ #if !defined (HSE_STARTUP_TIMEOUT) #define HSE_STARTUP_TIMEOUT ((uint32_t)100U) /*!< Time out for HSE start up, in ms */ #endif /* HSE_STARTUP_TIMEOUT */ /** * @brief Internal Multiple Speed oscillator (MSI) default value. * This value is the default MSI range value after Reset. */ #if !defined (MSI_VALUE) #define MSI_VALUE ((uint32_t)4000000U) /*!< Value of the Internal oscillator in Hz*/ #endif /* MSI_VALUE */ /** * @brief Internal High Speed oscillator (HSI) value. * This value is used by the RCC HAL module to compute the system frequency * (when HSI is used as system clock source, directly or through the PLL). */ #if !defined (HSI_VALUE) #define HSI_VALUE ((uint32_t)16000000U) /*!< Value of the Internal oscillator in Hz*/ #endif /* HSI_VALUE */ /** * @brief Internal High Speed oscillator (HSI48) value for USB FS, SDMMC and RNG. * This internal oscillator is mainly dedicated to provide a high precision clock to * the USB peripheral by means of a special Clock Recovery System (CRS) circuitry. * When the CRS is not used, the HSI48 RC oscillator runs on it default frequency * which is subject to manufacturing process variations. */ #if !defined (HSI48_VALUE) #define HSI48_VALUE ((uint32_t)48000000U) /*!< Value of the Internal High Speed oscillator for USB FS/SDMMC/RNG in Hz. The real value my vary depending on manufacturing process variations.*/ #endif /* HSI48_VALUE */ /** * @brief Internal Low Speed oscillator (LSI) value. */ #if !defined (LSI_VALUE) #define LSI_VALUE 32000U /*!< LSI Typical Value in Hz*/ #endif /* LSI_VALUE */ /*!< Value of the Internal Low Speed oscillator in Hz The real value may vary depending on the variations in voltage and temperature.*/ /** * @brief External Low Speed oscillator (LSE) value. * This value is used by the UART, RTC HAL module to compute the system frequency */ #if !defined (LSE_VALUE) #define LSE_VALUE 32768U /*!< Value of the External oscillator in Hz*/ #endif /* LSE_VALUE */ #if !defined (LSE_STARTUP_TIMEOUT) #define LSE_STARTUP_TIMEOUT 5000U /*!< Time out for LSE start up, in ms */ #endif /* HSE_STARTUP_TIMEOUT */ /** * @brief External clock source for SAI1 peripheral * This value is used by the RCC HAL module to compute the SAI1 & SAI2 clock source * frequency. */ #if !defined (EXTERNAL_SAI1_CLOCK_VALUE) #define EXTERNAL_SAI1_CLOCK_VALUE 2097000U /*!< Value of the SAI1 External clock source in Hz*/ #endif /* EXTERNAL_SAI1_CLOCK_VALUE */ /** * @brief External clock source for SAI2 peripheral * This value is used by the RCC HAL module to compute the SAI1 & SAI2 clock source * frequency. */ #if !defined (EXTERNAL_SAI2_CLOCK_VALUE) #define EXTERNAL_SAI2_CLOCK_VALUE 48000U /*!< Value of the SAI2 External clock source in Hz*/ #endif /* EXTERNAL_SAI2_CLOCK_VALUE */ /* Tip: To avoid modifying this file each time you need to use different HSE, === you can define the HSE value in your toolchain compiler preprocessor. */ /* ########################### System Configuration ######################### */ /** * @brief This is the HAL system configuration section */ #define VDD_VALUE 3300U /*!< Value of VDD in mv */ #define TICK_INT_PRIORITY 15U /*!< tick interrupt priority */ #define USE_RTOS 0U #define PREFETCH_ENABLE 0U #define INSTRUCTION_CACHE_ENABLE 1U #define DATA_CACHE_ENABLE 1U /* ########################## Assert Selection ############################## */ /** * @brief Uncomment the line below to expanse the "assert_param" macro in the * HAL drivers code */ /* #define USE_FULL_ASSERT 1U */ /* ################## Register callback feature configuration ############### */ /** * @brief Set below the peripheral configuration to "1U" to add the support * of HAL callback registration/deregistration feature for the HAL * driver(s). This allows user application to provide specific callback * functions thanks to HAL_PPP_RegisterCallback() rather than overwriting * the default weak callback functions (see each stm32l4xx_hal_ppp.h file * for possible callback identifiers defined in HAL_PPP_CallbackIDTypeDef * for each PPP peripheral). */ #define USE_HAL_ADC_REGISTER_CALLBACKS 0U #define USE_HAL_CAN_REGISTER_CALLBACKS 0U #define USE_HAL_COMP_REGISTER_CALLBACKS 0U #define USE_HAL_CRYP_REGISTER_CALLBACKS 0U #define USE_HAL_DAC_REGISTER_CALLBACKS 0U #define USE_HAL_DCMI_REGISTER_CALLBACKS 0U #define USE_HAL_DFSDM_REGISTER_CALLBACKS 0U #define USE_HAL_DMA2D_REGISTER_CALLBACKS 0U #define USE_HAL_DSI_REGISTER_CALLBACKS 0U #define USE_HAL_GFXMMU_REGISTER_CALLBACKS 0U #define USE_HAL_HASH_REGISTER_CALLBACKS 0U #define USE_HAL_HCD_REGISTER_CALLBACKS 0U #define USE_HAL_I2C_REGISTER_CALLBACKS 0U #define USE_HAL_IRDA_REGISTER_CALLBACKS 0U #define USE_HAL_LPTIM_REGISTER_CALLBACKS 0U #define USE_HAL_LTDC_REGISTER_CALLBACKS 0U #define USE_HAL_MMC_REGISTER_CALLBACKS 0U #define USE_HAL_OPAMP_REGISTER_CALLBACKS 0U #define USE_HAL_OSPI_REGISTER_CALLBACKS 0U #define USE_HAL_PCD_REGISTER_CALLBACKS 0U #define USE_HAL_QSPI_REGISTER_CALLBACKS 0U #define USE_HAL_RNG_REGISTER_CALLBACKS 0U #define USE_HAL_RTC_REGISTER_CALLBACKS 0U #define USE_HAL_SAI_REGISTER_CALLBACKS 0U #define USE_HAL_SD_REGISTER_CALLBACKS 0U #define USE_HAL_SMARTCARD_REGISTER_CALLBACKS 0U #define USE_HAL_SMBUS_REGISTER_CALLBACKS 0U #define USE_HAL_SPI_REGISTER_CALLBACKS 0U #define USE_HAL_SWPMI_REGISTER_CALLBACKS 0U #define USE_HAL_TIM_REGISTER_CALLBACKS 0U #define USE_HAL_TSC_REGISTER_CALLBACKS 0U #define USE_HAL_UART_REGISTER_CALLBACKS 0U #define USE_HAL_USART_REGISTER_CALLBACKS 0U #define USE_HAL_WWDG_REGISTER_CALLBACKS 0U /* ################## SPI peripheral configuration ########################## */ /* CRC FEATURE: Use to activate CRC feature inside HAL SPI Driver * Activated: CRC code is present inside driver * Deactivated: CRC code cleaned from driver */ #define USE_SPI_CRC 0U /* Includes ------------------------------------------------------------------*/ /** * @brief Include module's header file */ #ifdef HAL_RCC_MODULE_ENABLED #include "stm32l4xx_hal_rcc.h" #endif /* HAL_RCC_MODULE_ENABLED */ #ifdef HAL_GPIO_MODULE_ENABLED #include "stm32l4xx_hal_gpio.h" #endif /* HAL_GPIO_MODULE_ENABLED */ #ifdef HAL_DMA_MODULE_ENABLED #include "stm32l4xx_hal_dma.h" #endif /* HAL_DMA_MODULE_ENABLED */ #ifdef HAL_DFSDM_MODULE_ENABLED #include "stm32l4xx_hal_dfsdm.h" #endif /* HAL_DFSDM_MODULE_ENABLED */ #ifdef HAL_CORTEX_MODULE_ENABLED #include "stm32l4xx_hal_cortex.h" #endif /* HAL_CORTEX_MODULE_ENABLED */ #ifdef HAL_ADC_MODULE_ENABLED #include "stm32l4xx_hal_adc.h" #endif /* HAL_ADC_MODULE_ENABLED */ #ifdef HAL_CAN_MODULE_ENABLED #include "stm32l4xx_hal_can.h" #endif /* HAL_CAN_MODULE_ENABLED */ #ifdef HAL_CAN_LEGACY_MODULE_ENABLED #include "Legacy/stm32l4xx_hal_can_legacy.h" #endif /* HAL_CAN_LEGACY_MODULE_ENABLED */ #ifdef HAL_COMP_MODULE_ENABLED #include "stm32l4xx_hal_comp.h" #endif /* HAL_COMP_MODULE_ENABLED */ #ifdef HAL_CRC_MODULE_ENABLED #include "stm32l4xx_hal_crc.h" #endif /* HAL_CRC_MODULE_ENABLED */ #ifdef HAL_CRYP_MODULE_ENABLED #include "stm32l4xx_hal_cryp.h" #endif /* HAL_CRYP_MODULE_ENABLED */ #ifdef HAL_DAC_MODULE_ENABLED #include "stm32l4xx_hal_dac.h" #endif /* HAL_DAC_MODULE_ENABLED */ #ifdef HAL_DCMI_MODULE_ENABLED #include "stm32l4xx_hal_dcmi.h" #endif /* HAL_DCMI_MODULE_ENABLED */ #ifdef HAL_DMA2D_MODULE_ENABLED #include "stm32l4xx_hal_dma2d.h" #endif /* HAL_DMA2D_MODULE_ENABLED */ #ifdef HAL_DSI_MODULE_ENABLED #include "stm32l4xx_hal_dsi.h" #endif /* HAL_DSI_MODULE_ENABLED */ #ifdef HAL_EXTI_MODULE_ENABLED #include "stm32l4xx_hal_exti.h" #endif /* HAL_EXTI_MODULE_ENABLED */ #ifdef HAL_GFXMMU_MODULE_ENABLED #include "stm32l4xx_hal_gfxmmu.h" #endif /* HAL_GFXMMU_MODULE_ENABLED */ #ifdef HAL_FIREWALL_MODULE_ENABLED #include "stm32l4xx_hal_firewall.h" #endif /* HAL_FIREWALL_MODULE_ENABLED */ #ifdef HAL_FLASH_MODULE_ENABLED #include "stm32l4xx_hal_flash.h" #endif /* HAL_FLASH_MODULE_ENABLED */ #ifdef HAL_HASH_MODULE_ENABLED #include "stm32l4xx_hal_hash.h" #endif /* HAL_HASH_MODULE_ENABLED */ #ifdef HAL_HCD_MODULE_ENABLED #include "stm32l4xx_hal_hcd.h" #endif /* HAL_HCD_MODULE_ENABLED */ #ifdef HAL_I2C_MODULE_ENABLED #include "stm32l4xx_hal_i2c.h" #endif /* HAL_I2C_MODULE_ENABLED */ #ifdef HAL_IRDA_MODULE_ENABLED #include "stm32l4xx_hal_irda.h" #endif /* HAL_IRDA_MODULE_ENABLED */ #ifdef HAL_IWDG_MODULE_ENABLED #include "stm32l4xx_hal_iwdg.h" #endif /* HAL_IWDG_MODULE_ENABLED */ #ifdef HAL_LCD_MODULE_ENABLED #include "stm32l4xx_hal_lcd.h" #endif /* HAL_LCD_MODULE_ENABLED */ #ifdef HAL_LPTIM_MODULE_ENABLED #include "stm32l4xx_hal_lptim.h" #endif /* HAL_LPTIM_MODULE_ENABLED */ #ifdef HAL_LTDC_MODULE_ENABLED #include "stm32l4xx_hal_ltdc.h" #endif /* HAL_LTDC_MODULE_ENABLED */ #ifdef HAL_MMC_MODULE_ENABLED #include "stm32l4xx_hal_mmc.h" #endif /* HAL_MMC_MODULE_ENABLED */ #ifdef HAL_NAND_MODULE_ENABLED #include "stm32l4xx_hal_nand.h" #endif /* HAL_NAND_MODULE_ENABLED */ #ifdef HAL_NOR_MODULE_ENABLED #include "stm32l4xx_hal_nor.h" #endif /* HAL_NOR_MODULE_ENABLED */ #ifdef HAL_OPAMP_MODULE_ENABLED #include "stm32l4xx_hal_opamp.h" #endif /* HAL_OPAMP_MODULE_ENABLED */ #ifdef HAL_OSPI_MODULE_ENABLED #include "stm32l4xx_hal_ospi.h" #endif /* HAL_OSPI_MODULE_ENABLED */ #ifdef HAL_PCD_MODULE_ENABLED #include "stm32l4xx_hal_pcd.h" #endif /* HAL_PCD_MODULE_ENABLED */ #ifdef HAL_PKA_MODULE_ENABLED #include "stm32l4xx_hal_pka.h" #endif /* HAL_PKA_MODULE_ENABLED */ #ifdef HAL_PSSI_MODULE_ENABLED #include "stm32l4xx_hal_pssi.h" #endif /* HAL_PSSI_MODULE_ENABLED */ #ifdef HAL_PWR_MODULE_ENABLED #include "stm32l4xx_hal_pwr.h" #endif /* HAL_PWR_MODULE_ENABLED */ #ifdef HAL_QSPI_MODULE_ENABLED #include "stm32l4xx_hal_qspi.h" #endif /* HAL_QSPI_MODULE_ENABLED */ #ifdef HAL_RNG_MODULE_ENABLED #include "stm32l4xx_hal_rng.h" #endif /* HAL_RNG_MODULE_ENABLED */ #ifdef HAL_RTC_MODULE_ENABLED #include "stm32l4xx_hal_rtc.h" #endif /* HAL_RTC_MODULE_ENABLED */ #ifdef HAL_SAI_MODULE_ENABLED #include "stm32l4xx_hal_sai.h" #endif /* HAL_SAI_MODULE_ENABLED */ #ifdef HAL_SD_MODULE_ENABLED #include "stm32l4xx_hal_sd.h" #endif /* HAL_SD_MODULE_ENABLED */ #ifdef HAL_SMARTCARD_MODULE_ENABLED #include "stm32l4xx_hal_smartcard.h" #endif /* HAL_SMARTCARD_MODULE_ENABLED */ #ifdef HAL_SMBUS_MODULE_ENABLED #include "stm32l4xx_hal_smbus.h" #endif /* HAL_SMBUS_MODULE_ENABLED */ #ifdef HAL_SPI_MODULE_ENABLED #include "stm32l4xx_hal_spi.h" #endif /* HAL_SPI_MODULE_ENABLED */ #ifdef HAL_SRAM_MODULE_ENABLED #include "stm32l4xx_hal_sram.h" #endif /* HAL_SRAM_MODULE_ENABLED */ #ifdef HAL_SWPMI_MODULE_ENABLED #include "stm32l4xx_hal_swpmi.h" #endif /* HAL_SWPMI_MODULE_ENABLED */ #ifdef HAL_TIM_MODULE_ENABLED #include "stm32l4xx_hal_tim.h" #endif /* HAL_TIM_MODULE_ENABLED */ #ifdef HAL_TSC_MODULE_ENABLED #include "stm32l4xx_hal_tsc.h" #endif /* HAL_TSC_MODULE_ENABLED */ #ifdef HAL_UART_MODULE_ENABLED #include "stm32l4xx_hal_uart.h" #endif /* HAL_UART_MODULE_ENABLED */ #ifdef HAL_USART_MODULE_ENABLED #include "stm32l4xx_hal_usart.h" #endif /* HAL_USART_MODULE_ENABLED */ #ifdef HAL_WWDG_MODULE_ENABLED #include "stm32l4xx_hal_wwdg.h" #endif /* HAL_WWDG_MODULE_ENABLED */ /* Exported macro ------------------------------------------------------------*/ #ifdef USE_FULL_ASSERT /** * @brief The assert_param macro is used for function's parameters check. * @param expr If expr is false, it calls assert_failed function * which reports the name of the source file and the source * line number of the call that failed. * If expr is true, it returns no value. * @retval None */ #define assert_param(expr) ((expr) ? (void)0U : assert_failed((uint8_t *)__FILE__, __LINE__)) /* Exported functions ------------------------------------------------------- */ void assert_failed(uint8_t *file, uint32_t line); #else #define assert_param(expr) ((void)0U) #endif /* USE_FULL_ASSERT */ #ifdef __cplusplus } #endif #endif /* STM32L4xx_HAL_CONF_H */ Core/Inc/stm32l4xx_it.h
New file @@ -0,0 +1,66 @@ /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file stm32l4xx_it.h * @brief This file contains the headers of the interrupt handlers. ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Define to prevent recursive inclusion -------------------------------------*/ #ifndef __STM32L4xx_IT_H #define __STM32L4xx_IT_H #ifdef __cplusplus extern "C" { #endif /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Exported types ------------------------------------------------------------*/ /* USER CODE BEGIN ET */ /* USER CODE END ET */ /* Exported constants --------------------------------------------------------*/ /* USER CODE BEGIN EC */ /* USER CODE END EC */ /* Exported macro ------------------------------------------------------------*/ /* USER CODE BEGIN EM */ /* USER CODE END EM */ /* Exported functions prototypes ---------------------------------------------*/ void NMI_Handler(void); void HardFault_Handler(void); void MemManage_Handler(void); void BusFault_Handler(void); void UsageFault_Handler(void); void SVC_Handler(void); void DebugMon_Handler(void); void PendSV_Handler(void); void SysTick_Handler(void); /* USER CODE BEGIN EFP */ /* USER CODE END EFP */ #ifdef __cplusplus } #endif #endif /* __STM32L4xx_IT_H */ Core/Src/board/miscdev.c
New file @@ -0,0 +1,132 @@ /********************************************************************** * Copyright: (C)2024 LingYun IoT System Studio * Author: GuoWenxue<guowenxue@gmail.com> * Description: ISKBoard Hardware Abstract Layer driver * * ChangeLog: * Version Date Author Description * V1.0.0 2024.08.29 GuoWenxue Release initial version ***********************************************************************/ #include "miscdev.h" /* *+----------------------+ *| GPIO Relay API | *+----------------------+ */ gpio_t relays[RelayMax] = { { "Relay1", GPIOD, GPIO_PIN_2, OFF }, }; int init_relay(void) { int which; /* Turn all relays off */ for(which=0; which<RelayMax; which++) { HAL_GPIO_WritePin(relays[which].group, relays[which].pin, GPIO_PIN_RESET); } return 0; } /* Turn $which relay to ON/OFF */ void turn_relay(int which, int status) { GPIO_PinState level; if( which >= RelayMax ) return ; level = status==OFF ? GPIO_PIN_RESET : GPIO_PIN_SET; HAL_GPIO_WritePin(relays[which].group, relays[which].pin, level); relays[which].status = status; } /* Get $which relay current status */ int status_relay(int which) { if( which >= RelayMax ) return 0; return relays[which].status; } /* *+----------------------+ *| GPIO Led API | *+----------------------+ */ gpio_t leds[LedMax] = { { "RedLed", GPIOC, GPIO_PIN_9, OFF }, { "GreenLed", GPIOC, GPIO_PIN_6, OFF }, { "BlueLed", GPIOB, GPIO_PIN_2, OFF }, }; int init_led(void) { int which; /* Turn all Leds off */ for(which=0; which<LedMax; which++) { HAL_GPIO_WritePin(leds[which].group, leds[which].pin, GPIO_PIN_SET); } return 0; } /* Turn $which led to ON/OFF */ void turn_led(int which, int status) { GPIO_PinState level; if( which >= LedMax ) return ; level = status==OFF ? GPIO_PIN_SET : GPIO_PIN_RESET; HAL_GPIO_WritePin(leds[which].group, leds[which].pin, level); leds[which].status = status; } /* Toggle $which led status */ void toggle_led(int which) { if( which >= LedMax ) return ; HAL_GPIO_TogglePin(leds[which].group, leds[which].pin); leds[which].status = !leds[which].status; } /* Blink $which led */ void blink_led(int which, uint32_t interval) { turn_led(which, ON); HAL_Delay(interval); turn_led(which, OFF); HAL_Delay(interval); } /* Get $which led current status */ int status_led(int which) { if( which >= LedMax ) return 0; return leds[which].status; } Core/Src/board/miscdev.h
New file @@ -0,0 +1,85 @@ /********************************************************************** * Copyright: (C)2024 LingYun IoT System Studio * Author: GuoWenxue<guowenxue@gmail.com> * Description: ISKBoard Hardware Abstract Layer driver * * ChangeLog: * Version Date Author Description * V1.0.0 2024.08.29 GuoWenxue Release initial version ***********************************************************************/ #include "stm32l4xx_hal.h" #ifndef __MISCDEV_H #define __MISCDEV_H /* 定义ON/OFF两个宏,这样在代码中使用比 1/0 更具有可读性 */ #define OFF 0 #define ON 1 /* 定义一个gpio的结构体,用来描述这个引脚的相关信息 */ typedef struct gpio_s { const char *name; GPIO_TypeDef *group; uint16_t pin; uint8_t status; } gpio_t; /* *+----------------------+ *| GPIO Relay API | *+----------------------+ */ typedef enum { Relay1, RelayMax, } relaynum_t; /* Initial relays GPIO port */ extern int init_relay(void); /* Turn $which r to $status(ON/OFF) */ extern void turn_relay(int which, int status); /* Get $which relay current status */ extern int status_relay(int which); /* *+----------------------+ *| GPIO Led API | *+----------------------+ */ /* 定义了一个枚举,分别表示RGB三个灯的索引: * 枚举的第1个成员,如果没赋值则其值为0,后面的成员值永远是前面成员的值加1. */ typedef enum { Led_R, /* 其值为0 */ Led_G, /* 其值为1 */ Led_B, /* 其值为2 */ LedMax,/* 其值为3,刚好是Led的总数 */ } lednum_t; #define BITMASK_ALLLED ((1<<LedMax)-1) /* Initial leds GPIO port */ extern int init_led(void); /* Turn $which led to $status(ON/OFF) */ extern void turn_led(int which, int status); /* Toggle $which led status */ extern void toggle_led(int which); /* Blink $which led */ extern void blink_led(int which, uint32_t interval); /* Get $which led current status */ extern int status_led(int which); #endif /* __MISCDEV_H */ Core/Src/gpio.c
New file @@ -0,0 +1,87 @@ /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file gpio.c * @brief This file provides code for the configuration * of all used GPIO pins. ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "gpio.h" /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /*----------------------------------------------------------------------------*/ /* Configure GPIO */ /*----------------------------------------------------------------------------*/ /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /** Configure pins as * Analog * Input * Output * EVENT_OUT * EXTI */ void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_2, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_6|GPIO_PIN_9, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOD, GPIO_PIN_2, GPIO_PIN_RESET); /*Configure GPIO pin : PB2 */ GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : PC6 PC9 */ GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_9; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : PD2 */ GPIO_InitStruct.Pin = GPIO_PIN_2; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOD, &GPIO_InitStruct); } /* USER CODE BEGIN 2 */ /* USER CODE END 2 */ Core/Src/main.c
New file @@ -0,0 +1,205 @@ /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "gpio.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "miscdev.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); /* USER CODE BEGIN 2 */ init_relay(); init_led(); /* Turn on relay after 1 second */ HAL_Delay(1000); turn_relay(Relay1, ON); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* Blink Red Led */ turn_led(Led_R, ON); HAL_Delay(200); turn_led(Led_R, OFF); HAL_Delay(200); /* Blink Green Led */ toggle_led(Led_G); HAL_Delay(200); toggle_led(Led_G); HAL_Delay(200); /* Blink Blue Led */ blink_led(Led_B, 200); /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK) { Error_Handler(); } /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 1; RCC_OscInitStruct.PLL.PLLN = 20; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ Core/Src/stm32l4xx_hal_msp.c
New file @@ -0,0 +1,82 @@ /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file stm32l4xx_hal_msp.c * @brief This file provides code for the MSP Initialization * and de-Initialization codes. ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN TD */ /* USER CODE END TD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN Define */ /* USER CODE END Define */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN Macro */ /* USER CODE END Macro */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* External functions --------------------------------------------------------*/ /* USER CODE BEGIN ExternalFunctions */ /* USER CODE END ExternalFunctions */ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * Initializes the Global MSP. */ void HAL_MspInit(void) { /* USER CODE BEGIN MspInit 0 */ /* USER CODE END MspInit 0 */ __HAL_RCC_SYSCFG_CLK_ENABLE(); __HAL_RCC_PWR_CLK_ENABLE(); /* System interrupt init*/ /* USER CODE BEGIN MspInit 1 */ /* USER CODE END MspInit 1 */ } /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ Core/Src/stm32l4xx_it.c
New file @@ -0,0 +1,203 @@ /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file stm32l4xx_it.c * @brief Interrupt Service Routines. ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "stm32l4xx_it.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN TD */ /* USER CODE END TD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /* External variables --------------------------------------------------------*/ /* USER CODE BEGIN EV */ /* USER CODE END EV */ /******************************************************************************/ /* Cortex-M4 Processor Interruption and Exception Handlers */ /******************************************************************************/ /** * @brief This function handles Non maskable interrupt. */ void NMI_Handler(void) { /* USER CODE BEGIN NonMaskableInt_IRQn 0 */ /* USER CODE END NonMaskableInt_IRQn 0 */ /* USER CODE BEGIN NonMaskableInt_IRQn 1 */ while (1) { } /* USER CODE END NonMaskableInt_IRQn 1 */ } /** * @brief This function handles Hard fault interrupt. */ void HardFault_Handler(void) { /* USER CODE BEGIN HardFault_IRQn 0 */ /* USER CODE END HardFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_HardFault_IRQn 0 */ /* USER CODE END W1_HardFault_IRQn 0 */ } } /** * @brief This function handles Memory management fault. */ void MemManage_Handler(void) { /* USER CODE BEGIN MemoryManagement_IRQn 0 */ /* USER CODE END MemoryManagement_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */ /* USER CODE END W1_MemoryManagement_IRQn 0 */ } } /** * @brief This function handles Prefetch fault, memory access fault. */ void BusFault_Handler(void) { /* USER CODE BEGIN BusFault_IRQn 0 */ /* USER CODE END BusFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_BusFault_IRQn 0 */ /* USER CODE END W1_BusFault_IRQn 0 */ } } /** * @brief This function handles Undefined instruction or illegal state. */ void UsageFault_Handler(void) { /* USER CODE BEGIN UsageFault_IRQn 0 */ /* USER CODE END UsageFault_IRQn 0 */ while (1) { /* USER CODE BEGIN W1_UsageFault_IRQn 0 */ /* USER CODE END W1_UsageFault_IRQn 0 */ } } /** * @brief This function handles System service call via SWI instruction. */ void SVC_Handler(void) { /* USER CODE BEGIN SVCall_IRQn 0 */ /* USER CODE END SVCall_IRQn 0 */ /* USER CODE BEGIN SVCall_IRQn 1 */ /* USER CODE END SVCall_IRQn 1 */ } /** * @brief This function handles Debug monitor. */ void DebugMon_Handler(void) { /* USER CODE BEGIN DebugMonitor_IRQn 0 */ /* USER CODE END DebugMonitor_IRQn 0 */ /* USER CODE BEGIN DebugMonitor_IRQn 1 */ /* USER CODE END DebugMonitor_IRQn 1 */ } /** * @brief This function handles Pendable request for system service. */ void PendSV_Handler(void) { /* USER CODE BEGIN PendSV_IRQn 0 */ /* USER CODE END PendSV_IRQn 0 */ /* USER CODE BEGIN PendSV_IRQn 1 */ /* USER CODE END PendSV_IRQn 1 */ } /** * @brief This function handles System tick timer. */ void SysTick_Handler(void) { /* USER CODE BEGIN SysTick_IRQn 0 */ /* USER CODE END SysTick_IRQn 0 */ HAL_IncTick(); /* USER CODE BEGIN SysTick_IRQn 1 */ /* USER CODE END SysTick_IRQn 1 */ } /******************************************************************************/ /* STM32L4xx Peripheral Interrupt Handlers */ /* Add here the Interrupt Handlers for the used peripherals. */ /* For the available peripheral interrupt handler names, */ /* please refer to the startup file (startup_stm32l4xx.s). */ /******************************************************************************/ /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ Core/Src/syscalls.c
New file @@ -0,0 +1,176 @@ /** ****************************************************************************** * @file syscalls.c * @author Auto-generated by STM32CubeIDE * @brief STM32CubeIDE Minimal System calls file * * For more information about which c-functions * need which of these lowlevel functions * please consult the Newlib libc-manual ****************************************************************************** * @attention * * Copyright (c) 2020-2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes */ #include <sys/stat.h> #include <stdlib.h> #include <errno.h> #include <stdio.h> #include <signal.h> #include <time.h> #include <sys/time.h> #include <sys/times.h> /* Variables */ extern int __io_putchar(int ch) __attribute__((weak)); extern int __io_getchar(void) __attribute__((weak)); char *__env[1] = { 0 }; char **environ = __env; /* Functions */ void initialise_monitor_handles() { } int _getpid(void) { return 1; } int _kill(int pid, int sig) { (void)pid; (void)sig; errno = EINVAL; return -1; } void _exit (int status) { _kill(status, -1); while (1) {} /* Make sure we hang here */ } __attribute__((weak)) int _read(int file, char *ptr, int len) { (void)file; int DataIdx; for (DataIdx = 0; DataIdx < len; DataIdx++) { *ptr++ = __io_getchar(); } return len; } __attribute__((weak)) int _write(int file, char *ptr, int len) { (void)file; int DataIdx; for (DataIdx = 0; DataIdx < len; DataIdx++) { __io_putchar(*ptr++); } return len; } int _close(int file) { (void)file; return -1; } int _fstat(int file, struct stat *st) { (void)file; st->st_mode = S_IFCHR; return 0; } int _isatty(int file) { (void)file; return 1; } int _lseek(int file, int ptr, int dir) { (void)file; (void)ptr; (void)dir; return 0; } int _open(char *path, int flags, ...) { (void)path; (void)flags; /* Pretend like we always fail */ return -1; } int _wait(int *status) { (void)status; errno = ECHILD; return -1; } int _unlink(char *name) { (void)name; errno = ENOENT; return -1; } int _times(struct tms *buf) { (void)buf; return -1; } int _stat(char *file, struct stat *st) { (void)file; st->st_mode = S_IFCHR; return 0; } int _link(char *old, char *new) { (void)old; (void)new; errno = EMLINK; return -1; } int _fork(void) { errno = EAGAIN; return -1; } int _execve(char *name, char **argv, char **env) { (void)name; (void)argv; (void)env; errno = ENOMEM; return -1; } Core/Src/sysmem.c
New file @@ -0,0 +1,79 @@ /** ****************************************************************************** * @file sysmem.c * @author Generated by STM32CubeIDE * @brief STM32CubeIDE System Memory calls file * * For more information about which C functions * need which of these lowlevel functions * please consult the newlib libc manual ****************************************************************************** * @attention * * Copyright (c) 2025 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes */ #include <errno.h> #include <stdint.h> /** * Pointer to the current high watermark of the heap usage */ static uint8_t *__sbrk_heap_end = NULL; /** * @brief _sbrk() allocates memory to the newlib heap and is used by malloc * and others from the C library * * @verbatim * ############################################################################ * # .data # .bss # newlib heap # MSP stack # * # # # # Reserved by _Min_Stack_Size # * ############################################################################ * ^-- RAM start ^-- _end _estack, RAM end --^ * @endverbatim * * This implementation starts allocating at the '_end' linker symbol * The '_Min_Stack_Size' linker symbol reserves a memory for the MSP stack * The implementation considers '_estack' linker symbol to be RAM end * NOTE: If the MSP stack, at any point during execution, grows larger than the * reserved size, please increase the '_Min_Stack_Size'. * * @param incr Memory size * @return Pointer to allocated memory */ void *_sbrk(ptrdiff_t incr) { extern uint8_t _end; /* Symbol defined in the linker script */ extern uint8_t _estack; /* Symbol defined in the linker script */ extern uint32_t _Min_Stack_Size; /* Symbol defined in the linker script */ const uint32_t stack_limit = (uint32_t)&_estack - (uint32_t)&_Min_Stack_Size; const uint8_t *max_heap = (uint8_t *)stack_limit; uint8_t *prev_heap_end; /* Initialize heap end at first call */ if (NULL == __sbrk_heap_end) { __sbrk_heap_end = &_end; } /* Protect heap from growing into the reserved MSP stack */ if (__sbrk_heap_end + incr > max_heap) { errno = ENOMEM; return (void *)-1; } prev_heap_end = __sbrk_heap_end; __sbrk_heap_end += incr; return (void *)prev_heap_end; } Core/Src/system_stm32l4xx.c
New file @@ -0,0 +1,332 @@ /** ****************************************************************************** * @file system_stm32l4xx.c * @author MCD Application Team * @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File * * This file provides two functions and one global variable to be called from * user application: * - SystemInit(): This function is called at startup just after reset and * before branch to main program. This call is made inside * the "startup_stm32l4xx.s" file. * * - SystemCoreClock variable: Contains the core clock (HCLK), it can be used * by the user application to setup the SysTick * timer or configure other parameters. * * - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must * be called whenever the core clock is changed * during program execution. * * After each device reset the MSI (4 MHz) is used as system clock source. * Then SystemInit() function is called, in "startup_stm32l4xx.s" file, to * configure the system clock before to branch to main program. * * This file configures the system clock as follows: *============================================================================= *----------------------------------------------------------------------------- * System Clock source | MSI *----------------------------------------------------------------------------- * SYSCLK(Hz) | 4000000 *----------------------------------------------------------------------------- * HCLK(Hz) | 4000000 *----------------------------------------------------------------------------- * AHB Prescaler | 1 *----------------------------------------------------------------------------- * APB1 Prescaler | 1 *----------------------------------------------------------------------------- * APB2 Prescaler | 1 *----------------------------------------------------------------------------- * PLL_M | 1 *----------------------------------------------------------------------------- * PLL_N | 8 *----------------------------------------------------------------------------- * PLL_P | 7 *----------------------------------------------------------------------------- * PLL_Q | 2 *----------------------------------------------------------------------------- * PLL_R | 2 *----------------------------------------------------------------------------- * PLLSAI1_P | NA *----------------------------------------------------------------------------- * PLLSAI1_Q | NA *----------------------------------------------------------------------------- * PLLSAI1_R | NA *----------------------------------------------------------------------------- * PLLSAI2_P | NA *----------------------------------------------------------------------------- * PLLSAI2_Q | NA *----------------------------------------------------------------------------- * PLLSAI2_R | NA *----------------------------------------------------------------------------- * Require 48MHz for USB OTG FS, | Disabled * SDIO and RNG clock | *----------------------------------------------------------------------------- *============================================================================= ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32l4xx_system * @{ */ /** @addtogroup STM32L4xx_System_Private_Includes * @{ */ #include "stm32l4xx.h" /** * @} */ /** @addtogroup STM32L4xx_System_Private_TypesDefinitions * @{ */ /** * @} */ /** @addtogroup STM32L4xx_System_Private_Defines * @{ */ #if !defined (HSE_VALUE) #define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */ #endif /* HSE_VALUE */ #if !defined (MSI_VALUE) #define MSI_VALUE 4000000U /*!< Value of the Internal oscillator in Hz*/ #endif /* MSI_VALUE */ #if !defined (HSI_VALUE) #define HSI_VALUE 16000000U /*!< Value of the Internal oscillator in Hz*/ #endif /* HSI_VALUE */ /* Note: Following vector table addresses must be defined in line with linker configuration. */ /*!< Uncomment the following line if you need to relocate the vector table anywhere in Flash or Sram, else the vector table is kept at the automatic remap of boot address selected */ /* #define USER_VECT_TAB_ADDRESS */ #if defined(USER_VECT_TAB_ADDRESS) /*!< Uncomment the following line if you need to relocate your vector Table in Sram else user remap will be done in Flash. */ /* #define VECT_TAB_SRAM */ #if defined(VECT_TAB_SRAM) #define VECT_TAB_BASE_ADDRESS SRAM1_BASE /*!< Vector Table base address field. This value must be a multiple of 0x200. */ #define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ #else #define VECT_TAB_BASE_ADDRESS FLASH_BASE /*!< Vector Table base address field. This value must be a multiple of 0x200. */ #define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. This value must be a multiple of 0x200. */ #endif /* VECT_TAB_SRAM */ #endif /* USER_VECT_TAB_ADDRESS */ /******************************************************************************/ /** * @} */ /** @addtogroup STM32L4xx_System_Private_Macros * @{ */ /** * @} */ /** @addtogroup STM32L4xx_System_Private_Variables * @{ */ /* The SystemCoreClock variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetHCLKFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ uint32_t SystemCoreClock = 4000000U; const uint8_t AHBPrescTable[16] = {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U, 6U, 7U, 8U, 9U}; const uint8_t APBPrescTable[8] = {0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U}; const uint32_t MSIRangeTable[12] = {100000U, 200000U, 400000U, 800000U, 1000000U, 2000000U, \ 4000000U, 8000000U, 16000000U, 24000000U, 32000000U, 48000000U}; /** * @} */ /** @addtogroup STM32L4xx_System_Private_FunctionPrototypes * @{ */ /** * @} */ /** @addtogroup STM32L4xx_System_Private_Functions * @{ */ /** * @brief Setup the microcontroller system. * @retval None */ void SystemInit(void) { #if defined(USER_VECT_TAB_ADDRESS) /* Configure the Vector Table location -------------------------------------*/ SCB->VTOR = VECT_TAB_BASE_ADDRESS | VECT_TAB_OFFSET; #endif /* FPU settings ------------------------------------------------------------*/ #if (__FPU_PRESENT == 1) && (__FPU_USED == 1) SCB->CPACR |= ((3UL << 20U)|(3UL << 22U)); /* set CP10 and CP11 Full Access */ #endif } /** * @brief Update SystemCoreClock variable according to Clock Register Values. * The SystemCoreClock variable contains the core clock (HCLK), it can * be used by the user application to setup the SysTick timer or configure * other parameters. * * @note Each time the core clock (HCLK) changes, this function must be called * to update SystemCoreClock variable value. Otherwise, any configuration * based on this variable will be incorrect. * * @note - The system frequency computed by this function is not the real * frequency in the chip. It is calculated based on the predefined * constant and the selected clock source: * * - If SYSCLK source is MSI, SystemCoreClock will contain the MSI_VALUE(*) * * - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(**) * * - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(***) * * - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(***) * or HSI_VALUE(*) or MSI_VALUE(*) multiplied/divided by the PLL factors. * * (*) MSI_VALUE is a constant defined in stm32l4xx_hal.h file (default value * 4 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (**) HSI_VALUE is a constant defined in stm32l4xx_hal.h file (default value * 16 MHz) but the real value may vary depending on the variations * in voltage and temperature. * * (***) HSE_VALUE is a constant defined in stm32l4xx_hal.h file (default value * 8 MHz), user has to ensure that HSE_VALUE is same as the real * frequency of the crystal used. Otherwise, this function may * have wrong result. * * - The result of this function could be not correct when using fractional * value for HSE crystal. * * @retval None */ void SystemCoreClockUpdate(void) { uint32_t tmp, msirange, pllvco, pllsource, pllm, pllr; /* Get MSI Range frequency--------------------------------------------------*/ if ((RCC->CR & RCC_CR_MSIRGSEL) == 0U) { /* MSISRANGE from RCC_CSR applies */ msirange = (RCC->CSR & RCC_CSR_MSISRANGE) >> 8U; } else { /* MSIRANGE from RCC_CR applies */ msirange = (RCC->CR & RCC_CR_MSIRANGE) >> 4U; } /*MSI frequency range in HZ*/ msirange = MSIRangeTable[msirange]; /* Get SYSCLK source -------------------------------------------------------*/ switch (RCC->CFGR & RCC_CFGR_SWS) { case 0x00: /* MSI used as system clock source */ SystemCoreClock = msirange; break; case 0x04: /* HSI used as system clock source */ SystemCoreClock = HSI_VALUE; break; case 0x08: /* HSE used as system clock source */ SystemCoreClock = HSE_VALUE; break; case 0x0C: /* PLL used as system clock source */ /* PLL_VCO = (HSE_VALUE or HSI_VALUE or MSI_VALUE/ PLLM) * PLLN SYSCLK = PLL_VCO / PLLR */ pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC); pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> 4U) + 1U ; switch (pllsource) { case 0x02: /* HSI used as PLL clock source */ pllvco = (HSI_VALUE / pllm); break; case 0x03: /* HSE used as PLL clock source */ pllvco = (HSE_VALUE / pllm); break; default: /* MSI used as PLL clock source */ pllvco = (msirange / pllm); break; } pllvco = pllvco * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 8U); pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> 25U) + 1U) * 2U; SystemCoreClock = pllvco/pllr; break; default: SystemCoreClock = msirange; break; } /* Compute HCLK clock frequency --------------------------------------------*/ /* Get HCLK prescaler */ tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> 4U)]; /* HCLK clock frequency */ SystemCoreClock >>= tmp; } /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ Core/Startup/startup_stm32l431rctx.s
New file @@ -0,0 +1,461 @@ /** ****************************************************************************** * @file startup_stm32l431xx.s * @author MCD Application Team * @brief STM32L431xx devices vector table for GCC toolchain. * This module performs: * - Set the initial SP * - Set the initial PC == Reset_Handler, * - Set the vector table entries with the exceptions ISR address, * - Configure the clock system * - Branches to main in the C library (which eventually * calls main()). * After Reset the Cortex-M4 processor is in Thread mode, * priority is Privileged, and the Stack is set to Main. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ .syntax unified .cpu cortex-m4 .fpu softvfp .thumb .global g_pfnVectors .global Default_Handler /* start address for the initialization values of the .data section. defined in linker script */ .word _sidata /* start address for the .data section. defined in linker script */ .word _sdata /* end address for the .data section. defined in linker script */ .word _edata /* start address for the .bss section. defined in linker script */ .word _sbss /* end address for the .bss section. defined in linker script */ .word _ebss .equ BootRAM, 0xF1E0F85F /** * @brief This is the code that gets called when the processor first * starts execution following a reset event. Only the absolutely * necessary set is performed, after which the application * supplied main() routine is called. * @param None * @retval : None */ .section .text.Reset_Handler .weak Reset_Handler .type Reset_Handler, %function Reset_Handler: ldr sp, =_estack /* Set stack pointer */ /* Call the clock system initialization function.*/ bl SystemInit /* Copy the data segment initializers from flash to SRAM */ ldr r0, =_sdata ldr r1, =_edata ldr r2, =_sidata movs r3, #0 b LoopCopyDataInit CopyDataInit: ldr r4, [r2, r3] str r4, [r0, r3] adds r3, r3, #4 LoopCopyDataInit: adds r4, r0, r3 cmp r4, r1 bcc CopyDataInit /* Zero fill the bss segment. */ ldr r2, =_sbss ldr r4, =_ebss movs r3, #0 b LoopFillZerobss FillZerobss: str r3, [r2] adds r2, r2, #4 LoopFillZerobss: cmp r2, r4 bcc FillZerobss /* Call static constructors */ bl __libc_init_array /* Call the application's entry point.*/ bl main LoopForever: b LoopForever .size Reset_Handler, .-Reset_Handler /** * @brief This is the code that gets called when the processor receives an * unexpected interrupt. This simply enters an infinite loop, preserving * the system state for examination by a debugger. * * @param None * @retval : None */ .section .text.Default_Handler,"ax",%progbits Default_Handler: Infinite_Loop: b Infinite_Loop .size Default_Handler, .-Default_Handler /****************************************************************************** * * The minimal vector table for a Cortex-M4. Note that the proper constructs * must be placed on this to ensure that it ends up at physical address * 0x0000.0000. * ******************************************************************************/ .section .isr_vector,"a",%progbits .type g_pfnVectors, %object .size g_pfnVectors, .-g_pfnVectors g_pfnVectors: .word _estack .word Reset_Handler .word NMI_Handler .word HardFault_Handler .word MemManage_Handler .word BusFault_Handler .word UsageFault_Handler .word 0 .word 0 .word 0 .word 0 .word SVC_Handler .word DebugMon_Handler .word 0 .word PendSV_Handler .word SysTick_Handler .word WWDG_IRQHandler .word PVD_PVM_IRQHandler .word TAMP_STAMP_IRQHandler .word RTC_WKUP_IRQHandler .word FLASH_IRQHandler .word RCC_IRQHandler .word EXTI0_IRQHandler .word EXTI1_IRQHandler .word EXTI2_IRQHandler .word EXTI3_IRQHandler .word EXTI4_IRQHandler .word DMA1_Channel1_IRQHandler .word DMA1_Channel2_IRQHandler .word DMA1_Channel3_IRQHandler .word DMA1_Channel4_IRQHandler .word DMA1_Channel5_IRQHandler .word DMA1_Channel6_IRQHandler .word DMA1_Channel7_IRQHandler .word ADC1_IRQHandler .word CAN1_TX_IRQHandler .word CAN1_RX0_IRQHandler .word CAN1_RX1_IRQHandler .word CAN1_SCE_IRQHandler .word EXTI9_5_IRQHandler .word TIM1_BRK_TIM15_IRQHandler .word TIM1_UP_TIM16_IRQHandler .word TIM1_TRG_COM_IRQHandler .word TIM1_CC_IRQHandler .word TIM2_IRQHandler .word 0 .word 0 .word I2C1_EV_IRQHandler .word I2C1_ER_IRQHandler .word I2C2_EV_IRQHandler .word I2C2_ER_IRQHandler .word SPI1_IRQHandler .word SPI2_IRQHandler .word USART1_IRQHandler .word USART2_IRQHandler .word USART3_IRQHandler .word EXTI15_10_IRQHandler .word RTC_Alarm_IRQHandler .word 0 .word 0 .word 0 .word 0 .word 0 .word 0 .word 0 .word SDMMC1_IRQHandler .word 0 .word SPI3_IRQHandler .word 0 .word 0 .word TIM6_DAC_IRQHandler .word TIM7_IRQHandler .word DMA2_Channel1_IRQHandler .word DMA2_Channel2_IRQHandler .word DMA2_Channel3_IRQHandler .word DMA2_Channel4_IRQHandler .word DMA2_Channel5_IRQHandler .word 0 .word 0 .word 0 .word COMP_IRQHandler .word LPTIM1_IRQHandler .word LPTIM2_IRQHandler .word 0 .word DMA2_Channel6_IRQHandler .word DMA2_Channel7_IRQHandler .word LPUART1_IRQHandler .word QUADSPI_IRQHandler .word I2C3_EV_IRQHandler .word I2C3_ER_IRQHandler .word SAI1_IRQHandler .word 0 .word SWPMI1_IRQHandler .word TSC_IRQHandler .word 0 .word 0 .word RNG_IRQHandler .word FPU_IRQHandler .word CRS_IRQHandler /******************************************************************************* * * Provide weak aliases for each Exception handler to the Default_Handler. * As they are weak aliases, any function with the same name will override * this definition. * *******************************************************************************/ .weak NMI_Handler .thumb_set NMI_Handler,Default_Handler .weak HardFault_Handler .thumb_set HardFault_Handler,Default_Handler .weak MemManage_Handler .thumb_set MemManage_Handler,Default_Handler .weak BusFault_Handler .thumb_set BusFault_Handler,Default_Handler .weak UsageFault_Handler .thumb_set UsageFault_Handler,Default_Handler .weak SVC_Handler .thumb_set SVC_Handler,Default_Handler .weak DebugMon_Handler .thumb_set DebugMon_Handler,Default_Handler .weak PendSV_Handler .thumb_set PendSV_Handler,Default_Handler .weak SysTick_Handler .thumb_set SysTick_Handler,Default_Handler .weak WWDG_IRQHandler .thumb_set WWDG_IRQHandler,Default_Handler .weak PVD_PVM_IRQHandler .thumb_set PVD_PVM_IRQHandler,Default_Handler .weak TAMP_STAMP_IRQHandler .thumb_set TAMP_STAMP_IRQHandler,Default_Handler .weak RTC_WKUP_IRQHandler .thumb_set RTC_WKUP_IRQHandler,Default_Handler .weak FLASH_IRQHandler .thumb_set FLASH_IRQHandler,Default_Handler .weak RCC_IRQHandler .thumb_set RCC_IRQHandler,Default_Handler .weak EXTI0_IRQHandler .thumb_set EXTI0_IRQHandler,Default_Handler .weak EXTI1_IRQHandler .thumb_set EXTI1_IRQHandler,Default_Handler .weak EXTI2_IRQHandler .thumb_set EXTI2_IRQHandler,Default_Handler .weak EXTI3_IRQHandler .thumb_set EXTI3_IRQHandler,Default_Handler .weak EXTI4_IRQHandler .thumb_set EXTI4_IRQHandler,Default_Handler .weak DMA1_Channel1_IRQHandler .thumb_set DMA1_Channel1_IRQHandler,Default_Handler .weak DMA1_Channel2_IRQHandler .thumb_set DMA1_Channel2_IRQHandler,Default_Handler .weak DMA1_Channel3_IRQHandler .thumb_set DMA1_Channel3_IRQHandler,Default_Handler .weak DMA1_Channel4_IRQHandler .thumb_set DMA1_Channel4_IRQHandler,Default_Handler .weak DMA1_Channel5_IRQHandler .thumb_set DMA1_Channel5_IRQHandler,Default_Handler .weak DMA1_Channel6_IRQHandler .thumb_set DMA1_Channel6_IRQHandler,Default_Handler .weak DMA1_Channel7_IRQHandler .thumb_set DMA1_Channel7_IRQHandler,Default_Handler .weak ADC1_IRQHandler .thumb_set ADC1_IRQHandler,Default_Handler .weak CAN1_TX_IRQHandler .thumb_set CAN1_TX_IRQHandler,Default_Handler .weak CAN1_RX0_IRQHandler .thumb_set CAN1_RX0_IRQHandler,Default_Handler .weak CAN1_RX1_IRQHandler .thumb_set CAN1_RX1_IRQHandler,Default_Handler .weak CAN1_SCE_IRQHandler .thumb_set CAN1_SCE_IRQHandler,Default_Handler .weak EXTI9_5_IRQHandler .thumb_set EXTI9_5_IRQHandler,Default_Handler .weak TIM1_BRK_TIM15_IRQHandler .thumb_set TIM1_BRK_TIM15_IRQHandler,Default_Handler .weak TIM1_UP_TIM16_IRQHandler .thumb_set TIM1_UP_TIM16_IRQHandler,Default_Handler .weak TIM1_TRG_COM_IRQHandler .thumb_set TIM1_TRG_COM_IRQHandler,Default_Handler .weak TIM1_CC_IRQHandler .thumb_set TIM1_CC_IRQHandler,Default_Handler .weak TIM2_IRQHandler .thumb_set TIM2_IRQHandler,Default_Handler .weak I2C1_EV_IRQHandler .thumb_set I2C1_EV_IRQHandler,Default_Handler .weak I2C1_ER_IRQHandler .thumb_set I2C1_ER_IRQHandler,Default_Handler .weak I2C2_EV_IRQHandler .thumb_set I2C2_EV_IRQHandler,Default_Handler .weak I2C2_ER_IRQHandler .thumb_set I2C2_ER_IRQHandler,Default_Handler .weak SPI1_IRQHandler .thumb_set SPI1_IRQHandler,Default_Handler .weak SPI2_IRQHandler .thumb_set SPI2_IRQHandler,Default_Handler .weak USART1_IRQHandler .thumb_set USART1_IRQHandler,Default_Handler .weak USART2_IRQHandler .thumb_set USART2_IRQHandler,Default_Handler .weak USART3_IRQHandler .thumb_set USART3_IRQHandler,Default_Handler .weak EXTI15_10_IRQHandler .thumb_set EXTI15_10_IRQHandler,Default_Handler .weak RTC_Alarm_IRQHandler .thumb_set RTC_Alarm_IRQHandler,Default_Handler .weak SDMMC1_IRQHandler .thumb_set SDMMC1_IRQHandler,Default_Handler .weak SPI3_IRQHandler .thumb_set SPI3_IRQHandler,Default_Handler .weak TIM6_DAC_IRQHandler .thumb_set TIM6_DAC_IRQHandler,Default_Handler .weak TIM7_IRQHandler .thumb_set TIM7_IRQHandler,Default_Handler .weak DMA2_Channel1_IRQHandler .thumb_set DMA2_Channel1_IRQHandler,Default_Handler .weak DMA2_Channel2_IRQHandler .thumb_set DMA2_Channel2_IRQHandler,Default_Handler .weak DMA2_Channel3_IRQHandler .thumb_set DMA2_Channel3_IRQHandler,Default_Handler .weak DMA2_Channel4_IRQHandler .thumb_set DMA2_Channel4_IRQHandler,Default_Handler .weak DMA2_Channel5_IRQHandler .thumb_set DMA2_Channel5_IRQHandler,Default_Handler .weak COMP_IRQHandler .thumb_set COMP_IRQHandler,Default_Handler .weak LPTIM1_IRQHandler .thumb_set LPTIM1_IRQHandler,Default_Handler .weak LPTIM2_IRQHandler .thumb_set LPTIM2_IRQHandler,Default_Handler .weak DMA2_Channel6_IRQHandler .thumb_set DMA2_Channel6_IRQHandler,Default_Handler .weak DMA2_Channel7_IRQHandler .thumb_set DMA2_Channel7_IRQHandler,Default_Handler .weak LPUART1_IRQHandler .thumb_set LPUART1_IRQHandler,Default_Handler .weak QUADSPI_IRQHandler .thumb_set QUADSPI_IRQHandler,Default_Handler .weak I2C3_EV_IRQHandler .thumb_set I2C3_EV_IRQHandler,Default_Handler .weak I2C3_ER_IRQHandler .thumb_set I2C3_ER_IRQHandler,Default_Handler .weak SAI1_IRQHandler .thumb_set SAI1_IRQHandler,Default_Handler .weak SWPMI1_IRQHandler .thumb_set SWPMI1_IRQHandler,Default_Handler .weak TSC_IRQHandler .thumb_set TSC_IRQHandler,Default_Handler .weak RNG_IRQHandler .thumb_set RNG_IRQHandler,Default_Handler .weak FPU_IRQHandler .thumb_set FPU_IRQHandler,Default_Handler .weak CRS_IRQHandler .thumb_set CRS_IRQHandler,Default_Handler Drivers/CMSIS/Device/ST/STM32L4xx/Include/stm32l431xx.h
New file Diff too large Drivers/CMSIS/Device/ST/STM32L4xx/Include/stm32l4xx.h
New file @@ -0,0 +1,303 @@ /** ****************************************************************************** * @file stm32l4xx.h * @author MCD Application Team * @brief CMSIS STM32L4xx Device Peripheral Access Layer Header File. * * The file is the unique include file that the application programmer * is using in the C source code, usually in main.c. This file contains: * - Configuration section that allows to select: * - The STM32L4xx device used in the target application * - To use or not the peripheral's drivers in application code(i.e. * code will be based on direct access to peripheral's registers * rather than drivers API), this option is controlled by * "#define USE_HAL_DRIVER" * ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32l4xx * @{ */ #ifndef __STM32L4xx_H #define __STM32L4xx_H #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ /** @addtogroup Library_configuration_section * @{ */ /** * @brief STM32 Family */ #if !defined (STM32L4) #define STM32L4 #endif /* STM32L4 */ /* Uncomment the line below according to the target STM32L4 device used in your application */ #if !defined (STM32L412xx) && !defined (STM32L422xx) && \ !defined (STM32L431xx) && !defined (STM32L432xx) && !defined (STM32L433xx) && !defined (STM32L442xx) && !defined (STM32L443xx) && \ !defined (STM32L451xx) && !defined (STM32L452xx) && !defined (STM32L462xx) && \ !defined (STM32L471xx) && !defined (STM32L475xx) && !defined (STM32L476xx) && !defined (STM32L485xx) && !defined (STM32L486xx) && \ !defined (STM32L496xx) && !defined (STM32L4A6xx) && \ !defined (STM32L4P5xx) && !defined (STM32L4Q5xx) && \ !defined (STM32L4R5xx) && !defined (STM32L4R7xx) && !defined (STM32L4R9xx) && !defined (STM32L4S5xx) && !defined (STM32L4S7xx) && !defined (STM32L4S9xx) /* #define STM32L412xx */ /*!< STM32L412xx Devices */ /* #define STM32L422xx */ /*!< STM32L422xx Devices */ /* #define STM32L431xx */ /*!< STM32L431xx Devices */ /* #define STM32L432xx */ /*!< STM32L432xx Devices */ /* #define STM32L433xx */ /*!< STM32L433xx Devices */ /* #define STM32L442xx */ /*!< STM32L442xx Devices */ /* #define STM32L443xx */ /*!< STM32L443xx Devices */ /* #define STM32L451xx */ /*!< STM32L451xx Devices */ /* #define STM32L452xx */ /*!< STM32L452xx Devices */ /* #define STM32L462xx */ /*!< STM32L462xx Devices */ /* #define STM32L471xx */ /*!< STM32L471xx Devices */ /* #define STM32L475xx */ /*!< STM32L475xx Devices */ /* #define STM32L476xx */ /*!< STM32L476xx Devices */ /* #define STM32L485xx */ /*!< STM32L485xx Devices */ /* #define STM32L486xx */ /*!< STM32L486xx Devices */ /* #define STM32L496xx */ /*!< STM32L496xx Devices */ /* #define STM32L4A6xx */ /*!< STM32L4A6xx Devices */ /* #define STM32L4P5xx */ /*!< STM32L4Q5xx Devices */ /* #define STM32L4R5xx */ /*!< STM32L4R5xx Devices */ /* #define STM32L4R7xx */ /*!< STM32L4R7xx Devices */ /* #define STM32L4R9xx */ /*!< STM32L4R9xx Devices */ /* #define STM32L4S5xx */ /*!< STM32L4S5xx Devices */ /* #define STM32L4S7xx */ /*!< STM32L4S7xx Devices */ /* #define STM32L4S9xx */ /*!< STM32L4S9xx Devices */ #endif /* Tip: To avoid modifying this file each time you need to switch between these devices, you can define the device in your toolchain compiler preprocessor. */ #if !defined (USE_HAL_DRIVER) /** * @brief Comment the line below if you will not use the peripherals drivers. In this case, these drivers will not be included and the application code will be based on direct access to peripherals registers */ /*#define USE_HAL_DRIVER */ #endif /* USE_HAL_DRIVER */ /** * @brief CMSIS Device version number */ #define __STM32L4_CMSIS_VERSION_MAIN (0x01) /*!< [31:24] main version */ #define __STM32L4_CMSIS_VERSION_SUB1 (0x07) /*!< [23:16] sub1 version */ #define __STM32L4_CMSIS_VERSION_SUB2 (0x04) /*!< [15:8] sub2 version */ #define __STM32L4_CMSIS_VERSION_RC (0x00) /*!< [7:0] release candidate */ #define __STM32L4_CMSIS_VERSION ((__STM32L4_CMSIS_VERSION_MAIN << 24)\ |(__STM32L4_CMSIS_VERSION_SUB1 << 16)\ |(__STM32L4_CMSIS_VERSION_SUB2 << 8 )\ |(__STM32L4_CMSIS_VERSION_RC)) /** * @} */ /** @addtogroup Device_Included * @{ */ #if defined(STM32L412xx) #include "stm32l412xx.h" #elif defined(STM32L422xx) #include "stm32l422xx.h" #elif defined(STM32L431xx) #include "stm32l431xx.h" #elif defined(STM32L432xx) #include "stm32l432xx.h" #elif defined(STM32L433xx) #include "stm32l433xx.h" #elif defined(STM32L442xx) #include "stm32l442xx.h" #elif defined(STM32L443xx) #include "stm32l443xx.h" #elif defined(STM32L451xx) #include "stm32l451xx.h" #elif defined(STM32L452xx) #include "stm32l452xx.h" #elif defined(STM32L462xx) #include "stm32l462xx.h" #elif defined(STM32L471xx) #include "stm32l471xx.h" #elif defined(STM32L475xx) #include "stm32l475xx.h" #elif defined(STM32L476xx) #include "stm32l476xx.h" #elif defined(STM32L485xx) #include "stm32l485xx.h" #elif defined(STM32L486xx) #include "stm32l486xx.h" #elif defined(STM32L496xx) #include "stm32l496xx.h" #elif defined(STM32L4A6xx) #include "stm32l4a6xx.h" #elif defined(STM32L4P5xx) #include "stm32l4p5xx.h" #elif defined(STM32L4Q5xx) #include "stm32l4q5xx.h" #elif defined(STM32L4R5xx) #include "stm32l4r5xx.h" #elif defined(STM32L4R7xx) #include "stm32l4r7xx.h" #elif defined(STM32L4R9xx) #include "stm32l4r9xx.h" #elif defined(STM32L4S5xx) #include "stm32l4s5xx.h" #elif defined(STM32L4S7xx) #include "stm32l4s7xx.h" #elif defined(STM32L4S9xx) #include "stm32l4s9xx.h" #else #error "Please select first the target STM32L4xx device used in your application (in stm32l4xx.h file)" #endif /** * @} */ /** @addtogroup Exported_types * @{ */ typedef enum { RESET = 0, SET = !RESET } FlagStatus, ITStatus; typedef enum { DISABLE = 0, ENABLE = !DISABLE } FunctionalState; #define IS_FUNCTIONAL_STATE(STATE) (((STATE) == DISABLE) || ((STATE) == ENABLE)) typedef enum { SUCCESS = 0, ERROR = !SUCCESS } ErrorStatus; /** * @} */ /** @addtogroup Exported_macros * @{ */ #define SET_BIT(REG, BIT) ((REG) |= (BIT)) #define CLEAR_BIT(REG, BIT) ((REG) &= ~(BIT)) #define READ_BIT(REG, BIT) ((REG) & (BIT)) #define CLEAR_REG(REG) ((REG) = (0x0)) #define WRITE_REG(REG, VAL) ((REG) = (VAL)) #define READ_REG(REG) ((REG)) #define MODIFY_REG(REG, CLEARMASK, SETMASK) WRITE_REG((REG), (((READ_REG(REG)) & (~(CLEARMASK))) | (SETMASK))) /* Use of CMSIS compiler intrinsics for register exclusive access */ /* Atomic 32-bit register access macro to set one or several bits */ #define ATOMIC_SET_BIT(REG, BIT) \ do { \ uint32_t val; \ do { \ val = __LDREXW((__IO uint32_t *)&(REG)) | (BIT); \ } while ((__STREXW(val,(__IO uint32_t *)&(REG))) != 0U); \ } while(0) /* Atomic 32-bit register access macro to clear one or several bits */ #define ATOMIC_CLEAR_BIT(REG, BIT) \ do { \ uint32_t val; \ do { \ val = __LDREXW((__IO uint32_t *)&(REG)) & ~(BIT); \ } while ((__STREXW(val,(__IO uint32_t *)&(REG))) != 0U); \ } while(0) /* Atomic 32-bit register access macro to clear and set one or several bits */ #define ATOMIC_MODIFY_REG(REG, CLEARMSK, SETMASK) \ do { \ uint32_t val; \ do { \ val = (__LDREXW((__IO uint32_t *)&(REG)) & ~(CLEARMSK)) | (SETMASK); \ } while ((__STREXW(val,(__IO uint32_t *)&(REG))) != 0U); \ } while(0) /* Atomic 16-bit register access macro to set one or several bits */ #define ATOMIC_SETH_BIT(REG, BIT) \ do { \ uint16_t val; \ do { \ val = __LDREXH((__IO uint16_t *)&(REG)) | (BIT); \ } while ((__STREXH(val,(__IO uint16_t *)&(REG))) != 0U); \ } while(0) /* Atomic 16-bit register access macro to clear one or several bits */ #define ATOMIC_CLEARH_BIT(REG, BIT) \ do { \ uint16_t val; \ do { \ val = __LDREXH((__IO uint16_t *)&(REG)) & ~(BIT); \ } while ((__STREXH(val,(__IO uint16_t *)&(REG))) != 0U); \ } while(0) /* Atomic 16-bit register access macro to clear and set one or several bits */ #define ATOMIC_MODIFYH_REG(REG, CLEARMSK, SETMASK) \ do { \ uint16_t val; \ do { \ val = (__LDREXH((__IO uint16_t *)&(REG)) & ~(CLEARMSK)) | (SETMASK); \ } while ((__STREXH(val,(__IO uint16_t *)&(REG))) != 0U); \ } while(0) #define POSITION_VAL(VAL) (__CLZ(__RBIT(VAL))) /** * @} */ #if defined (USE_HAL_DRIVER) #include "stm32l4xx_hal.h" #endif /* USE_HAL_DRIVER */ #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* __STM32L4xx_H */ /** * @} */ /** * @} */ Drivers/CMSIS/Device/ST/STM32L4xx/Include/system_stm32l4xx.h
New file @@ -0,0 +1,106 @@ /** ****************************************************************************** * @file system_stm32l4xx.h * @author MCD Application Team * @brief CMSIS Cortex-M4 Device System Source File for STM32L4xx devices. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /** @addtogroup CMSIS * @{ */ /** @addtogroup stm32l4xx_system * @{ */ /** * @brief Define to prevent recursive inclusion */ #ifndef __SYSTEM_STM32L4XX_H #define __SYSTEM_STM32L4XX_H #ifdef __cplusplus extern "C" { #endif /** @addtogroup STM32L4xx_System_Includes * @{ */ /** * @} */ /** @addtogroup STM32L4xx_System_Exported_Variables * @{ */ /* The SystemCoreClock variable is updated in three ways: 1) by calling CMSIS function SystemCoreClockUpdate() 2) by calling HAL API function HAL_RCC_GetSysClockFreq() 3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency Note: If you use this function to configure the system clock; then there is no need to call the 2 first functions listed above, since SystemCoreClock variable is updated automatically. */ extern uint32_t SystemCoreClock; /*!< System Clock Frequency (Core Clock) */ extern const uint8_t AHBPrescTable[16]; /*!< AHB prescalers table values */ extern const uint8_t APBPrescTable[8]; /*!< APB prescalers table values */ extern const uint32_t MSIRangeTable[12]; /*!< MSI ranges table values */ /** * @} */ /** @addtogroup STM32L4xx_System_Exported_Constants * @{ */ /** * @} */ /** @addtogroup STM32L4xx_System_Exported_Macros * @{ */ /** * @} */ /** @addtogroup STM32L4xx_System_Exported_Functions * @{ */ extern void SystemInit(void); extern void SystemCoreClockUpdate(void); /** * @} */ #ifdef __cplusplus } #endif #endif /*__SYSTEM_STM32L4XX_H */ /** * @} */ /** * @} */ Drivers/CMSIS/Device/ST/STM32L4xx/LICENSE.txt
New file @@ -0,0 +1,6 @@ This software component is provided to you as part of a software package and applicable license terms are in the Package_license file. If you received this software component outside of a package or without applicable license terms, the terms of the Apache-2.0 license shall apply. You may obtain a copy of the Apache-2.0 at: https://opensource.org/licenses/Apache-2.0 Drivers/CMSIS/Device/ST/STM32L4xx/License.md
New file @@ -0,0 +1,83 @@ Apache License Version 2.0, January 2004 http://www.apache.org/licenses/ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 1. Definitions. "License" shall mean the terms and conditions for use, reproduction, and distribution as defined by Sections 1 through 9 of this document. "Licensor" shall mean the copyright owner or entity authorized by the copyright owner that is granting the License. "Legal Entity" shall mean the union of the acting entity and all other entities that control, are controlled by, or are under common control with that entity. For the purposes of this definition, "control" means (i) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares, or (iii) beneficial ownership of such entity. "You" (or "Your") shall mean an individual or Legal Entity exercising permissions granted by this License. "Source" form shall mean the preferred form for making modifications, including but not limited to software source code, documentation source, and configuration files. "Object" form shall mean any form resulting from mechanical transformation or translation of a Source form, including but not limited to compiled object code, generated documentation, and conversions to other media types. "Work" shall mean the work of authorship, whether in Source or Object form, made available under the License, as indicated by a copyright notice that is included in or attached to the work (an example is provided in the Appendix below). "Derivative Works" shall mean any work, whether in Source or Object form, that is based on (or derived from) the Work and for which the editorial revisions, annotations, elaborations, or other modifications represent, as a whole, an original work of authorship. For the purposes of this License, Derivative Works shall not include works that remain separable from, or merely link (or bind by name) to the interfaces of, the Work and Derivative Works thereof. "Contribution" shall mean any work of authorship, including the original version of the Work and any modifications or additions to that Work or Derivative Works thereof, that is intentionally submitted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity authorized to submit on behalf of the copyright owner. For the purposes of this definition, "submitted" means any form of electronic, verbal, or written communication sent to the Licensor or its representatives, including but not limited to communication on electronic mailing lists, source code control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the purpose of discussing and improving the Work, but excluding communication that is conspicuously marked or otherwise designated in writing by the copyright owner as "Not a Contribution." "Contributor" shall mean Licensor and any individual or Legal Entity on behalf of whom a Contribution has been received by Licensor and subsequently incorporated within the Work. 2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform, sublicense, and distribute the Work and such Derivative Works in Source or Object form. 3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable (except as stated in this section) patent license to make, have made, use, offer to sell, sell, import, and otherwise transfer the Work, where such license applies only to those patent claims licensable by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Work or a Contribution incorporated within the Work constitutes direct or contributory patent infringement, then any patent licenses granted to You under this License for that Work shall terminate as of the date such litigation is filed. 4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in any medium, with or without modifications, and in Source or Object form, provided that You meet the following conditions: 1.You must give any other recipients of the Work or Derivative Works a copy of this License; and 2.You must cause any modified files to carry prominent notices stating that You changed the files; and 3.You must retain, in the Source form of any Derivative Works that You distribute, all copyright, patent, trademark, and attribution notices from the Source form of the Work, excluding those notices that do not pertain to any part of the Derivative Works; and 4.If the Work includes a "NOTICE" text file as part of its distribution, then any Derivative Works that You distribute must include a readable copy of the attribution notices contained within such NOTICE file, excluding those notices that do not pertain to any part of the Derivative Works, in at least one of the following places: within a NOTICE text file distributed as part of the Derivative Works; within the Source form or documentation, if provided along with the Derivative Works; or, within a display generated by the Derivative Works, if and wherever such third-party notices normally appear. The contents of the NOTICE file are for informational purposes only and do not modify the License. You may add Your own attribution notices within Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from the Work, provided that such additional attribution notices cannot be construed as modifying the License. You may add Your own copyright statement to Your modifications and may provide additional or different license terms and conditions for use, reproduction, or distribution of Your modifications, or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of the Work otherwise complies with the conditions stated in this License. 5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of this License, without any additional terms or conditions. Notwithstanding the above, nothing herein shall supersede or modify the terms of any separate license agreement you may have executed with Licensor regarding such Contributions. 6. Trademarks. This License does not grant permission to use the trade names, trademarks, service marks, or product names of the Licensor, except as required for reasonable and customary use in describing the origin of the Work and reproducing the content of the NOTICE file. 7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor provides the Work (and each Contributor provides its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining the appropriateness of using or redistributing the Work and assume any risks associated with Your exercise of permissions under this License. 8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence), contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any direct, indirect, special, incidental, or consequential damages of any character arising as a result of this License or out of the use or inability to use the Work (including but not limited to damages for loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial damages or losses), even if such Contributor has been advised of the possibility of such damages. 9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity, or other liability obligations and/or rights consistent with this License. However, in accepting such obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your accepting any such warranty or additional liability. END OF TERMS AND CONDITIONS APPENDIX: Copyright [2019] [STMicroelectronics] Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Drivers/CMSIS/Include/cmsis_armcc.h
New file @@ -0,0 +1,894 @@ /**************************************************************************//** * @file cmsis_armcc.h * @brief CMSIS compiler ARMCC (Arm Compiler 5) header file * @version V5.1.0 * @date 08. May 2019 ******************************************************************************/ /* * Copyright (c) 2009-2019 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __CMSIS_ARMCC_H #define __CMSIS_ARMCC_H #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 400677) #error "Please use Arm Compiler Toolchain V4.0.677 or later!" #endif /* CMSIS compiler control architecture macros */ #if ((defined (__TARGET_ARCH_6_M ) && (__TARGET_ARCH_6_M == 1)) || \ (defined (__TARGET_ARCH_6S_M ) && (__TARGET_ARCH_6S_M == 1)) ) #define __ARM_ARCH_6M__ 1 #endif #if (defined (__TARGET_ARCH_7_M ) && (__TARGET_ARCH_7_M == 1)) #define __ARM_ARCH_7M__ 1 #endif #if (defined (__TARGET_ARCH_7E_M) && (__TARGET_ARCH_7E_M == 1)) #define __ARM_ARCH_7EM__ 1 #endif /* __ARM_ARCH_8M_BASE__ not applicable */ /* __ARM_ARCH_8M_MAIN__ not applicable */ /* CMSIS compiler control DSP macros */ #if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) #define __ARM_FEATURE_DSP 1 #endif /* CMSIS compiler specific defines */ #ifndef __ASM #define __ASM __asm #endif #ifndef __INLINE #define __INLINE __inline #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static __inline #endif #ifndef __STATIC_FORCEINLINE #define __STATIC_FORCEINLINE static __forceinline #endif #ifndef __NO_RETURN #define __NO_RETURN __declspec(noreturn) #endif #ifndef __USED #define __USED __attribute__((used)) #endif #ifndef __WEAK #define __WEAK __attribute__((weak)) #endif #ifndef __PACKED #define __PACKED __attribute__((packed)) #endif #ifndef __PACKED_STRUCT #define __PACKED_STRUCT __packed struct #endif #ifndef __PACKED_UNION #define __PACKED_UNION __packed union #endif #ifndef __UNALIGNED_UINT32 /* deprecated */ #define __UNALIGNED_UINT32(x) (*((__packed uint32_t *)(x))) #endif #ifndef __UNALIGNED_UINT16_WRITE #define __UNALIGNED_UINT16_WRITE(addr, val) ((*((__packed uint16_t *)(addr))) = (val)) #endif #ifndef __UNALIGNED_UINT16_READ #define __UNALIGNED_UINT16_READ(addr) (*((const __packed uint16_t *)(addr))) #endif #ifndef __UNALIGNED_UINT32_WRITE #define __UNALIGNED_UINT32_WRITE(addr, val) ((*((__packed uint32_t *)(addr))) = (val)) #endif #ifndef __UNALIGNED_UINT32_READ #define __UNALIGNED_UINT32_READ(addr) (*((const __packed uint32_t *)(addr))) #endif #ifndef __ALIGNED #define __ALIGNED(x) __attribute__((aligned(x))) #endif #ifndef __RESTRICT #define __RESTRICT __restrict #endif #ifndef __COMPILER_BARRIER #define __COMPILER_BARRIER() __memory_changed() #endif /* ######################### Startup and Lowlevel Init ######################## */ #ifndef __PROGRAM_START #define __PROGRAM_START __main #endif #ifndef __INITIAL_SP #define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit #endif #ifndef __STACK_LIMIT #define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base #endif #ifndef __VECTOR_TABLE #define __VECTOR_TABLE __Vectors #endif #ifndef __VECTOR_TABLE_ATTRIBUTE #define __VECTOR_TABLE_ATTRIBUTE __attribute((used, section("RESET"))) #endif /* ########################### Core Function Access ########################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions @{ */ /** \brief Enable IRQ Interrupts \details Enables IRQ interrupts by clearing the I-bit in the CPSR. Can only be executed in Privileged modes. */ /* intrinsic void __enable_irq(); */ /** \brief Disable IRQ Interrupts \details Disables IRQ interrupts by setting the I-bit in the CPSR. Can only be executed in Privileged modes. */ /* intrinsic void __disable_irq(); */ /** \brief Get Control Register \details Returns the content of the Control Register. \return Control Register value */ __STATIC_INLINE uint32_t __get_CONTROL(void) { register uint32_t __regControl __ASM("control"); return(__regControl); } /** \brief Set Control Register \details Writes the given value to the Control Register. \param [in] control Control Register value to set */ __STATIC_INLINE void __set_CONTROL(uint32_t control) { register uint32_t __regControl __ASM("control"); __regControl = control; } /** \brief Get IPSR Register \details Returns the content of the IPSR Register. \return IPSR Register value */ __STATIC_INLINE uint32_t __get_IPSR(void) { register uint32_t __regIPSR __ASM("ipsr"); return(__regIPSR); } /** \brief Get APSR Register \details Returns the content of the APSR Register. \return APSR Register value */ __STATIC_INLINE uint32_t __get_APSR(void) { register uint32_t __regAPSR __ASM("apsr"); return(__regAPSR); } /** \brief Get xPSR Register \details Returns the content of the xPSR Register. \return xPSR Register value */ __STATIC_INLINE uint32_t __get_xPSR(void) { register uint32_t __regXPSR __ASM("xpsr"); return(__regXPSR); } /** \brief Get Process Stack Pointer \details Returns the current value of the Process Stack Pointer (PSP). \return PSP Register value */ __STATIC_INLINE uint32_t __get_PSP(void) { register uint32_t __regProcessStackPointer __ASM("psp"); return(__regProcessStackPointer); } /** \brief Set Process Stack Pointer \details Assigns the given value to the Process Stack Pointer (PSP). \param [in] topOfProcStack Process Stack Pointer value to set */ __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack) { register uint32_t __regProcessStackPointer __ASM("psp"); __regProcessStackPointer = topOfProcStack; } /** \brief Get Main Stack Pointer \details Returns the current value of the Main Stack Pointer (MSP). \return MSP Register value */ __STATIC_INLINE uint32_t __get_MSP(void) { register uint32_t __regMainStackPointer __ASM("msp"); return(__regMainStackPointer); } /** \brief Set Main Stack Pointer \details Assigns the given value to the Main Stack Pointer (MSP). \param [in] topOfMainStack Main Stack Pointer value to set */ __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack) { register uint32_t __regMainStackPointer __ASM("msp"); __regMainStackPointer = topOfMainStack; } /** \brief Get Priority Mask \details Returns the current state of the priority mask bit from the Priority Mask Register. \return Priority Mask value */ __STATIC_INLINE uint32_t __get_PRIMASK(void) { register uint32_t __regPriMask __ASM("primask"); return(__regPriMask); } /** \brief Set Priority Mask \details Assigns the given value to the Priority Mask Register. \param [in] priMask Priority Mask */ __STATIC_INLINE void __set_PRIMASK(uint32_t priMask) { register uint32_t __regPriMask __ASM("primask"); __regPriMask = (priMask); } #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) /** \brief Enable FIQ \details Enables FIQ interrupts by clearing the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __enable_fault_irq __enable_fiq /** \brief Disable FIQ \details Disables FIQ interrupts by setting the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __disable_fault_irq __disable_fiq /** \brief Get Base Priority \details Returns the current value of the Base Priority register. \return Base Priority register value */ __STATIC_INLINE uint32_t __get_BASEPRI(void) { register uint32_t __regBasePri __ASM("basepri"); return(__regBasePri); } /** \brief Set Base Priority \details Assigns the given value to the Base Priority register. \param [in] basePri Base Priority value to set */ __STATIC_INLINE void __set_BASEPRI(uint32_t basePri) { register uint32_t __regBasePri __ASM("basepri"); __regBasePri = (basePri & 0xFFU); } /** \brief Set Base Priority with condition \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, or the new value increases the BASEPRI priority level. \param [in] basePri Base Priority value to set */ __STATIC_INLINE void __set_BASEPRI_MAX(uint32_t basePri) { register uint32_t __regBasePriMax __ASM("basepri_max"); __regBasePriMax = (basePri & 0xFFU); } /** \brief Get Fault Mask \details Returns the current value of the Fault Mask register. \return Fault Mask register value */ __STATIC_INLINE uint32_t __get_FAULTMASK(void) { register uint32_t __regFaultMask __ASM("faultmask"); return(__regFaultMask); } /** \brief Set Fault Mask \details Assigns the given value to the Fault Mask register. \param [in] faultMask Fault Mask value to set */ __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask) { register uint32_t __regFaultMask __ASM("faultmask"); __regFaultMask = (faultMask & (uint32_t)1U); } #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ /** \brief Get FPSCR \details Returns the current value of the Floating Point Status/Control register. \return Floating Point Status/Control register value */ __STATIC_INLINE uint32_t __get_FPSCR(void) { #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) register uint32_t __regfpscr __ASM("fpscr"); return(__regfpscr); #else return(0U); #endif } /** \brief Set FPSCR \details Assigns the given value to the Floating Point Status/Control register. \param [in] fpscr Floating Point Status/Control value to set */ __STATIC_INLINE void __set_FPSCR(uint32_t fpscr) { #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) register uint32_t __regfpscr __ASM("fpscr"); __regfpscr = (fpscr); #else (void)fpscr; #endif } /*@} end of CMSIS_Core_RegAccFunctions */ /* ########################## Core Instruction Access ######################### */ /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface Access to dedicated instructions @{ */ /** \brief No Operation \details No Operation does nothing. This instruction can be used for code alignment purposes. */ #define __NOP __nop /** \brief Wait For Interrupt \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. */ #define __WFI __wfi /** \brief Wait For Event \details Wait For Event is a hint instruction that permits the processor to enter a low-power state until one of a number of events occurs. */ #define __WFE __wfe /** \brief Send Event \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. */ #define __SEV __sev /** \brief Instruction Synchronization Barrier \details Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB are fetched from cache or memory, after the instruction has been completed. */ #define __ISB() do {\ __schedule_barrier();\ __isb(0xF);\ __schedule_barrier();\ } while (0U) /** \brief Data Synchronization Barrier \details Acts as a special kind of Data Memory Barrier. It completes when all explicit memory accesses before this instruction complete. */ #define __DSB() do {\ __schedule_barrier();\ __dsb(0xF);\ __schedule_barrier();\ } while (0U) /** \brief Data Memory Barrier \details Ensures the apparent order of the explicit memory operations before and after the instruction, without ensuring their completion. */ #define __DMB() do {\ __schedule_barrier();\ __dmb(0xF);\ __schedule_barrier();\ } while (0U) /** \brief Reverse byte order (32 bit) \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412. \param [in] value Value to reverse \return Reversed value */ #define __REV __rev /** \brief Reverse byte order (16 bit) \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. \param [in] value Value to reverse \return Reversed value */ #ifndef __NO_EMBEDDED_ASM __attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value) { rev16 r0, r0 bx lr } #endif /** \brief Reverse byte order (16 bit) \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000. \param [in] value Value to reverse \return Reversed value */ #ifndef __NO_EMBEDDED_ASM __attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int16_t __REVSH(int16_t value) { revsh r0, r0 bx lr } #endif /** \brief Rotate Right in unsigned value (32 bit) \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. \param [in] op1 Value to rotate \param [in] op2 Number of Bits to rotate \return Rotated value */ #define __ROR __ror /** \brief Breakpoint \details Causes the processor to enter Debug state. Debug tools can use this to investigate system state when the instruction at a particular address is reached. \param [in] value is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint. */ #define __BKPT(value) __breakpoint(value) /** \brief Reverse bit order of value \details Reverses the bit order of the given value. \param [in] value Value to reverse \return Reversed value */ #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) #define __RBIT __rbit #else __attribute__((always_inline)) __STATIC_INLINE uint32_t __RBIT(uint32_t value) { uint32_t result; uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */ result = value; /* r will be reversed bits of v; first get LSB of v */ for (value >>= 1U; value != 0U; value >>= 1U) { result <<= 1U; result |= value & 1U; s--; } result <<= s; /* shift when v's highest bits are zero */ return result; } #endif /** \brief Count leading zeros \details Counts the number of leading zeros of a data value. \param [in] value Value to count the leading zeros \return number of leading zeros in value */ #define __CLZ __clz #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) /** \brief LDR Exclusive (8 bit) \details Executes a exclusive LDR instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr)) #else #define __LDREXB(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint8_t ) __ldrex(ptr)) _Pragma("pop") #endif /** \brief LDR Exclusive (16 bit) \details Executes a exclusive LDR instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __LDREXH(ptr) ((uint16_t) __ldrex(ptr)) #else #define __LDREXH(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint16_t) __ldrex(ptr)) _Pragma("pop") #endif /** \brief LDR Exclusive (32 bit) \details Executes a exclusive LDR instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr)) #else #define __LDREXW(ptr) _Pragma("push") _Pragma("diag_suppress 3731") ((uint32_t ) __ldrex(ptr)) _Pragma("pop") #endif /** \brief STR Exclusive (8 bit) \details Executes a exclusive STR instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __STREXB(value, ptr) __strex(value, ptr) #else #define __STREXB(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") #endif /** \brief STR Exclusive (16 bit) \details Executes a exclusive STR instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __STREXH(value, ptr) __strex(value, ptr) #else #define __STREXH(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") #endif /** \brief STR Exclusive (32 bit) \details Executes a exclusive STR instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #if defined(__ARMCC_VERSION) && (__ARMCC_VERSION < 5060020) #define __STREXW(value, ptr) __strex(value, ptr) #else #define __STREXW(value, ptr) _Pragma("push") _Pragma("diag_suppress 3731") __strex(value, ptr) _Pragma("pop") #endif /** \brief Remove the exclusive lock \details Removes the exclusive lock which is created by LDREX. */ #define __CLREX __clrex /** \brief Signed Saturate \details Saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ #define __SSAT __ssat /** \brief Unsigned Saturate \details Saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ #define __USAT __usat /** \brief Rotate Right with Extend (32 bit) \details Moves each bit of a bitstring right by one bit. The carry input is shifted in at the left end of the bitstring. \param [in] value Value to rotate \return Rotated value */ #ifndef __NO_EMBEDDED_ASM __attribute__((section(".rrx_text"))) __STATIC_INLINE __ASM uint32_t __RRX(uint32_t value) { rrx r0, r0 bx lr } #endif /** \brief LDRT Unprivileged (8 bit) \details Executes a Unprivileged LDRT instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #define __LDRBT(ptr) ((uint8_t ) __ldrt(ptr)) /** \brief LDRT Unprivileged (16 bit) \details Executes a Unprivileged LDRT instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #define __LDRHT(ptr) ((uint16_t) __ldrt(ptr)) /** \brief LDRT Unprivileged (32 bit) \details Executes a Unprivileged LDRT instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #define __LDRT(ptr) ((uint32_t ) __ldrt(ptr)) /** \brief STRT Unprivileged (8 bit) \details Executes a Unprivileged STRT instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ #define __STRBT(value, ptr) __strt(value, ptr) /** \brief STRT Unprivileged (16 bit) \details Executes a Unprivileged STRT instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ #define __STRHT(value, ptr) __strt(value, ptr) /** \brief STRT Unprivileged (32 bit) \details Executes a Unprivileged STRT instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ #define __STRT(value, ptr) __strt(value, ptr) #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ /** \brief Signed Saturate \details Saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ __attribute__((always_inline)) __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat) { if ((sat >= 1U) && (sat <= 32U)) { const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); const int32_t min = -1 - max ; if (val > max) { return max; } else if (val < min) { return min; } } return val; } /** \brief Unsigned Saturate \details Saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ __attribute__((always_inline)) __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat) { if (sat <= 31U) { const uint32_t max = ((1U << sat) - 1U); if (val > (int32_t)max) { return max; } else if (val < 0) { return 0U; } } return (uint32_t)val; } #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ /* ################### Compiler specific Intrinsics ########################### */ /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics Access to dedicated SIMD instructions @{ */ #if ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) #define __SADD8 __sadd8 #define __QADD8 __qadd8 #define __SHADD8 __shadd8 #define __UADD8 __uadd8 #define __UQADD8 __uqadd8 #define __UHADD8 __uhadd8 #define __SSUB8 __ssub8 #define __QSUB8 __qsub8 #define __SHSUB8 __shsub8 #define __USUB8 __usub8 #define __UQSUB8 __uqsub8 #define __UHSUB8 __uhsub8 #define __SADD16 __sadd16 #define __QADD16 __qadd16 #define __SHADD16 __shadd16 #define __UADD16 __uadd16 #define __UQADD16 __uqadd16 #define __UHADD16 __uhadd16 #define __SSUB16 __ssub16 #define __QSUB16 __qsub16 #define __SHSUB16 __shsub16 #define __USUB16 __usub16 #define __UQSUB16 __uqsub16 #define __UHSUB16 __uhsub16 #define __SASX __sasx #define __QASX __qasx #define __SHASX __shasx #define __UASX __uasx #define __UQASX __uqasx #define __UHASX __uhasx #define __SSAX __ssax #define __QSAX __qsax #define __SHSAX __shsax #define __USAX __usax #define __UQSAX __uqsax #define __UHSAX __uhsax #define __USAD8 __usad8 #define __USADA8 __usada8 #define __SSAT16 __ssat16 #define __USAT16 __usat16 #define __UXTB16 __uxtb16 #define __UXTAB16 __uxtab16 #define __SXTB16 __sxtb16 #define __SXTAB16 __sxtab16 #define __SMUAD __smuad #define __SMUADX __smuadx #define __SMLAD __smlad #define __SMLADX __smladx #define __SMLALD __smlald #define __SMLALDX __smlaldx #define __SMUSD __smusd #define __SMUSDX __smusdx #define __SMLSD __smlsd #define __SMLSDX __smlsdx #define __SMLSLD __smlsld #define __SMLSLDX __smlsldx #define __SEL __sel #define __QADD __qadd #define __QSUB __qsub #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \ ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) ) #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \ ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) ) #define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \ ((int64_t)(ARG3) << 32U) ) >> 32U)) #endif /* ((defined (__ARM_ARCH_7EM__) && (__ARM_ARCH_7EM__ == 1)) ) */ /*@} end of group CMSIS_SIMD_intrinsics */ #endif /* __CMSIS_ARMCC_H */ Drivers/CMSIS/Include/cmsis_armclang.h
New file @@ -0,0 +1,1444 @@ /**************************************************************************//** * @file cmsis_armclang.h * @brief CMSIS compiler armclang (Arm Compiler 6) header file * @version V5.2.0 * @date 08. May 2019 ******************************************************************************/ /* * Copyright (c) 2009-2019 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */ #ifndef __CMSIS_ARMCLANG_H #define __CMSIS_ARMCLANG_H #pragma clang system_header /* treat file as system include file */ #ifndef __ARM_COMPAT_H #include <arm_compat.h> /* Compatibility header for Arm Compiler 5 intrinsics */ #endif /* CMSIS compiler specific defines */ #ifndef __ASM #define __ASM __asm #endif #ifndef __INLINE #define __INLINE __inline #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static __inline #endif #ifndef __STATIC_FORCEINLINE #define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline #endif #ifndef __NO_RETURN #define __NO_RETURN __attribute__((__noreturn__)) #endif #ifndef __USED #define __USED __attribute__((used)) #endif #ifndef __WEAK #define __WEAK __attribute__((weak)) #endif #ifndef __PACKED #define __PACKED __attribute__((packed, aligned(1))) #endif #ifndef __PACKED_STRUCT #define __PACKED_STRUCT struct __attribute__((packed, aligned(1))) #endif #ifndef __PACKED_UNION #define __PACKED_UNION union __attribute__((packed, aligned(1))) #endif #ifndef __UNALIGNED_UINT32 /* deprecated */ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */ struct __attribute__((packed)) T_UINT32 { uint32_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) #endif #ifndef __UNALIGNED_UINT16_WRITE #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */ __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT16_READ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */ __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) #endif #ifndef __UNALIGNED_UINT32_WRITE #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */ __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT32_READ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */ __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) #endif #ifndef __ALIGNED #define __ALIGNED(x) __attribute__((aligned(x))) #endif #ifndef __RESTRICT #define __RESTRICT __restrict #endif #ifndef __COMPILER_BARRIER #define __COMPILER_BARRIER() __ASM volatile("":::"memory") #endif /* ######################### Startup and Lowlevel Init ######################## */ #ifndef __PROGRAM_START #define __PROGRAM_START __main #endif #ifndef __INITIAL_SP #define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit #endif #ifndef __STACK_LIMIT #define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base #endif #ifndef __VECTOR_TABLE #define __VECTOR_TABLE __Vectors #endif #ifndef __VECTOR_TABLE_ATTRIBUTE #define __VECTOR_TABLE_ATTRIBUTE __attribute((used, section("RESET"))) #endif /* ########################### Core Function Access ########################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions @{ */ /** \brief Enable IRQ Interrupts \details Enables IRQ interrupts by clearing the I-bit in the CPSR. Can only be executed in Privileged modes. */ /* intrinsic void __enable_irq(); see arm_compat.h */ /** \brief Disable IRQ Interrupts \details Disables IRQ interrupts by setting the I-bit in the CPSR. Can only be executed in Privileged modes. */ /* intrinsic void __disable_irq(); see arm_compat.h */ /** \brief Get Control Register \details Returns the content of the Control Register. \return Control Register value */ __STATIC_FORCEINLINE uint32_t __get_CONTROL(void) { uint32_t result; __ASM volatile ("MRS %0, control" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Control Register (non-secure) \details Returns the content of the non-secure Control Register when in secure mode. \return non-secure Control Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void) { uint32_t result; __ASM volatile ("MRS %0, control_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Control Register \details Writes the given value to the Control Register. \param [in] control Control Register value to set */ __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control) { __ASM volatile ("MSR control, %0" : : "r" (control) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Control Register (non-secure) \details Writes the given value to the non-secure Control Register when in secure state. \param [in] control Control Register value to set */ __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control) { __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory"); } #endif /** \brief Get IPSR Register \details Returns the content of the IPSR Register. \return IPSR Register value */ __STATIC_FORCEINLINE uint32_t __get_IPSR(void) { uint32_t result; __ASM volatile ("MRS %0, ipsr" : "=r" (result) ); return(result); } /** \brief Get APSR Register \details Returns the content of the APSR Register. \return APSR Register value */ __STATIC_FORCEINLINE uint32_t __get_APSR(void) { uint32_t result; __ASM volatile ("MRS %0, apsr" : "=r" (result) ); return(result); } /** \brief Get xPSR Register \details Returns the content of the xPSR Register. \return xPSR Register value */ __STATIC_FORCEINLINE uint32_t __get_xPSR(void) { uint32_t result; __ASM volatile ("MRS %0, xpsr" : "=r" (result) ); return(result); } /** \brief Get Process Stack Pointer \details Returns the current value of the Process Stack Pointer (PSP). \return PSP Register value */ __STATIC_FORCEINLINE uint32_t __get_PSP(void) { uint32_t result; __ASM volatile ("MRS %0, psp" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Process Stack Pointer (non-secure) \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state. \return PSP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void) { uint32_t result; __ASM volatile ("MRS %0, psp_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Process Stack Pointer \details Assigns the given value to the Process Stack Pointer (PSP). \param [in] topOfProcStack Process Stack Pointer value to set */ __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack) { __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : ); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Process Stack Pointer (non-secure) \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state. \param [in] topOfProcStack Process Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack) { __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : ); } #endif /** \brief Get Main Stack Pointer \details Returns the current value of the Main Stack Pointer (MSP). \return MSP Register value */ __STATIC_FORCEINLINE uint32_t __get_MSP(void) { uint32_t result; __ASM volatile ("MRS %0, msp" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Main Stack Pointer (non-secure) \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state. \return MSP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void) { uint32_t result; __ASM volatile ("MRS %0, msp_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Main Stack Pointer \details Assigns the given value to the Main Stack Pointer (MSP). \param [in] topOfMainStack Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack) { __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : ); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Main Stack Pointer (non-secure) \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state. \param [in] topOfMainStack Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack) { __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : ); } #endif #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Stack Pointer (non-secure) \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state. \return SP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void) { uint32_t result; __ASM volatile ("MRS %0, sp_ns" : "=r" (result) ); return(result); } /** \brief Set Stack Pointer (non-secure) \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state. \param [in] topOfStack Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack) { __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : ); } #endif /** \brief Get Priority Mask \details Returns the current state of the priority mask bit from the Priority Mask Register. \return Priority Mask value */ __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void) { uint32_t result; __ASM volatile ("MRS %0, primask" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Priority Mask (non-secure) \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state. \return Priority Mask value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void) { uint32_t result; __ASM volatile ("MRS %0, primask_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Priority Mask \details Assigns the given value to the Priority Mask Register. \param [in] priMask Priority Mask */ __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask) { __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Priority Mask (non-secure) \details Assigns the given value to the non-secure Priority Mask Register when in secure state. \param [in] priMask Priority Mask */ __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask) { __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory"); } #endif #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) /** \brief Enable FIQ \details Enables FIQ interrupts by clearing the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __enable_fault_irq __enable_fiq /* see arm_compat.h */ /** \brief Disable FIQ \details Disables FIQ interrupts by setting the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __disable_fault_irq __disable_fiq /* see arm_compat.h */ /** \brief Get Base Priority \details Returns the current value of the Base Priority register. \return Base Priority register value */ __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void) { uint32_t result; __ASM volatile ("MRS %0, basepri" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Base Priority (non-secure) \details Returns the current value of the non-secure Base Priority register when in secure state. \return Base Priority register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void) { uint32_t result; __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Base Priority \details Assigns the given value to the Base Priority register. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri) { __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Base Priority (non-secure) \details Assigns the given value to the non-secure Base Priority register when in secure state. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri) { __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory"); } #endif /** \brief Set Base Priority with condition \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, or the new value increases the BASEPRI priority level. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri) { __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory"); } /** \brief Get Fault Mask \details Returns the current value of the Fault Mask register. \return Fault Mask register value */ __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void) { uint32_t result; __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Fault Mask (non-secure) \details Returns the current value of the non-secure Fault Mask register when in secure state. \return Fault Mask register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void) { uint32_t result; __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Fault Mask \details Assigns the given value to the Fault Mask register. \param [in] faultMask Fault Mask value to set */ __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask) { __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Fault Mask (non-secure) \details Assigns the given value to the non-secure Fault Mask register when in secure state. \param [in] faultMask Fault Mask value to set */ __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask) { __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory"); } #endif #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief Get Process Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always in non-secure mode. \details Returns the current value of the Process Stack Pointer Limit (PSPLIM). \return PSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, psplim" : "=r" (result) ); return result; #endif } #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Process Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always in non-secure mode. \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. \return PSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure PSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) ); return result; #endif } #endif /** \brief Set Process Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored in non-secure mode. \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM). \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI (void)ProcStackPtrLimit; #else __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit)); #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Process Stack Pointer (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored in non-secure mode. \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure PSPLIM is RAZ/WI (void)ProcStackPtrLimit; #else __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit)); #endif } #endif /** \brief Get Main Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always. \details Returns the current value of the Main Stack Pointer Limit (MSPLIM). \return MSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, msplim" : "=r" (result) ); return result; #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Main Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always. \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state. \return MSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure MSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) ); return result; #endif } #endif /** \brief Set Main Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored. \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM). \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI (void)MainStackPtrLimit; #else __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit)); #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Main Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored. \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state. \param [in] MainStackPtrLimit Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure MSPLIM is RAZ/WI (void)MainStackPtrLimit; #else __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit)); #endif } #endif #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ /** \brief Get FPSCR \details Returns the current value of the Floating Point Status/Control register. \return Floating Point Status/Control register value */ #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) #define __get_FPSCR (uint32_t)__builtin_arm_get_fpscr #else #define __get_FPSCR() ((uint32_t)0U) #endif /** \brief Set FPSCR \details Assigns the given value to the Floating Point Status/Control register. \param [in] fpscr Floating Point Status/Control value to set */ #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) #define __set_FPSCR __builtin_arm_set_fpscr #else #define __set_FPSCR(x) ((void)(x)) #endif /*@} end of CMSIS_Core_RegAccFunctions */ /* ########################## Core Instruction Access ######################### */ /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface Access to dedicated instructions @{ */ /* Define macros for porting to both thumb1 and thumb2. * For thumb1, use low register (r0-r7), specified by constraint "l" * Otherwise, use general registers, specified by constraint "r" */ #if defined (__thumb__) && !defined (__thumb2__) #define __CMSIS_GCC_OUT_REG(r) "=l" (r) #define __CMSIS_GCC_RW_REG(r) "+l" (r) #define __CMSIS_GCC_USE_REG(r) "l" (r) #else #define __CMSIS_GCC_OUT_REG(r) "=r" (r) #define __CMSIS_GCC_RW_REG(r) "+r" (r) #define __CMSIS_GCC_USE_REG(r) "r" (r) #endif /** \brief No Operation \details No Operation does nothing. This instruction can be used for code alignment purposes. */ #define __NOP __builtin_arm_nop /** \brief Wait For Interrupt \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. */ #define __WFI __builtin_arm_wfi /** \brief Wait For Event \details Wait For Event is a hint instruction that permits the processor to enter a low-power state until one of a number of events occurs. */ #define __WFE __builtin_arm_wfe /** \brief Send Event \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. */ #define __SEV __builtin_arm_sev /** \brief Instruction Synchronization Barrier \details Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB are fetched from cache or memory, after the instruction has been completed. */ #define __ISB() __builtin_arm_isb(0xF) /** \brief Data Synchronization Barrier \details Acts as a special kind of Data Memory Barrier. It completes when all explicit memory accesses before this instruction complete. */ #define __DSB() __builtin_arm_dsb(0xF) /** \brief Data Memory Barrier \details Ensures the apparent order of the explicit memory operations before and after the instruction, without ensuring their completion. */ #define __DMB() __builtin_arm_dmb(0xF) /** \brief Reverse byte order (32 bit) \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412. \param [in] value Value to reverse \return Reversed value */ #define __REV(value) __builtin_bswap32(value) /** \brief Reverse byte order (16 bit) \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. \param [in] value Value to reverse \return Reversed value */ #define __REV16(value) __ROR(__REV(value), 16) /** \brief Reverse byte order (16 bit) \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000. \param [in] value Value to reverse \return Reversed value */ #define __REVSH(value) (int16_t)__builtin_bswap16(value) /** \brief Rotate Right in unsigned value (32 bit) \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. \param [in] op1 Value to rotate \param [in] op2 Number of Bits to rotate \return Rotated value */ __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2) { op2 %= 32U; if (op2 == 0U) { return op1; } return (op1 >> op2) | (op1 << (32U - op2)); } /** \brief Breakpoint \details Causes the processor to enter Debug state. Debug tools can use this to investigate system state when the instruction at a particular address is reached. \param [in] value is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint. */ #define __BKPT(value) __ASM volatile ("bkpt "#value) /** \brief Reverse bit order of value \details Reverses the bit order of the given value. \param [in] value Value to reverse \return Reversed value */ #define __RBIT __builtin_arm_rbit /** \brief Count leading zeros \details Counts the number of leading zeros of a data value. \param [in] value Value to count the leading zeros \return number of leading zeros in value */ __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value) { /* Even though __builtin_clz produces a CLZ instruction on ARM, formally __builtin_clz(0) is undefined behaviour, so handle this case specially. This guarantees ARM-compatible results if happening to compile on a non-ARM target, and ensures the compiler doesn't decide to activate any optimisations using the logic "value was passed to __builtin_clz, so it is non-zero". ARM Compiler 6.10 and possibly earlier will optimise this test away, leaving a single CLZ instruction. */ if (value == 0U) { return 32U; } return __builtin_clz(value); } #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief LDR Exclusive (8 bit) \details Executes a exclusive LDR instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #define __LDREXB (uint8_t)__builtin_arm_ldrex /** \brief LDR Exclusive (16 bit) \details Executes a exclusive LDR instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #define __LDREXH (uint16_t)__builtin_arm_ldrex /** \brief LDR Exclusive (32 bit) \details Executes a exclusive LDR instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #define __LDREXW (uint32_t)__builtin_arm_ldrex /** \brief STR Exclusive (8 bit) \details Executes a exclusive STR instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXB (uint32_t)__builtin_arm_strex /** \brief STR Exclusive (16 bit) \details Executes a exclusive STR instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXH (uint32_t)__builtin_arm_strex /** \brief STR Exclusive (32 bit) \details Executes a exclusive STR instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXW (uint32_t)__builtin_arm_strex /** \brief Remove the exclusive lock \details Removes the exclusive lock which is created by LDREX. */ #define __CLREX __builtin_arm_clrex #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) /** \brief Signed Saturate \details Saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ #define __SSAT __builtin_arm_ssat /** \brief Unsigned Saturate \details Saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ #define __USAT __builtin_arm_usat /** \brief Rotate Right with Extend (32 bit) \details Moves each bit of a bitstring right by one bit. The carry input is shifted in at the left end of the bitstring. \param [in] value Value to rotate \return Rotated value */ __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value) { uint32_t result; __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return(result); } /** \brief LDRT Unprivileged (8 bit) \details Executes a Unprivileged LDRT instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr) { uint32_t result; __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint8_t) result); /* Add explicit type cast here */ } /** \brief LDRT Unprivileged (16 bit) \details Executes a Unprivileged LDRT instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr) { uint32_t result; __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint16_t) result); /* Add explicit type cast here */ } /** \brief LDRT Unprivileged (32 bit) \details Executes a Unprivileged LDRT instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr) { uint32_t result; __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) ); return(result); } /** \brief STRT Unprivileged (8 bit) \details Executes a Unprivileged STRT instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr) { __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief STRT Unprivileged (16 bit) \details Executes a Unprivileged STRT instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr) { __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief STRT Unprivileged (32 bit) \details Executes a Unprivileged STRT instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr) { __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) ); } #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ /** \brief Signed Saturate \details Saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) { if ((sat >= 1U) && (sat <= 32U)) { const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); const int32_t min = -1 - max ; if (val > max) { return max; } else if (val < min) { return min; } } return val; } /** \brief Unsigned Saturate \details Saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) { if (sat <= 31U) { const uint32_t max = ((1U << sat) - 1U); if (val > (int32_t)max) { return max; } else if (val < 0) { return 0U; } } return (uint32_t)val; } #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief Load-Acquire (8 bit) \details Executes a LDAB instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr) { uint32_t result; __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint8_t) result); } /** \brief Load-Acquire (16 bit) \details Executes a LDAH instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr) { uint32_t result; __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint16_t) result); } /** \brief Load-Acquire (32 bit) \details Executes a LDA instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr) { uint32_t result; __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) ); return(result); } /** \brief Store-Release (8 bit) \details Executes a STLB instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr) { __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Store-Release (16 bit) \details Executes a STLH instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr) { __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Store-Release (32 bit) \details Executes a STL instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr) { __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Load-Acquire Exclusive (8 bit) \details Executes a LDAB exclusive instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #define __LDAEXB (uint8_t)__builtin_arm_ldaex /** \brief Load-Acquire Exclusive (16 bit) \details Executes a LDAH exclusive instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #define __LDAEXH (uint16_t)__builtin_arm_ldaex /** \brief Load-Acquire Exclusive (32 bit) \details Executes a LDA exclusive instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #define __LDAEX (uint32_t)__builtin_arm_ldaex /** \brief Store-Release Exclusive (8 bit) \details Executes a STLB exclusive instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STLEXB (uint32_t)__builtin_arm_stlex /** \brief Store-Release Exclusive (16 bit) \details Executes a STLH exclusive instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STLEXH (uint32_t)__builtin_arm_stlex /** \brief Store-Release Exclusive (32 bit) \details Executes a STL exclusive instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STLEX (uint32_t)__builtin_arm_stlex #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ /* ################### Compiler specific Intrinsics ########################### */ /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics Access to dedicated SIMD instructions @{ */ #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) #define __SADD8 __builtin_arm_sadd8 #define __QADD8 __builtin_arm_qadd8 #define __SHADD8 __builtin_arm_shadd8 #define __UADD8 __builtin_arm_uadd8 #define __UQADD8 __builtin_arm_uqadd8 #define __UHADD8 __builtin_arm_uhadd8 #define __SSUB8 __builtin_arm_ssub8 #define __QSUB8 __builtin_arm_qsub8 #define __SHSUB8 __builtin_arm_shsub8 #define __USUB8 __builtin_arm_usub8 #define __UQSUB8 __builtin_arm_uqsub8 #define __UHSUB8 __builtin_arm_uhsub8 #define __SADD16 __builtin_arm_sadd16 #define __QADD16 __builtin_arm_qadd16 #define __SHADD16 __builtin_arm_shadd16 #define __UADD16 __builtin_arm_uadd16 #define __UQADD16 __builtin_arm_uqadd16 #define __UHADD16 __builtin_arm_uhadd16 #define __SSUB16 __builtin_arm_ssub16 #define __QSUB16 __builtin_arm_qsub16 #define __SHSUB16 __builtin_arm_shsub16 #define __USUB16 __builtin_arm_usub16 #define __UQSUB16 __builtin_arm_uqsub16 #define __UHSUB16 __builtin_arm_uhsub16 #define __SASX __builtin_arm_sasx #define __QASX __builtin_arm_qasx #define __SHASX __builtin_arm_shasx #define __UASX __builtin_arm_uasx #define __UQASX __builtin_arm_uqasx #define __UHASX __builtin_arm_uhasx #define __SSAX __builtin_arm_ssax #define __QSAX __builtin_arm_qsax #define __SHSAX __builtin_arm_shsax #define __USAX __builtin_arm_usax #define __UQSAX __builtin_arm_uqsax #define __UHSAX __builtin_arm_uhsax #define __USAD8 __builtin_arm_usad8 #define __USADA8 __builtin_arm_usada8 #define __SSAT16 __builtin_arm_ssat16 #define __USAT16 __builtin_arm_usat16 #define __UXTB16 __builtin_arm_uxtb16 #define __UXTAB16 __builtin_arm_uxtab16 #define __SXTB16 __builtin_arm_sxtb16 #define __SXTAB16 __builtin_arm_sxtab16 #define __SMUAD __builtin_arm_smuad #define __SMUADX __builtin_arm_smuadx #define __SMLAD __builtin_arm_smlad #define __SMLADX __builtin_arm_smladx #define __SMLALD __builtin_arm_smlald #define __SMLALDX __builtin_arm_smlaldx #define __SMUSD __builtin_arm_smusd #define __SMUSDX __builtin_arm_smusdx #define __SMLSD __builtin_arm_smlsd #define __SMLSDX __builtin_arm_smlsdx #define __SMLSLD __builtin_arm_smlsld #define __SMLSLDX __builtin_arm_smlsldx #define __SEL __builtin_arm_sel #define __QADD __builtin_arm_qadd #define __QSUB __builtin_arm_qsub #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \ ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) ) #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \ ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) ) __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3) { int32_t result; __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) ); return(result); } #endif /* (__ARM_FEATURE_DSP == 1) */ /*@} end of group CMSIS_SIMD_intrinsics */ #endif /* __CMSIS_ARMCLANG_H */ Drivers/CMSIS/Include/cmsis_armclang_ltm.h
New file @@ -0,0 +1,1891 @@ /**************************************************************************//** * @file cmsis_armclang_ltm.h * @brief CMSIS compiler armclang (Arm Compiler 6) header file * @version V1.2.0 * @date 08. May 2019 ******************************************************************************/ /* * Copyright (c) 2018-2019 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*lint -esym(9058, IRQn)*/ /* disable MISRA 2012 Rule 2.4 for IRQn */ #ifndef __CMSIS_ARMCLANG_H #define __CMSIS_ARMCLANG_H #pragma clang system_header /* treat file as system include file */ #ifndef __ARM_COMPAT_H #include <arm_compat.h> /* Compatibility header for Arm Compiler 5 intrinsics */ #endif /* CMSIS compiler specific defines */ #ifndef __ASM #define __ASM __asm #endif #ifndef __INLINE #define __INLINE __inline #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static __inline #endif #ifndef __STATIC_FORCEINLINE #define __STATIC_FORCEINLINE __attribute__((always_inline)) static __inline #endif #ifndef __NO_RETURN #define __NO_RETURN __attribute__((__noreturn__)) #endif #ifndef __USED #define __USED __attribute__((used)) #endif #ifndef __WEAK #define __WEAK __attribute__((weak)) #endif #ifndef __PACKED #define __PACKED __attribute__((packed, aligned(1))) #endif #ifndef __PACKED_STRUCT #define __PACKED_STRUCT struct __attribute__((packed, aligned(1))) #endif #ifndef __PACKED_UNION #define __PACKED_UNION union __attribute__((packed, aligned(1))) #endif #ifndef __UNALIGNED_UINT32 /* deprecated */ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT32)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32 */ struct __attribute__((packed)) T_UINT32 { uint32_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) #endif #ifndef __UNALIGNED_UINT16_WRITE #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT16_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_WRITE */ __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT16_READ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT16_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT16_READ */ __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) #endif #ifndef __UNALIGNED_UINT32_WRITE #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT32_WRITE)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_WRITE */ __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT32_READ #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wpacked" /*lint -esym(9058, T_UINT32_READ)*/ /* disable MISRA 2012 Rule 2.4 for T_UINT32_READ */ __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; #pragma clang diagnostic pop #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) #endif #ifndef __ALIGNED #define __ALIGNED(x) __attribute__((aligned(x))) #endif #ifndef __RESTRICT #define __RESTRICT __restrict #endif #ifndef __COMPILER_BARRIER #define __COMPILER_BARRIER() __ASM volatile("":::"memory") #endif /* ######################### Startup and Lowlevel Init ######################## */ #ifndef __PROGRAM_START #define __PROGRAM_START __main #endif #ifndef __INITIAL_SP #define __INITIAL_SP Image$$ARM_LIB_STACK$$ZI$$Limit #endif #ifndef __STACK_LIMIT #define __STACK_LIMIT Image$$ARM_LIB_STACK$$ZI$$Base #endif #ifndef __VECTOR_TABLE #define __VECTOR_TABLE __Vectors #endif #ifndef __VECTOR_TABLE_ATTRIBUTE #define __VECTOR_TABLE_ATTRIBUTE __attribute((used, section("RESET"))) #endif /* ########################### Core Function Access ########################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions @{ */ /** \brief Enable IRQ Interrupts \details Enables IRQ interrupts by clearing the I-bit in the CPSR. Can only be executed in Privileged modes. */ /* intrinsic void __enable_irq(); see arm_compat.h */ /** \brief Disable IRQ Interrupts \details Disables IRQ interrupts by setting the I-bit in the CPSR. Can only be executed in Privileged modes. */ /* intrinsic void __disable_irq(); see arm_compat.h */ /** \brief Get Control Register \details Returns the content of the Control Register. \return Control Register value */ __STATIC_FORCEINLINE uint32_t __get_CONTROL(void) { uint32_t result; __ASM volatile ("MRS %0, control" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Control Register (non-secure) \details Returns the content of the non-secure Control Register when in secure mode. \return non-secure Control Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void) { uint32_t result; __ASM volatile ("MRS %0, control_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Control Register \details Writes the given value to the Control Register. \param [in] control Control Register value to set */ __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control) { __ASM volatile ("MSR control, %0" : : "r" (control) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Control Register (non-secure) \details Writes the given value to the non-secure Control Register when in secure state. \param [in] control Control Register value to set */ __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control) { __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory"); } #endif /** \brief Get IPSR Register \details Returns the content of the IPSR Register. \return IPSR Register value */ __STATIC_FORCEINLINE uint32_t __get_IPSR(void) { uint32_t result; __ASM volatile ("MRS %0, ipsr" : "=r" (result) ); return(result); } /** \brief Get APSR Register \details Returns the content of the APSR Register. \return APSR Register value */ __STATIC_FORCEINLINE uint32_t __get_APSR(void) { uint32_t result; __ASM volatile ("MRS %0, apsr" : "=r" (result) ); return(result); } /** \brief Get xPSR Register \details Returns the content of the xPSR Register. \return xPSR Register value */ __STATIC_FORCEINLINE uint32_t __get_xPSR(void) { uint32_t result; __ASM volatile ("MRS %0, xpsr" : "=r" (result) ); return(result); } /** \brief Get Process Stack Pointer \details Returns the current value of the Process Stack Pointer (PSP). \return PSP Register value */ __STATIC_FORCEINLINE uint32_t __get_PSP(void) { uint32_t result; __ASM volatile ("MRS %0, psp" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Process Stack Pointer (non-secure) \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state. \return PSP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void) { uint32_t result; __ASM volatile ("MRS %0, psp_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Process Stack Pointer \details Assigns the given value to the Process Stack Pointer (PSP). \param [in] topOfProcStack Process Stack Pointer value to set */ __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack) { __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : ); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Process Stack Pointer (non-secure) \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state. \param [in] topOfProcStack Process Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack) { __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : ); } #endif /** \brief Get Main Stack Pointer \details Returns the current value of the Main Stack Pointer (MSP). \return MSP Register value */ __STATIC_FORCEINLINE uint32_t __get_MSP(void) { uint32_t result; __ASM volatile ("MRS %0, msp" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Main Stack Pointer (non-secure) \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state. \return MSP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void) { uint32_t result; __ASM volatile ("MRS %0, msp_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Main Stack Pointer \details Assigns the given value to the Main Stack Pointer (MSP). \param [in] topOfMainStack Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack) { __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : ); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Main Stack Pointer (non-secure) \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state. \param [in] topOfMainStack Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack) { __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : ); } #endif #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Stack Pointer (non-secure) \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state. \return SP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void) { uint32_t result; __ASM volatile ("MRS %0, sp_ns" : "=r" (result) ); return(result); } /** \brief Set Stack Pointer (non-secure) \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state. \param [in] topOfStack Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack) { __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : ); } #endif /** \brief Get Priority Mask \details Returns the current state of the priority mask bit from the Priority Mask Register. \return Priority Mask value */ __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void) { uint32_t result; __ASM volatile ("MRS %0, primask" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Priority Mask (non-secure) \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state. \return Priority Mask value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void) { uint32_t result; __ASM volatile ("MRS %0, primask_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Priority Mask \details Assigns the given value to the Priority Mask Register. \param [in] priMask Priority Mask */ __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask) { __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Priority Mask (non-secure) \details Assigns the given value to the non-secure Priority Mask Register when in secure state. \param [in] priMask Priority Mask */ __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask) { __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory"); } #endif #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) /** \brief Enable FIQ \details Enables FIQ interrupts by clearing the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __enable_fault_irq __enable_fiq /* see arm_compat.h */ /** \brief Disable FIQ \details Disables FIQ interrupts by setting the F-bit in the CPSR. Can only be executed in Privileged modes. */ #define __disable_fault_irq __disable_fiq /* see arm_compat.h */ /** \brief Get Base Priority \details Returns the current value of the Base Priority register. \return Base Priority register value */ __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void) { uint32_t result; __ASM volatile ("MRS %0, basepri" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Base Priority (non-secure) \details Returns the current value of the non-secure Base Priority register when in secure state. \return Base Priority register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void) { uint32_t result; __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Base Priority \details Assigns the given value to the Base Priority register. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri) { __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Base Priority (non-secure) \details Assigns the given value to the non-secure Base Priority register when in secure state. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri) { __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory"); } #endif /** \brief Set Base Priority with condition \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, or the new value increases the BASEPRI priority level. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri) { __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory"); } /** \brief Get Fault Mask \details Returns the current value of the Fault Mask register. \return Fault Mask register value */ __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void) { uint32_t result; __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Fault Mask (non-secure) \details Returns the current value of the non-secure Fault Mask register when in secure state. \return Fault Mask register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void) { uint32_t result; __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Fault Mask \details Assigns the given value to the Fault Mask register. \param [in] faultMask Fault Mask value to set */ __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask) { __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Fault Mask (non-secure) \details Assigns the given value to the non-secure Fault Mask register when in secure state. \param [in] faultMask Fault Mask value to set */ __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask) { __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory"); } #endif #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief Get Process Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always in non-secure mode. \details Returns the current value of the Process Stack Pointer Limit (PSPLIM). \return PSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, psplim" : "=r" (result) ); return result; #endif } #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Process Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always in non-secure mode. \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. \return PSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure PSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) ); return result; #endif } #endif /** \brief Set Process Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored in non-secure mode. \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM). \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI (void)ProcStackPtrLimit; #else __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit)); #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Process Stack Pointer (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored in non-secure mode. \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure PSPLIM is RAZ/WI (void)ProcStackPtrLimit; #else __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit)); #endif } #endif /** \brief Get Main Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always. \details Returns the current value of the Main Stack Pointer Limit (MSPLIM). \return MSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, msplim" : "=r" (result) ); return result; #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Main Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always. \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state. \return MSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure MSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) ); return result; #endif } #endif /** \brief Set Main Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored. \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM). \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI (void)MainStackPtrLimit; #else __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit)); #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Main Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored. \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state. \param [in] MainStackPtrLimit Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure MSPLIM is RAZ/WI (void)MainStackPtrLimit; #else __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit)); #endif } #endif #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ /** \brief Get FPSCR \details Returns the current value of the Floating Point Status/Control register. \return Floating Point Status/Control register value */ #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) #define __get_FPSCR (uint32_t)__builtin_arm_get_fpscr #else #define __get_FPSCR() ((uint32_t)0U) #endif /** \brief Set FPSCR \details Assigns the given value to the Floating Point Status/Control register. \param [in] fpscr Floating Point Status/Control value to set */ #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) #define __set_FPSCR __builtin_arm_set_fpscr #else #define __set_FPSCR(x) ((void)(x)) #endif /*@} end of CMSIS_Core_RegAccFunctions */ /* ########################## Core Instruction Access ######################### */ /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface Access to dedicated instructions @{ */ /* Define macros for porting to both thumb1 and thumb2. * For thumb1, use low register (r0-r7), specified by constraint "l" * Otherwise, use general registers, specified by constraint "r" */ #if defined (__thumb__) && !defined (__thumb2__) #define __CMSIS_GCC_OUT_REG(r) "=l" (r) #define __CMSIS_GCC_USE_REG(r) "l" (r) #else #define __CMSIS_GCC_OUT_REG(r) "=r" (r) #define __CMSIS_GCC_USE_REG(r) "r" (r) #endif /** \brief No Operation \details No Operation does nothing. This instruction can be used for code alignment purposes. */ #define __NOP __builtin_arm_nop /** \brief Wait For Interrupt \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. */ #define __WFI __builtin_arm_wfi /** \brief Wait For Event \details Wait For Event is a hint instruction that permits the processor to enter a low-power state until one of a number of events occurs. */ #define __WFE __builtin_arm_wfe /** \brief Send Event \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. */ #define __SEV __builtin_arm_sev /** \brief Instruction Synchronization Barrier \details Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB are fetched from cache or memory, after the instruction has been completed. */ #define __ISB() __builtin_arm_isb(0xF) /** \brief Data Synchronization Barrier \details Acts as a special kind of Data Memory Barrier. It completes when all explicit memory accesses before this instruction complete. */ #define __DSB() __builtin_arm_dsb(0xF) /** \brief Data Memory Barrier \details Ensures the apparent order of the explicit memory operations before and after the instruction, without ensuring their completion. */ #define __DMB() __builtin_arm_dmb(0xF) /** \brief Reverse byte order (32 bit) \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412. \param [in] value Value to reverse \return Reversed value */ #define __REV(value) __builtin_bswap32(value) /** \brief Reverse byte order (16 bit) \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. \param [in] value Value to reverse \return Reversed value */ #define __REV16(value) __ROR(__REV(value), 16) /** \brief Reverse byte order (16 bit) \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000. \param [in] value Value to reverse \return Reversed value */ #define __REVSH(value) (int16_t)__builtin_bswap16(value) /** \brief Rotate Right in unsigned value (32 bit) \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. \param [in] op1 Value to rotate \param [in] op2 Number of Bits to rotate \return Rotated value */ __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2) { op2 %= 32U; if (op2 == 0U) { return op1; } return (op1 >> op2) | (op1 << (32U - op2)); } /** \brief Breakpoint \details Causes the processor to enter Debug state. Debug tools can use this to investigate system state when the instruction at a particular address is reached. \param [in] value is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint. */ #define __BKPT(value) __ASM volatile ("bkpt "#value) /** \brief Reverse bit order of value \details Reverses the bit order of the given value. \param [in] value Value to reverse \return Reversed value */ #define __RBIT __builtin_arm_rbit /** \brief Count leading zeros \details Counts the number of leading zeros of a data value. \param [in] value Value to count the leading zeros \return number of leading zeros in value */ __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value) { /* Even though __builtin_clz produces a CLZ instruction on ARM, formally __builtin_clz(0) is undefined behaviour, so handle this case specially. This guarantees ARM-compatible results if happening to compile on a non-ARM target, and ensures the compiler doesn't decide to activate any optimisations using the logic "value was passed to __builtin_clz, so it is non-zero". ARM Compiler 6.10 and possibly earlier will optimise this test away, leaving a single CLZ instruction. */ if (value == 0U) { return 32U; } return __builtin_clz(value); } #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief LDR Exclusive (8 bit) \details Executes a exclusive LDR instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #define __LDREXB (uint8_t)__builtin_arm_ldrex /** \brief LDR Exclusive (16 bit) \details Executes a exclusive LDR instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #define __LDREXH (uint16_t)__builtin_arm_ldrex /** \brief LDR Exclusive (32 bit) \details Executes a exclusive LDR instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #define __LDREXW (uint32_t)__builtin_arm_ldrex /** \brief STR Exclusive (8 bit) \details Executes a exclusive STR instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXB (uint32_t)__builtin_arm_strex /** \brief STR Exclusive (16 bit) \details Executes a exclusive STR instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXH (uint32_t)__builtin_arm_strex /** \brief STR Exclusive (32 bit) \details Executes a exclusive STR instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STREXW (uint32_t)__builtin_arm_strex /** \brief Remove the exclusive lock \details Removes the exclusive lock which is created by LDREX. */ #define __CLREX __builtin_arm_clrex #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) /** \brief Signed Saturate \details Saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ #define __SSAT __builtin_arm_ssat /** \brief Unsigned Saturate \details Saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ #define __USAT __builtin_arm_usat /** \brief Rotate Right with Extend (32 bit) \details Moves each bit of a bitstring right by one bit. The carry input is shifted in at the left end of the bitstring. \param [in] value Value to rotate \return Rotated value */ __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value) { uint32_t result; __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return(result); } /** \brief LDRT Unprivileged (8 bit) \details Executes a Unprivileged LDRT instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr) { uint32_t result; __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint8_t) result); /* Add explicit type cast here */ } /** \brief LDRT Unprivileged (16 bit) \details Executes a Unprivileged LDRT instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr) { uint32_t result; __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint16_t) result); /* Add explicit type cast here */ } /** \brief LDRT Unprivileged (32 bit) \details Executes a Unprivileged LDRT instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr) { uint32_t result; __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) ); return(result); } /** \brief STRT Unprivileged (8 bit) \details Executes a Unprivileged STRT instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr) { __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief STRT Unprivileged (16 bit) \details Executes a Unprivileged STRT instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr) { __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief STRT Unprivileged (32 bit) \details Executes a Unprivileged STRT instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr) { __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) ); } #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ /** \brief Signed Saturate \details Saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) { if ((sat >= 1U) && (sat <= 32U)) { const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); const int32_t min = -1 - max ; if (val > max) { return max; } else if (val < min) { return min; } } return val; } /** \brief Unsigned Saturate \details Saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) { if (sat <= 31U) { const uint32_t max = ((1U << sat) - 1U); if (val > (int32_t)max) { return max; } else if (val < 0) { return 0U; } } return (uint32_t)val; } #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief Load-Acquire (8 bit) \details Executes a LDAB instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr) { uint32_t result; __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint8_t) result); } /** \brief Load-Acquire (16 bit) \details Executes a LDAH instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr) { uint32_t result; __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint16_t) result); } /** \brief Load-Acquire (32 bit) \details Executes a LDA instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr) { uint32_t result; __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) ); return(result); } /** \brief Store-Release (8 bit) \details Executes a STLB instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr) { __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Store-Release (16 bit) \details Executes a STLH instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr) { __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Store-Release (32 bit) \details Executes a STL instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr) { __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Load-Acquire Exclusive (8 bit) \details Executes a LDAB exclusive instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ #define __LDAEXB (uint8_t)__builtin_arm_ldaex /** \brief Load-Acquire Exclusive (16 bit) \details Executes a LDAH exclusive instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ #define __LDAEXH (uint16_t)__builtin_arm_ldaex /** \brief Load-Acquire Exclusive (32 bit) \details Executes a LDA exclusive instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ #define __LDAEX (uint32_t)__builtin_arm_ldaex /** \brief Store-Release Exclusive (8 bit) \details Executes a STLB exclusive instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STLEXB (uint32_t)__builtin_arm_stlex /** \brief Store-Release Exclusive (16 bit) \details Executes a STLH exclusive instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STLEXH (uint32_t)__builtin_arm_stlex /** \brief Store-Release Exclusive (32 bit) \details Executes a STL exclusive instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ #define __STLEX (uint32_t)__builtin_arm_stlex #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ /* ################### Compiler specific Intrinsics ########################### */ /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics Access to dedicated SIMD instructions @{ */ #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } #define __SSAT16(ARG1,ARG2) \ ({ \ int32_t __RES, __ARG1 = (ARG1); \ __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) #define __USAT16(ARG1,ARG2) \ ({ \ uint32_t __RES, __ARG1 = (ARG1); \ __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1) { uint32_t result; __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1)); return(result); } __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1) { uint32_t result; __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1)); return(result); } __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2) { int32_t result; __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2) { int32_t result; __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \ ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) ) #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \ ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) ) __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3) { int32_t result; __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) ); return(result); } #endif /* (__ARM_FEATURE_DSP == 1) */ /*@} end of group CMSIS_SIMD_intrinsics */ #endif /* __CMSIS_ARMCLANG_H */ Drivers/CMSIS/Include/cmsis_compiler.h
New file @@ -0,0 +1,283 @@ /**************************************************************************//** * @file cmsis_compiler.h * @brief CMSIS compiler generic header file * @version V5.1.0 * @date 09. October 2018 ******************************************************************************/ /* * Copyright (c) 2009-2018 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __CMSIS_COMPILER_H #define __CMSIS_COMPILER_H #include <stdint.h> /* * Arm Compiler 4/5 */ #if defined ( __CC_ARM ) #include "cmsis_armcc.h" /* * Arm Compiler 6.6 LTM (armclang) */ #elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) && (__ARMCC_VERSION < 6100100) #include "cmsis_armclang_ltm.h" /* * Arm Compiler above 6.10.1 (armclang) */ #elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6100100) #include "cmsis_armclang.h" /* * GNU Compiler */ #elif defined ( __GNUC__ ) #include "cmsis_gcc.h" /* * IAR Compiler */ #elif defined ( __ICCARM__ ) #include <cmsis_iccarm.h> /* * TI Arm Compiler */ #elif defined ( __TI_ARM__ ) #include <cmsis_ccs.h> #ifndef __ASM #define __ASM __asm #endif #ifndef __INLINE #define __INLINE inline #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static inline #endif #ifndef __STATIC_FORCEINLINE #define __STATIC_FORCEINLINE __STATIC_INLINE #endif #ifndef __NO_RETURN #define __NO_RETURN __attribute__((noreturn)) #endif #ifndef __USED #define __USED __attribute__((used)) #endif #ifndef __WEAK #define __WEAK __attribute__((weak)) #endif #ifndef __PACKED #define __PACKED __attribute__((packed)) #endif #ifndef __PACKED_STRUCT #define __PACKED_STRUCT struct __attribute__((packed)) #endif #ifndef __PACKED_UNION #define __PACKED_UNION union __attribute__((packed)) #endif #ifndef __UNALIGNED_UINT32 /* deprecated */ struct __attribute__((packed)) T_UINT32 { uint32_t v; }; #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) #endif #ifndef __UNALIGNED_UINT16_WRITE __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void*)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT16_READ __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) #endif #ifndef __UNALIGNED_UINT32_WRITE __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT32_READ __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) #endif #ifndef __ALIGNED #define __ALIGNED(x) __attribute__((aligned(x))) #endif #ifndef __RESTRICT #define __RESTRICT __restrict #endif #ifndef __COMPILER_BARRIER #warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored. #define __COMPILER_BARRIER() (void)0 #endif /* * TASKING Compiler */ #elif defined ( __TASKING__ ) /* * The CMSIS functions have been implemented as intrinsics in the compiler. * Please use "carm -?i" to get an up to date list of all intrinsics, * Including the CMSIS ones. */ #ifndef __ASM #define __ASM __asm #endif #ifndef __INLINE #define __INLINE inline #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static inline #endif #ifndef __STATIC_FORCEINLINE #define __STATIC_FORCEINLINE __STATIC_INLINE #endif #ifndef __NO_RETURN #define __NO_RETURN __attribute__((noreturn)) #endif #ifndef __USED #define __USED __attribute__((used)) #endif #ifndef __WEAK #define __WEAK __attribute__((weak)) #endif #ifndef __PACKED #define __PACKED __packed__ #endif #ifndef __PACKED_STRUCT #define __PACKED_STRUCT struct __packed__ #endif #ifndef __PACKED_UNION #define __PACKED_UNION union __packed__ #endif #ifndef __UNALIGNED_UINT32 /* deprecated */ struct __packed__ T_UINT32 { uint32_t v; }; #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) #endif #ifndef __UNALIGNED_UINT16_WRITE __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT16_READ __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) #endif #ifndef __UNALIGNED_UINT32_WRITE __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT32_READ __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) #endif #ifndef __ALIGNED #define __ALIGNED(x) __align(x) #endif #ifndef __RESTRICT #warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored. #define __RESTRICT #endif #ifndef __COMPILER_BARRIER #warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored. #define __COMPILER_BARRIER() (void)0 #endif /* * COSMIC Compiler */ #elif defined ( __CSMC__ ) #include <cmsis_csm.h> #ifndef __ASM #define __ASM _asm #endif #ifndef __INLINE #define __INLINE inline #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static inline #endif #ifndef __STATIC_FORCEINLINE #define __STATIC_FORCEINLINE __STATIC_INLINE #endif #ifndef __NO_RETURN // NO RETURN is automatically detected hence no warning here #define __NO_RETURN #endif #ifndef __USED #warning No compiler specific solution for __USED. __USED is ignored. #define __USED #endif #ifndef __WEAK #define __WEAK __weak #endif #ifndef __PACKED #define __PACKED @packed #endif #ifndef __PACKED_STRUCT #define __PACKED_STRUCT @packed struct #endif #ifndef __PACKED_UNION #define __PACKED_UNION @packed union #endif #ifndef __UNALIGNED_UINT32 /* deprecated */ @packed struct T_UINT32 { uint32_t v; }; #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) #endif #ifndef __UNALIGNED_UINT16_WRITE __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT16_READ __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) #endif #ifndef __UNALIGNED_UINT32_WRITE __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT32_READ __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) #endif #ifndef __ALIGNED #warning No compiler specific solution for __ALIGNED. __ALIGNED is ignored. #define __ALIGNED(x) #endif #ifndef __RESTRICT #warning No compiler specific solution for __RESTRICT. __RESTRICT is ignored. #define __RESTRICT #endif #ifndef __COMPILER_BARRIER #warning No compiler specific solution for __COMPILER_BARRIER. __COMPILER_BARRIER is ignored. #define __COMPILER_BARRIER() (void)0 #endif #else #error Unknown compiler. #endif #endif /* __CMSIS_COMPILER_H */ Drivers/CMSIS/Include/cmsis_gcc.h
New file @@ -0,0 +1,2168 @@ /**************************************************************************//** * @file cmsis_gcc.h * @brief CMSIS compiler GCC header file * @version V5.2.0 * @date 08. May 2019 ******************************************************************************/ /* * Copyright (c) 2009-2019 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef __CMSIS_GCC_H #define __CMSIS_GCC_H /* ignore some GCC warnings */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wsign-conversion" #pragma GCC diagnostic ignored "-Wconversion" #pragma GCC diagnostic ignored "-Wunused-parameter" /* Fallback for __has_builtin */ #ifndef __has_builtin #define __has_builtin(x) (0) #endif /* CMSIS compiler specific defines */ #ifndef __ASM #define __ASM __asm #endif #ifndef __INLINE #define __INLINE inline #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static inline #endif #ifndef __STATIC_FORCEINLINE #define __STATIC_FORCEINLINE __attribute__((always_inline)) static inline #endif #ifndef __NO_RETURN #define __NO_RETURN __attribute__((__noreturn__)) #endif #ifndef __USED #define __USED __attribute__((used)) #endif #ifndef __WEAK #define __WEAK __attribute__((weak)) #endif #ifndef __PACKED #define __PACKED __attribute__((packed, aligned(1))) #endif #ifndef __PACKED_STRUCT #define __PACKED_STRUCT struct __attribute__((packed, aligned(1))) #endif #ifndef __PACKED_UNION #define __PACKED_UNION union __attribute__((packed, aligned(1))) #endif #ifndef __UNALIGNED_UINT32 /* deprecated */ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" #pragma GCC diagnostic ignored "-Wattributes" struct __attribute__((packed)) T_UINT32 { uint32_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT32(x) (((struct T_UINT32 *)(x))->v) #endif #ifndef __UNALIGNED_UINT16_WRITE #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" #pragma GCC diagnostic ignored "-Wattributes" __PACKED_STRUCT T_UINT16_WRITE { uint16_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT16_WRITE(addr, val) (void)((((struct T_UINT16_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT16_READ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" #pragma GCC diagnostic ignored "-Wattributes" __PACKED_STRUCT T_UINT16_READ { uint16_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT16_READ(addr) (((const struct T_UINT16_READ *)(const void *)(addr))->v) #endif #ifndef __UNALIGNED_UINT32_WRITE #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" #pragma GCC diagnostic ignored "-Wattributes" __PACKED_STRUCT T_UINT32_WRITE { uint32_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT32_WRITE(addr, val) (void)((((struct T_UINT32_WRITE *)(void *)(addr))->v) = (val)) #endif #ifndef __UNALIGNED_UINT32_READ #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wpacked" #pragma GCC diagnostic ignored "-Wattributes" __PACKED_STRUCT T_UINT32_READ { uint32_t v; }; #pragma GCC diagnostic pop #define __UNALIGNED_UINT32_READ(addr) (((const struct T_UINT32_READ *)(const void *)(addr))->v) #endif #ifndef __ALIGNED #define __ALIGNED(x) __attribute__((aligned(x))) #endif #ifndef __RESTRICT #define __RESTRICT __restrict #endif #ifndef __COMPILER_BARRIER #define __COMPILER_BARRIER() __ASM volatile("":::"memory") #endif /* ######################### Startup and Lowlevel Init ######################## */ #ifndef __PROGRAM_START /** \brief Initializes data and bss sections \details This default implementations initialized all data and additional bss sections relying on .copy.table and .zero.table specified properly in the used linker script. */ __STATIC_FORCEINLINE __NO_RETURN void __cmsis_start(void) { extern void _start(void) __NO_RETURN; typedef struct { uint32_t const* src; uint32_t* dest; uint32_t wlen; } __copy_table_t; typedef struct { uint32_t* dest; uint32_t wlen; } __zero_table_t; extern const __copy_table_t __copy_table_start__; extern const __copy_table_t __copy_table_end__; extern const __zero_table_t __zero_table_start__; extern const __zero_table_t __zero_table_end__; for (__copy_table_t const* pTable = &__copy_table_start__; pTable < &__copy_table_end__; ++pTable) { for(uint32_t i=0u; i<pTable->wlen; ++i) { pTable->dest[i] = pTable->src[i]; } } for (__zero_table_t const* pTable = &__zero_table_start__; pTable < &__zero_table_end__; ++pTable) { for(uint32_t i=0u; i<pTable->wlen; ++i) { pTable->dest[i] = 0u; } } _start(); } #define __PROGRAM_START __cmsis_start #endif #ifndef __INITIAL_SP #define __INITIAL_SP __StackTop #endif #ifndef __STACK_LIMIT #define __STACK_LIMIT __StackLimit #endif #ifndef __VECTOR_TABLE #define __VECTOR_TABLE __Vectors #endif #ifndef __VECTOR_TABLE_ATTRIBUTE #define __VECTOR_TABLE_ATTRIBUTE __attribute((used, section(".vectors"))) #endif /* ########################### Core Function Access ########################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions @{ */ /** \brief Enable IRQ Interrupts \details Enables IRQ interrupts by clearing the I-bit in the CPSR. Can only be executed in Privileged modes. */ __STATIC_FORCEINLINE void __enable_irq(void) { __ASM volatile ("cpsie i" : : : "memory"); } /** \brief Disable IRQ Interrupts \details Disables IRQ interrupts by setting the I-bit in the CPSR. Can only be executed in Privileged modes. */ __STATIC_FORCEINLINE void __disable_irq(void) { __ASM volatile ("cpsid i" : : : "memory"); } /** \brief Get Control Register \details Returns the content of the Control Register. \return Control Register value */ __STATIC_FORCEINLINE uint32_t __get_CONTROL(void) { uint32_t result; __ASM volatile ("MRS %0, control" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Control Register (non-secure) \details Returns the content of the non-secure Control Register when in secure mode. \return non-secure Control Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_CONTROL_NS(void) { uint32_t result; __ASM volatile ("MRS %0, control_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Control Register \details Writes the given value to the Control Register. \param [in] control Control Register value to set */ __STATIC_FORCEINLINE void __set_CONTROL(uint32_t control) { __ASM volatile ("MSR control, %0" : : "r" (control) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Control Register (non-secure) \details Writes the given value to the non-secure Control Register when in secure state. \param [in] control Control Register value to set */ __STATIC_FORCEINLINE void __TZ_set_CONTROL_NS(uint32_t control) { __ASM volatile ("MSR control_ns, %0" : : "r" (control) : "memory"); } #endif /** \brief Get IPSR Register \details Returns the content of the IPSR Register. \return IPSR Register value */ __STATIC_FORCEINLINE uint32_t __get_IPSR(void) { uint32_t result; __ASM volatile ("MRS %0, ipsr" : "=r" (result) ); return(result); } /** \brief Get APSR Register \details Returns the content of the APSR Register. \return APSR Register value */ __STATIC_FORCEINLINE uint32_t __get_APSR(void) { uint32_t result; __ASM volatile ("MRS %0, apsr" : "=r" (result) ); return(result); } /** \brief Get xPSR Register \details Returns the content of the xPSR Register. \return xPSR Register value */ __STATIC_FORCEINLINE uint32_t __get_xPSR(void) { uint32_t result; __ASM volatile ("MRS %0, xpsr" : "=r" (result) ); return(result); } /** \brief Get Process Stack Pointer \details Returns the current value of the Process Stack Pointer (PSP). \return PSP Register value */ __STATIC_FORCEINLINE uint32_t __get_PSP(void) { uint32_t result; __ASM volatile ("MRS %0, psp" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Process Stack Pointer (non-secure) \details Returns the current value of the non-secure Process Stack Pointer (PSP) when in secure state. \return PSP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PSP_NS(void) { uint32_t result; __ASM volatile ("MRS %0, psp_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Process Stack Pointer \details Assigns the given value to the Process Stack Pointer (PSP). \param [in] topOfProcStack Process Stack Pointer value to set */ __STATIC_FORCEINLINE void __set_PSP(uint32_t topOfProcStack) { __ASM volatile ("MSR psp, %0" : : "r" (topOfProcStack) : ); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Process Stack Pointer (non-secure) \details Assigns the given value to the non-secure Process Stack Pointer (PSP) when in secure state. \param [in] topOfProcStack Process Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_PSP_NS(uint32_t topOfProcStack) { __ASM volatile ("MSR psp_ns, %0" : : "r" (topOfProcStack) : ); } #endif /** \brief Get Main Stack Pointer \details Returns the current value of the Main Stack Pointer (MSP). \return MSP Register value */ __STATIC_FORCEINLINE uint32_t __get_MSP(void) { uint32_t result; __ASM volatile ("MRS %0, msp" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Main Stack Pointer (non-secure) \details Returns the current value of the non-secure Main Stack Pointer (MSP) when in secure state. \return MSP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_MSP_NS(void) { uint32_t result; __ASM volatile ("MRS %0, msp_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Main Stack Pointer \details Assigns the given value to the Main Stack Pointer (MSP). \param [in] topOfMainStack Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __set_MSP(uint32_t topOfMainStack) { __ASM volatile ("MSR msp, %0" : : "r" (topOfMainStack) : ); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Main Stack Pointer (non-secure) \details Assigns the given value to the non-secure Main Stack Pointer (MSP) when in secure state. \param [in] topOfMainStack Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_MSP_NS(uint32_t topOfMainStack) { __ASM volatile ("MSR msp_ns, %0" : : "r" (topOfMainStack) : ); } #endif #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Stack Pointer (non-secure) \details Returns the current value of the non-secure Stack Pointer (SP) when in secure state. \return SP Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_SP_NS(void) { uint32_t result; __ASM volatile ("MRS %0, sp_ns" : "=r" (result) ); return(result); } /** \brief Set Stack Pointer (non-secure) \details Assigns the given value to the non-secure Stack Pointer (SP) when in secure state. \param [in] topOfStack Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_SP_NS(uint32_t topOfStack) { __ASM volatile ("MSR sp_ns, %0" : : "r" (topOfStack) : ); } #endif /** \brief Get Priority Mask \details Returns the current state of the priority mask bit from the Priority Mask Register. \return Priority Mask value */ __STATIC_FORCEINLINE uint32_t __get_PRIMASK(void) { uint32_t result; __ASM volatile ("MRS %0, primask" : "=r" (result) :: "memory"); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Priority Mask (non-secure) \details Returns the current state of the non-secure priority mask bit from the Priority Mask Register when in secure state. \return Priority Mask value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PRIMASK_NS(void) { uint32_t result; __ASM volatile ("MRS %0, primask_ns" : "=r" (result) :: "memory"); return(result); } #endif /** \brief Set Priority Mask \details Assigns the given value to the Priority Mask Register. \param [in] priMask Priority Mask */ __STATIC_FORCEINLINE void __set_PRIMASK(uint32_t priMask) { __ASM volatile ("MSR primask, %0" : : "r" (priMask) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Priority Mask (non-secure) \details Assigns the given value to the non-secure Priority Mask Register when in secure state. \param [in] priMask Priority Mask */ __STATIC_FORCEINLINE void __TZ_set_PRIMASK_NS(uint32_t priMask) { __ASM volatile ("MSR primask_ns, %0" : : "r" (priMask) : "memory"); } #endif #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) /** \brief Enable FIQ \details Enables FIQ interrupts by clearing the F-bit in the CPSR. Can only be executed in Privileged modes. */ __STATIC_FORCEINLINE void __enable_fault_irq(void) { __ASM volatile ("cpsie f" : : : "memory"); } /** \brief Disable FIQ \details Disables FIQ interrupts by setting the F-bit in the CPSR. Can only be executed in Privileged modes. */ __STATIC_FORCEINLINE void __disable_fault_irq(void) { __ASM volatile ("cpsid f" : : : "memory"); } /** \brief Get Base Priority \details Returns the current value of the Base Priority register. \return Base Priority register value */ __STATIC_FORCEINLINE uint32_t __get_BASEPRI(void) { uint32_t result; __ASM volatile ("MRS %0, basepri" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Base Priority (non-secure) \details Returns the current value of the non-secure Base Priority register when in secure state. \return Base Priority register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_BASEPRI_NS(void) { uint32_t result; __ASM volatile ("MRS %0, basepri_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Base Priority \details Assigns the given value to the Base Priority register. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __set_BASEPRI(uint32_t basePri) { __ASM volatile ("MSR basepri, %0" : : "r" (basePri) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Base Priority (non-secure) \details Assigns the given value to the non-secure Base Priority register when in secure state. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __TZ_set_BASEPRI_NS(uint32_t basePri) { __ASM volatile ("MSR basepri_ns, %0" : : "r" (basePri) : "memory"); } #endif /** \brief Set Base Priority with condition \details Assigns the given value to the Base Priority register only if BASEPRI masking is disabled, or the new value increases the BASEPRI priority level. \param [in] basePri Base Priority value to set */ __STATIC_FORCEINLINE void __set_BASEPRI_MAX(uint32_t basePri) { __ASM volatile ("MSR basepri_max, %0" : : "r" (basePri) : "memory"); } /** \brief Get Fault Mask \details Returns the current value of the Fault Mask register. \return Fault Mask register value */ __STATIC_FORCEINLINE uint32_t __get_FAULTMASK(void) { uint32_t result; __ASM volatile ("MRS %0, faultmask" : "=r" (result) ); return(result); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Fault Mask (non-secure) \details Returns the current value of the non-secure Fault Mask register when in secure state. \return Fault Mask register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_FAULTMASK_NS(void) { uint32_t result; __ASM volatile ("MRS %0, faultmask_ns" : "=r" (result) ); return(result); } #endif /** \brief Set Fault Mask \details Assigns the given value to the Fault Mask register. \param [in] faultMask Fault Mask value to set */ __STATIC_FORCEINLINE void __set_FAULTMASK(uint32_t faultMask) { __ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) : "memory"); } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Fault Mask (non-secure) \details Assigns the given value to the non-secure Fault Mask register when in secure state. \param [in] faultMask Fault Mask value to set */ __STATIC_FORCEINLINE void __TZ_set_FAULTMASK_NS(uint32_t faultMask) { __ASM volatile ("MSR faultmask_ns, %0" : : "r" (faultMask) : "memory"); } #endif #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief Get Process Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always in non-secure mode. \details Returns the current value of the Process Stack Pointer Limit (PSPLIM). \return PSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __get_PSPLIM(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, psplim" : "=r" (result) ); return result; #endif } #if (defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Process Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always. \details Returns the current value of the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. \return PSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_PSPLIM_NS(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure PSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, psplim_ns" : "=r" (result) ); return result; #endif } #endif /** \brief Set Process Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored in non-secure mode. \details Assigns the given value to the Process Stack Pointer Limit (PSPLIM). \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __set_PSPLIM(uint32_t ProcStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI (void)ProcStackPtrLimit; #else __ASM volatile ("MSR psplim, %0" : : "r" (ProcStackPtrLimit)); #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Process Stack Pointer (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored. \details Assigns the given value to the non-secure Process Stack Pointer Limit (PSPLIM) when in secure state. \param [in] ProcStackPtrLimit Process Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __TZ_set_PSPLIM_NS(uint32_t ProcStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure PSPLIM is RAZ/WI (void)ProcStackPtrLimit; #else __ASM volatile ("MSR psplim_ns, %0\n" : : "r" (ProcStackPtrLimit)); #endif } #endif /** \brief Get Main Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always in non-secure mode. \details Returns the current value of the Main Stack Pointer Limit (MSPLIM). \return MSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __get_MSPLIM(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, msplim" : "=r" (result) ); return result; #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Get Main Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence zero is returned always. \details Returns the current value of the non-secure Main Stack Pointer Limit(MSPLIM) when in secure state. \return MSPLIM Register value */ __STATIC_FORCEINLINE uint32_t __TZ_get_MSPLIM_NS(void) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure MSPLIM is RAZ/WI return 0U; #else uint32_t result; __ASM volatile ("MRS %0, msplim_ns" : "=r" (result) ); return result; #endif } #endif /** \brief Set Main Stack Pointer Limit Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored in non-secure mode. \details Assigns the given value to the Main Stack Pointer Limit (MSPLIM). \param [in] MainStackPtrLimit Main Stack Pointer Limit value to set */ __STATIC_FORCEINLINE void __set_MSPLIM(uint32_t MainStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI (void)MainStackPtrLimit; #else __ASM volatile ("MSR msplim, %0" : : "r" (MainStackPtrLimit)); #endif } #if (defined (__ARM_FEATURE_CMSE ) && (__ARM_FEATURE_CMSE == 3)) /** \brief Set Main Stack Pointer Limit (non-secure) Devices without ARMv8-M Main Extensions (i.e. Cortex-M23) lack the non-secure Stack Pointer Limit register hence the write is silently ignored. \details Assigns the given value to the non-secure Main Stack Pointer Limit (MSPLIM) when in secure state. \param [in] MainStackPtrLimit Main Stack Pointer value to set */ __STATIC_FORCEINLINE void __TZ_set_MSPLIM_NS(uint32_t MainStackPtrLimit) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1))) // without main extensions, the non-secure MSPLIM is RAZ/WI (void)MainStackPtrLimit; #else __ASM volatile ("MSR msplim_ns, %0" : : "r" (MainStackPtrLimit)); #endif } #endif #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ /** \brief Get FPSCR \details Returns the current value of the Floating Point Status/Control register. \return Floating Point Status/Control register value */ __STATIC_FORCEINLINE uint32_t __get_FPSCR(void) { #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) #if __has_builtin(__builtin_arm_get_fpscr) // Re-enable using built-in when GCC has been fixed // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2) /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */ return __builtin_arm_get_fpscr(); #else uint32_t result; __ASM volatile ("VMRS %0, fpscr" : "=r" (result) ); return(result); #endif #else return(0U); #endif } /** \brief Set FPSCR \details Assigns the given value to the Floating Point Status/Control register. \param [in] fpscr Floating Point Status/Control value to set */ __STATIC_FORCEINLINE void __set_FPSCR(uint32_t fpscr) { #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) #if __has_builtin(__builtin_arm_set_fpscr) // Re-enable using built-in when GCC has been fixed // || (__GNUC__ > 7) || (__GNUC__ == 7 && __GNUC_MINOR__ >= 2) /* see https://gcc.gnu.org/ml/gcc-patches/2017-04/msg00443.html */ __builtin_arm_set_fpscr(fpscr); #else __ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) : "vfpcc", "memory"); #endif #else (void)fpscr; #endif } /*@} end of CMSIS_Core_RegAccFunctions */ /* ########################## Core Instruction Access ######################### */ /** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface Access to dedicated instructions @{ */ /* Define macros for porting to both thumb1 and thumb2. * For thumb1, use low register (r0-r7), specified by constraint "l" * Otherwise, use general registers, specified by constraint "r" */ #if defined (__thumb__) && !defined (__thumb2__) #define __CMSIS_GCC_OUT_REG(r) "=l" (r) #define __CMSIS_GCC_RW_REG(r) "+l" (r) #define __CMSIS_GCC_USE_REG(r) "l" (r) #else #define __CMSIS_GCC_OUT_REG(r) "=r" (r) #define __CMSIS_GCC_RW_REG(r) "+r" (r) #define __CMSIS_GCC_USE_REG(r) "r" (r) #endif /** \brief No Operation \details No Operation does nothing. This instruction can be used for code alignment purposes. */ #define __NOP() __ASM volatile ("nop") /** \brief Wait For Interrupt \details Wait For Interrupt is a hint instruction that suspends execution until one of a number of events occurs. */ #define __WFI() __ASM volatile ("wfi") /** \brief Wait For Event \details Wait For Event is a hint instruction that permits the processor to enter a low-power state until one of a number of events occurs. */ #define __WFE() __ASM volatile ("wfe") /** \brief Send Event \details Send Event is a hint instruction. It causes an event to be signaled to the CPU. */ #define __SEV() __ASM volatile ("sev") /** \brief Instruction Synchronization Barrier \details Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB are fetched from cache or memory, after the instruction has been completed. */ __STATIC_FORCEINLINE void __ISB(void) { __ASM volatile ("isb 0xF":::"memory"); } /** \brief Data Synchronization Barrier \details Acts as a special kind of Data Memory Barrier. It completes when all explicit memory accesses before this instruction complete. */ __STATIC_FORCEINLINE void __DSB(void) { __ASM volatile ("dsb 0xF":::"memory"); } /** \brief Data Memory Barrier \details Ensures the apparent order of the explicit memory operations before and after the instruction, without ensuring their completion. */ __STATIC_FORCEINLINE void __DMB(void) { __ASM volatile ("dmb 0xF":::"memory"); } /** \brief Reverse byte order (32 bit) \details Reverses the byte order in unsigned integer value. For example, 0x12345678 becomes 0x78563412. \param [in] value Value to reverse \return Reversed value */ __STATIC_FORCEINLINE uint32_t __REV(uint32_t value) { #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5) return __builtin_bswap32(value); #else uint32_t result; __ASM volatile ("rev %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return result; #endif } /** \brief Reverse byte order (16 bit) \details Reverses the byte order within each halfword of a word. For example, 0x12345678 becomes 0x34127856. \param [in] value Value to reverse \return Reversed value */ __STATIC_FORCEINLINE uint32_t __REV16(uint32_t value) { uint32_t result; __ASM volatile ("rev16 %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return result; } /** \brief Reverse byte order (16 bit) \details Reverses the byte order in a 16-bit value and returns the signed 16-bit result. For example, 0x0080 becomes 0x8000. \param [in] value Value to reverse \return Reversed value */ __STATIC_FORCEINLINE int16_t __REVSH(int16_t value) { #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) return (int16_t)__builtin_bswap16(value); #else int16_t result; __ASM volatile ("revsh %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return result; #endif } /** \brief Rotate Right in unsigned value (32 bit) \details Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits. \param [in] op1 Value to rotate \param [in] op2 Number of Bits to rotate \return Rotated value */ __STATIC_FORCEINLINE uint32_t __ROR(uint32_t op1, uint32_t op2) { op2 %= 32U; if (op2 == 0U) { return op1; } return (op1 >> op2) | (op1 << (32U - op2)); } /** \brief Breakpoint \details Causes the processor to enter Debug state. Debug tools can use this to investigate system state when the instruction at a particular address is reached. \param [in] value is ignored by the processor. If required, a debugger can use it to store additional information about the breakpoint. */ #define __BKPT(value) __ASM volatile ("bkpt "#value) /** \brief Reverse bit order of value \details Reverses the bit order of the given value. \param [in] value Value to reverse \return Reversed value */ __STATIC_FORCEINLINE uint32_t __RBIT(uint32_t value) { uint32_t result; #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) __ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) ); #else uint32_t s = (4U /*sizeof(v)*/ * 8U) - 1U; /* extra shift needed at end */ result = value; /* r will be reversed bits of v; first get LSB of v */ for (value >>= 1U; value != 0U; value >>= 1U) { result <<= 1U; result |= value & 1U; s--; } result <<= s; /* shift when v's highest bits are zero */ #endif return result; } /** \brief Count leading zeros \details Counts the number of leading zeros of a data value. \param [in] value Value to count the leading zeros \return number of leading zeros in value */ __STATIC_FORCEINLINE uint8_t __CLZ(uint32_t value) { /* Even though __builtin_clz produces a CLZ instruction on ARM, formally __builtin_clz(0) is undefined behaviour, so handle this case specially. This guarantees ARM-compatible results if happening to compile on a non-ARM target, and ensures the compiler doesn't decide to activate any optimisations using the logic "value was passed to __builtin_clz, so it is non-zero". ARM GCC 7.3 and possibly earlier will optimise this test away, leaving a single CLZ instruction. */ if (value == 0U) { return 32U; } return __builtin_clz(value); } #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief LDR Exclusive (8 bit) \details Executes a exclusive LDR instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __STATIC_FORCEINLINE uint8_t __LDREXB(volatile uint8_t *addr) { uint32_t result; #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) __ASM volatile ("ldrexb %0, %1" : "=r" (result) : "Q" (*addr) ); #else /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not accepted by assembler. So has to use following less efficient pattern. */ __ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); #endif return ((uint8_t) result); /* Add explicit type cast here */ } /** \brief LDR Exclusive (16 bit) \details Executes a exclusive LDR instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __STATIC_FORCEINLINE uint16_t __LDREXH(volatile uint16_t *addr) { uint32_t result; #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) __ASM volatile ("ldrexh %0, %1" : "=r" (result) : "Q" (*addr) ); #else /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not accepted by assembler. So has to use following less efficient pattern. */ __ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) : "memory" ); #endif return ((uint16_t) result); /* Add explicit type cast here */ } /** \brief LDR Exclusive (32 bit) \details Executes a exclusive LDR instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __STATIC_FORCEINLINE uint32_t __LDREXW(volatile uint32_t *addr) { uint32_t result; __ASM volatile ("ldrex %0, %1" : "=r" (result) : "Q" (*addr) ); return(result); } /** \brief STR Exclusive (8 bit) \details Executes a exclusive STR instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __STATIC_FORCEINLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr) { uint32_t result; __ASM volatile ("strexb %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); return(result); } /** \brief STR Exclusive (16 bit) \details Executes a exclusive STR instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __STATIC_FORCEINLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr) { uint32_t result; __ASM volatile ("strexh %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" ((uint32_t)value) ); return(result); } /** \brief STR Exclusive (32 bit) \details Executes a exclusive STR instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __STATIC_FORCEINLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr) { uint32_t result; __ASM volatile ("strex %0, %2, %1" : "=&r" (result), "=Q" (*addr) : "r" (value) ); return(result); } /** \brief Remove the exclusive lock \details Removes the exclusive lock which is created by LDREX. */ __STATIC_FORCEINLINE void __CLREX(void) { __ASM volatile ("clrex" ::: "memory"); } #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ #if ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) /** \brief Signed Saturate \details Saturates a signed value. \param [in] ARG1 Value to be saturated \param [in] ARG2 Bit position to saturate to (1..32) \return Saturated value */ #define __SSAT(ARG1,ARG2) \ __extension__ \ ({ \ int32_t __RES, __ARG1 = (ARG1); \ __ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) /** \brief Unsigned Saturate \details Saturates an unsigned value. \param [in] ARG1 Value to be saturated \param [in] ARG2 Bit position to saturate to (0..31) \return Saturated value */ #define __USAT(ARG1,ARG2) \ __extension__ \ ({ \ uint32_t __RES, __ARG1 = (ARG1); \ __ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) /** \brief Rotate Right with Extend (32 bit) \details Moves each bit of a bitstring right by one bit. The carry input is shifted in at the left end of the bitstring. \param [in] value Value to rotate \return Rotated value */ __STATIC_FORCEINLINE uint32_t __RRX(uint32_t value) { uint32_t result; __ASM volatile ("rrx %0, %1" : __CMSIS_GCC_OUT_REG (result) : __CMSIS_GCC_USE_REG (value) ); return(result); } /** \brief LDRT Unprivileged (8 bit) \details Executes a Unprivileged LDRT instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __STATIC_FORCEINLINE uint8_t __LDRBT(volatile uint8_t *ptr) { uint32_t result; #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) __ASM volatile ("ldrbt %0, %1" : "=r" (result) : "Q" (*ptr) ); #else /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not accepted by assembler. So has to use following less efficient pattern. */ __ASM volatile ("ldrbt %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" ); #endif return ((uint8_t) result); /* Add explicit type cast here */ } /** \brief LDRT Unprivileged (16 bit) \details Executes a Unprivileged LDRT instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __STATIC_FORCEINLINE uint16_t __LDRHT(volatile uint16_t *ptr) { uint32_t result; #if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8) __ASM volatile ("ldrht %0, %1" : "=r" (result) : "Q" (*ptr) ); #else /* Prior to GCC 4.8, "Q" will be expanded to [rx, #0] which is not accepted by assembler. So has to use following less efficient pattern. */ __ASM volatile ("ldrht %0, [%1]" : "=r" (result) : "r" (ptr) : "memory" ); #endif return ((uint16_t) result); /* Add explicit type cast here */ } /** \brief LDRT Unprivileged (32 bit) \details Executes a Unprivileged LDRT instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __STATIC_FORCEINLINE uint32_t __LDRT(volatile uint32_t *ptr) { uint32_t result; __ASM volatile ("ldrt %0, %1" : "=r" (result) : "Q" (*ptr) ); return(result); } /** \brief STRT Unprivileged (8 bit) \details Executes a Unprivileged STRT instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRBT(uint8_t value, volatile uint8_t *ptr) { __ASM volatile ("strbt %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief STRT Unprivileged (16 bit) \details Executes a Unprivileged STRT instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRHT(uint16_t value, volatile uint16_t *ptr) { __ASM volatile ("strht %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief STRT Unprivileged (32 bit) \details Executes a Unprivileged STRT instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STRT(uint32_t value, volatile uint32_t *ptr) { __ASM volatile ("strt %1, %0" : "=Q" (*ptr) : "r" (value) ); } #else /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ /** \brief Signed Saturate \details Saturates a signed value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (1..32) \return Saturated value */ __STATIC_FORCEINLINE int32_t __SSAT(int32_t val, uint32_t sat) { if ((sat >= 1U) && (sat <= 32U)) { const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); const int32_t min = -1 - max ; if (val > max) { return max; } else if (val < min) { return min; } } return val; } /** \brief Unsigned Saturate \details Saturates an unsigned value. \param [in] value Value to be saturated \param [in] sat Bit position to saturate to (0..31) \return Saturated value */ __STATIC_FORCEINLINE uint32_t __USAT(int32_t val, uint32_t sat) { if (sat <= 31U) { const uint32_t max = ((1U << sat) - 1U); if (val > (int32_t)max) { return max; } else if (val < 0) { return 0U; } } return (uint32_t)val; } #endif /* ((defined (__ARM_ARCH_7M__ ) && (__ARM_ARCH_7M__ == 1)) || \ (defined (__ARM_ARCH_7EM__ ) && (__ARM_ARCH_7EM__ == 1)) || \ (defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) ) */ #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) /** \brief Load-Acquire (8 bit) \details Executes a LDAB instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __STATIC_FORCEINLINE uint8_t __LDAB(volatile uint8_t *ptr) { uint32_t result; __ASM volatile ("ldab %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint8_t) result); } /** \brief Load-Acquire (16 bit) \details Executes a LDAH instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __STATIC_FORCEINLINE uint16_t __LDAH(volatile uint16_t *ptr) { uint32_t result; __ASM volatile ("ldah %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint16_t) result); } /** \brief Load-Acquire (32 bit) \details Executes a LDA instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __STATIC_FORCEINLINE uint32_t __LDA(volatile uint32_t *ptr) { uint32_t result; __ASM volatile ("lda %0, %1" : "=r" (result) : "Q" (*ptr) ); return(result); } /** \brief Store-Release (8 bit) \details Executes a STLB instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STLB(uint8_t value, volatile uint8_t *ptr) { __ASM volatile ("stlb %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Store-Release (16 bit) \details Executes a STLH instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STLH(uint16_t value, volatile uint16_t *ptr) { __ASM volatile ("stlh %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Store-Release (32 bit) \details Executes a STL instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location */ __STATIC_FORCEINLINE void __STL(uint32_t value, volatile uint32_t *ptr) { __ASM volatile ("stl %1, %0" : "=Q" (*ptr) : "r" ((uint32_t)value) ); } /** \brief Load-Acquire Exclusive (8 bit) \details Executes a LDAB exclusive instruction for 8 bit value. \param [in] ptr Pointer to data \return value of type uint8_t at (*ptr) */ __STATIC_FORCEINLINE uint8_t __LDAEXB(volatile uint8_t *ptr) { uint32_t result; __ASM volatile ("ldaexb %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint8_t) result); } /** \brief Load-Acquire Exclusive (16 bit) \details Executes a LDAH exclusive instruction for 16 bit values. \param [in] ptr Pointer to data \return value of type uint16_t at (*ptr) */ __STATIC_FORCEINLINE uint16_t __LDAEXH(volatile uint16_t *ptr) { uint32_t result; __ASM volatile ("ldaexh %0, %1" : "=r" (result) : "Q" (*ptr) ); return ((uint16_t) result); } /** \brief Load-Acquire Exclusive (32 bit) \details Executes a LDA exclusive instruction for 32 bit values. \param [in] ptr Pointer to data \return value of type uint32_t at (*ptr) */ __STATIC_FORCEINLINE uint32_t __LDAEX(volatile uint32_t *ptr) { uint32_t result; __ASM volatile ("ldaex %0, %1" : "=r" (result) : "Q" (*ptr) ); return(result); } /** \brief Store-Release Exclusive (8 bit) \details Executes a STLB exclusive instruction for 8 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __STATIC_FORCEINLINE uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr) { uint32_t result; __ASM volatile ("stlexb %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) ); return(result); } /** \brief Store-Release Exclusive (16 bit) \details Executes a STLH exclusive instruction for 16 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __STATIC_FORCEINLINE uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr) { uint32_t result; __ASM volatile ("stlexh %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) ); return(result); } /** \brief Store-Release Exclusive (32 bit) \details Executes a STL exclusive instruction for 32 bit values. \param [in] value Value to store \param [in] ptr Pointer to location \return 0 Function succeeded \return 1 Function failed */ __STATIC_FORCEINLINE uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr) { uint32_t result; __ASM volatile ("stlex %0, %2, %1" : "=&r" (result), "=Q" (*ptr) : "r" ((uint32_t)value) ); return(result); } #endif /* ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) */ /*@}*/ /* end of group CMSIS_Core_InstructionInterface */ /* ################### Compiler specific Intrinsics ########################### */ /** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics Access to dedicated SIMD instructions @{ */ #if (defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)) __STATIC_FORCEINLINE uint32_t __SADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHASX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __QSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USAD8(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } #define __SSAT16(ARG1,ARG2) \ ({ \ int32_t __RES, __ARG1 = (ARG1); \ __ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) #define __USAT16(ARG1,ARG2) \ ({ \ uint32_t __RES, __ARG1 = (ARG1); \ __ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \ __RES; \ }) __STATIC_FORCEINLINE uint32_t __UXTB16(uint32_t op1) { uint32_t result; __ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1)); return(result); } __STATIC_FORCEINLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SXTB16(uint32_t op1) { uint32_t result; __ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1)); return(result); } __STATIC_FORCEINLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3) { uint32_t result; __ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) ); return(result); } __STATIC_FORCEINLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc) { union llreg_u{ uint32_t w32[2]; uint64_t w64; } llr; llr.w64 = acc; #ifndef __ARMEB__ /* Little endian */ __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) ); #else /* Big endian */ __ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) ); #endif return(llr.w64); } __STATIC_FORCEINLINE uint32_t __SEL (uint32_t op1, uint32_t op2) { uint32_t result; __ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE int32_t __QADD( int32_t op1, int32_t op2) { int32_t result; __ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } __STATIC_FORCEINLINE int32_t __QSUB( int32_t op1, int32_t op2) { int32_t result; __ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) ); return(result); } #if 0 #define __PKHBT(ARG1,ARG2,ARG3) \ ({ \ uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ __ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ __RES; \ }) #define __PKHTB(ARG1,ARG2,ARG3) \ ({ \ uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \ if (ARG3 == 0) \ __ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \ else \ __ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \ __RES; \ }) #endif #define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \ ((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) ) #define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \ ((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) ) __STATIC_FORCEINLINE int32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3) { int32_t result; __ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) ); return(result); } #endif /* (__ARM_FEATURE_DSP == 1) */ /*@} end of group CMSIS_SIMD_intrinsics */ #pragma GCC diagnostic pop #endif /* __CMSIS_GCC_H */ Drivers/CMSIS/Include/cmsis_iccarm.h
New file @@ -0,0 +1,964 @@ /**************************************************************************//** * @file cmsis_iccarm.h * @brief CMSIS compiler ICCARM (IAR Compiler for Arm) header file * @version V5.1.0 * @date 08. May 2019 ******************************************************************************/ //------------------------------------------------------------------------------ // // Copyright (c) 2017-2019 IAR Systems // Copyright (c) 2017-2019 Arm Limited. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License") // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // //------------------------------------------------------------------------------ #ifndef __CMSIS_ICCARM_H__ #define __CMSIS_ICCARM_H__ #ifndef __ICCARM__ #error This file should only be compiled by ICCARM #endif #pragma system_include #define __IAR_FT _Pragma("inline=forced") __intrinsic #if (__VER__ >= 8000000) #define __ICCARM_V8 1 #else #define __ICCARM_V8 0 #endif #ifndef __ALIGNED #if __ICCARM_V8 #define __ALIGNED(x) __attribute__((aligned(x))) #elif (__VER__ >= 7080000) /* Needs IAR language extensions */ #define __ALIGNED(x) __attribute__((aligned(x))) #else #warning No compiler specific solution for __ALIGNED.__ALIGNED is ignored. #define __ALIGNED(x) #endif #endif /* Define compiler macros for CPU architecture, used in CMSIS 5. */ #if __ARM_ARCH_6M__ || __ARM_ARCH_7M__ || __ARM_ARCH_7EM__ || __ARM_ARCH_8M_BASE__ || __ARM_ARCH_8M_MAIN__ /* Macros already defined */ #else #if defined(__ARM8M_MAINLINE__) || defined(__ARM8EM_MAINLINE__) #define __ARM_ARCH_8M_MAIN__ 1 #elif defined(__ARM8M_BASELINE__) #define __ARM_ARCH_8M_BASE__ 1 #elif defined(__ARM_ARCH_PROFILE) && __ARM_ARCH_PROFILE == 'M' #if __ARM_ARCH == 6 #define __ARM_ARCH_6M__ 1 #elif __ARM_ARCH == 7 #if __ARM_FEATURE_DSP #define __ARM_ARCH_7EM__ 1 #else #define __ARM_ARCH_7M__ 1 #endif #endif /* __ARM_ARCH */ #endif /* __ARM_ARCH_PROFILE == 'M' */ #endif /* Alternativ core deduction for older ICCARM's */ #if !defined(__ARM_ARCH_6M__) && !defined(__ARM_ARCH_7M__) && !defined(__ARM_ARCH_7EM__) && \ !defined(__ARM_ARCH_8M_BASE__) && !defined(__ARM_ARCH_8M_MAIN__) #if defined(__ARM6M__) && (__CORE__ == __ARM6M__) #define __ARM_ARCH_6M__ 1 #elif defined(__ARM7M__) && (__CORE__ == __ARM7M__) #define __ARM_ARCH_7M__ 1 #elif defined(__ARM7EM__) && (__CORE__ == __ARM7EM__) #define __ARM_ARCH_7EM__ 1 #elif defined(__ARM8M_BASELINE__) && (__CORE == __ARM8M_BASELINE__) #define __ARM_ARCH_8M_BASE__ 1 #elif defined(__ARM8M_MAINLINE__) && (__CORE == __ARM8M_MAINLINE__) #define __ARM_ARCH_8M_MAIN__ 1 #elif defined(__ARM8EM_MAINLINE__) && (__CORE == __ARM8EM_MAINLINE__) #define __ARM_ARCH_8M_MAIN__ 1 #else #error "Unknown target." #endif #endif #if defined(__ARM_ARCH_6M__) && __ARM_ARCH_6M__==1 #define __IAR_M0_FAMILY 1 #elif defined(__ARM_ARCH_8M_BASE__) && __ARM_ARCH_8M_BASE__==1 #define __IAR_M0_FAMILY 1 #else #define __IAR_M0_FAMILY 0 #endif #ifndef __ASM #define __ASM __asm #endif #ifndef __COMPILER_BARRIER #define __COMPILER_BARRIER() __ASM volatile("":::"memory") #endif #ifndef __INLINE #define __INLINE inline #endif #ifndef __NO_RETURN #if __ICCARM_V8 #define __NO_RETURN __attribute__((__noreturn__)) #else #define __NO_RETURN _Pragma("object_attribute=__noreturn") #endif #endif #ifndef __PACKED #if __ICCARM_V8 #define __PACKED __attribute__((packed, aligned(1))) #else /* Needs IAR language extensions */ #define __PACKED __packed #endif #endif #ifndef __PACKED_STRUCT #if __ICCARM_V8 #define __PACKED_STRUCT struct __attribute__((packed, aligned(1))) #else /* Needs IAR language extensions */ #define __PACKED_STRUCT __packed struct #endif #endif #ifndef __PACKED_UNION #if __ICCARM_V8 #define __PACKED_UNION union __attribute__((packed, aligned(1))) #else /* Needs IAR language extensions */ #define __PACKED_UNION __packed union #endif #endif #ifndef __RESTRICT #if __ICCARM_V8 #define __RESTRICT __restrict #else /* Needs IAR language extensions */ #define __RESTRICT restrict #endif #endif #ifndef __STATIC_INLINE #define __STATIC_INLINE static inline #endif #ifndef __FORCEINLINE #define __FORCEINLINE _Pragma("inline=forced") #endif #ifndef __STATIC_FORCEINLINE #define __STATIC_FORCEINLINE __FORCEINLINE __STATIC_INLINE #endif #ifndef __UNALIGNED_UINT16_READ #pragma language=save #pragma language=extended __IAR_FT uint16_t __iar_uint16_read(void const *ptr) { return *(__packed uint16_t*)(ptr); } #pragma language=restore #define __UNALIGNED_UINT16_READ(PTR) __iar_uint16_read(PTR) #endif #ifndef __UNALIGNED_UINT16_WRITE #pragma language=save #pragma language=extended __IAR_FT void __iar_uint16_write(void const *ptr, uint16_t val) { *(__packed uint16_t*)(ptr) = val;; } #pragma language=restore #define __UNALIGNED_UINT16_WRITE(PTR,VAL) __iar_uint16_write(PTR,VAL) #endif #ifndef __UNALIGNED_UINT32_READ #pragma language=save #pragma language=extended __IAR_FT uint32_t __iar_uint32_read(void const *ptr) { return *(__packed uint32_t*)(ptr); } #pragma language=restore #define __UNALIGNED_UINT32_READ(PTR) __iar_uint32_read(PTR) #endif #ifndef __UNALIGNED_UINT32_WRITE #pragma language=save #pragma language=extended __IAR_FT void __iar_uint32_write(void const *ptr, uint32_t val) { *(__packed uint32_t*)(ptr) = val;; } #pragma language=restore #define __UNALIGNED_UINT32_WRITE(PTR,VAL) __iar_uint32_write(PTR,VAL) #endif #ifndef __UNALIGNED_UINT32 /* deprecated */ #pragma language=save #pragma language=extended __packed struct __iar_u32 { uint32_t v; }; #pragma language=restore #define __UNALIGNED_UINT32(PTR) (((struct __iar_u32 *)(PTR))->v) #endif #ifndef __USED #if __ICCARM_V8 #define __USED __attribute__((used)) #else #define __USED _Pragma("__root") #endif #endif #ifndef __WEAK #if __ICCARM_V8 #define __WEAK __attribute__((weak)) #else #define __WEAK _Pragma("__weak") #endif #endif #ifndef __PROGRAM_START #define __PROGRAM_START __iar_program_start #endif #ifndef __INITIAL_SP #define __INITIAL_SP CSTACK$$Limit #endif #ifndef __STACK_LIMIT #define __STACK_LIMIT CSTACK$$Base #endif #ifndef __VECTOR_TABLE #define __VECTOR_TABLE __vector_table #endif #ifndef __VECTOR_TABLE_ATTRIBUTE #define __VECTOR_TABLE_ATTRIBUTE @".intvec" #endif #ifndef __ICCARM_INTRINSICS_VERSION__ #define __ICCARM_INTRINSICS_VERSION__ 0 #endif #if __ICCARM_INTRINSICS_VERSION__ == 2 #if defined(__CLZ) #undef __CLZ #endif #if defined(__REVSH) #undef __REVSH #endif #if defined(__RBIT) #undef __RBIT #endif #if defined(__SSAT) #undef __SSAT #endif #if defined(__USAT) #undef __USAT #endif #include "iccarm_builtin.h" #define __disable_fault_irq __iar_builtin_disable_fiq #define __disable_irq __iar_builtin_disable_interrupt #define __enable_fault_irq __iar_builtin_enable_fiq #define __enable_irq __iar_builtin_enable_interrupt #define __arm_rsr __iar_builtin_rsr #define __arm_wsr __iar_builtin_wsr #define __get_APSR() (__arm_rsr("APSR")) #define __get_BASEPRI() (__arm_rsr("BASEPRI")) #define __get_CONTROL() (__arm_rsr("CONTROL")) #define __get_FAULTMASK() (__arm_rsr("FAULTMASK")) #if ((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) ) #define __get_FPSCR() (__arm_rsr("FPSCR")) #define __set_FPSCR(VALUE) (__arm_wsr("FPSCR", (VALUE))) #else #define __get_FPSCR() ( 0 ) #define __set_FPSCR(VALUE) ((void)VALUE) #endif #define __get_IPSR() (__arm_rsr("IPSR")) #define __get_MSP() (__arm_rsr("MSP")) #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI #define __get_MSPLIM() (0U) #else #define __get_MSPLIM() (__arm_rsr("MSPLIM")) #endif #define __get_PRIMASK() (__arm_rsr("PRIMASK")) #define __get_PSP() (__arm_rsr("PSP")) #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI #define __get_PSPLIM() (0U) #else #define __get_PSPLIM() (__arm_rsr("PSPLIM")) #endif #define __get_xPSR() (__arm_rsr("xPSR")) #define __set_BASEPRI(VALUE) (__arm_wsr("BASEPRI", (VALUE))) #define __set_BASEPRI_MAX(VALUE) (__arm_wsr("BASEPRI_MAX", (VALUE))) #define __set_CONTROL(VALUE) (__arm_wsr("CONTROL", (VALUE))) #define __set_FAULTMASK(VALUE) (__arm_wsr("FAULTMASK", (VALUE))) #define __set_MSP(VALUE) (__arm_wsr("MSP", (VALUE))) #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI #define __set_MSPLIM(VALUE) ((void)(VALUE)) #else #define __set_MSPLIM(VALUE) (__arm_wsr("MSPLIM", (VALUE))) #endif #define __set_PRIMASK(VALUE) (__arm_wsr("PRIMASK", (VALUE))) #define __set_PSP(VALUE) (__arm_wsr("PSP", (VALUE))) #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI #define __set_PSPLIM(VALUE) ((void)(VALUE)) #else #define __set_PSPLIM(VALUE) (__arm_wsr("PSPLIM", (VALUE))) #endif #define __TZ_get_CONTROL_NS() (__arm_rsr("CONTROL_NS")) #define __TZ_set_CONTROL_NS(VALUE) (__arm_wsr("CONTROL_NS", (VALUE))) #define __TZ_get_PSP_NS() (__arm_rsr("PSP_NS")) #define __TZ_set_PSP_NS(VALUE) (__arm_wsr("PSP_NS", (VALUE))) #define __TZ_get_MSP_NS() (__arm_rsr("MSP_NS")) #define __TZ_set_MSP_NS(VALUE) (__arm_wsr("MSP_NS", (VALUE))) #define __TZ_get_SP_NS() (__arm_rsr("SP_NS")) #define __TZ_set_SP_NS(VALUE) (__arm_wsr("SP_NS", (VALUE))) #define __TZ_get_PRIMASK_NS() (__arm_rsr("PRIMASK_NS")) #define __TZ_set_PRIMASK_NS(VALUE) (__arm_wsr("PRIMASK_NS", (VALUE))) #define __TZ_get_BASEPRI_NS() (__arm_rsr("BASEPRI_NS")) #define __TZ_set_BASEPRI_NS(VALUE) (__arm_wsr("BASEPRI_NS", (VALUE))) #define __TZ_get_FAULTMASK_NS() (__arm_rsr("FAULTMASK_NS")) #define __TZ_set_FAULTMASK_NS(VALUE)(__arm_wsr("FAULTMASK_NS", (VALUE))) #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI #define __TZ_get_PSPLIM_NS() (0U) #define __TZ_set_PSPLIM_NS(VALUE) ((void)(VALUE)) #else #define __TZ_get_PSPLIM_NS() (__arm_rsr("PSPLIM_NS")) #define __TZ_set_PSPLIM_NS(VALUE) (__arm_wsr("PSPLIM_NS", (VALUE))) #endif #define __TZ_get_MSPLIM_NS() (__arm_rsr("MSPLIM_NS")) #define __TZ_set_MSPLIM_NS(VALUE) (__arm_wsr("MSPLIM_NS", (VALUE))) #define __NOP __iar_builtin_no_operation #define __CLZ __iar_builtin_CLZ #define __CLREX __iar_builtin_CLREX #define __DMB __iar_builtin_DMB #define __DSB __iar_builtin_DSB #define __ISB __iar_builtin_ISB #define __LDREXB __iar_builtin_LDREXB #define __LDREXH __iar_builtin_LDREXH #define __LDREXW __iar_builtin_LDREX #define __RBIT __iar_builtin_RBIT #define __REV __iar_builtin_REV #define __REV16 __iar_builtin_REV16 __IAR_FT int16_t __REVSH(int16_t val) { return (int16_t) __iar_builtin_REVSH(val); } #define __ROR __iar_builtin_ROR #define __RRX __iar_builtin_RRX #define __SEV __iar_builtin_SEV #if !__IAR_M0_FAMILY #define __SSAT __iar_builtin_SSAT #endif #define __STREXB __iar_builtin_STREXB #define __STREXH __iar_builtin_STREXH #define __STREXW __iar_builtin_STREX #if !__IAR_M0_FAMILY #define __USAT __iar_builtin_USAT #endif #define __WFE __iar_builtin_WFE #define __WFI __iar_builtin_WFI #if __ARM_MEDIA__ #define __SADD8 __iar_builtin_SADD8 #define __QADD8 __iar_builtin_QADD8 #define __SHADD8 __iar_builtin_SHADD8 #define __UADD8 __iar_builtin_UADD8 #define __UQADD8 __iar_builtin_UQADD8 #define __UHADD8 __iar_builtin_UHADD8 #define __SSUB8 __iar_builtin_SSUB8 #define __QSUB8 __iar_builtin_QSUB8 #define __SHSUB8 __iar_builtin_SHSUB8 #define __USUB8 __iar_builtin_USUB8 #define __UQSUB8 __iar_builtin_UQSUB8 #define __UHSUB8 __iar_builtin_UHSUB8 #define __SADD16 __iar_builtin_SADD16 #define __QADD16 __iar_builtin_QADD16 #define __SHADD16 __iar_builtin_SHADD16 #define __UADD16 __iar_builtin_UADD16 #define __UQADD16 __iar_builtin_UQADD16 #define __UHADD16 __iar_builtin_UHADD16 #define __SSUB16 __iar_builtin_SSUB16 #define __QSUB16 __iar_builtin_QSUB16 #define __SHSUB16 __iar_builtin_SHSUB16 #define __USUB16 __iar_builtin_USUB16 #define __UQSUB16 __iar_builtin_UQSUB16 #define __UHSUB16 __iar_builtin_UHSUB16 #define __SASX __iar_builtin_SASX #define __QASX __iar_builtin_QASX #define __SHASX __iar_builtin_SHASX #define __UASX __iar_builtin_UASX #define __UQASX __iar_builtin_UQASX #define __UHASX __iar_builtin_UHASX #define __SSAX __iar_builtin_SSAX #define __QSAX __iar_builtin_QSAX #define __SHSAX __iar_builtin_SHSAX #define __USAX __iar_builtin_USAX #define __UQSAX __iar_builtin_UQSAX #define __UHSAX __iar_builtin_UHSAX #define __USAD8 __iar_builtin_USAD8 #define __USADA8 __iar_builtin_USADA8 #define __SSAT16 __iar_builtin_SSAT16 #define __USAT16 __iar_builtin_USAT16 #define __UXTB16 __iar_builtin_UXTB16 #define __UXTAB16 __iar_builtin_UXTAB16 #define __SXTB16 __iar_builtin_SXTB16 #define __SXTAB16 __iar_builtin_SXTAB16 #define __SMUAD __iar_builtin_SMUAD #define __SMUADX __iar_builtin_SMUADX #define __SMMLA __iar_builtin_SMMLA #define __SMLAD __iar_builtin_SMLAD #define __SMLADX __iar_builtin_SMLADX #define __SMLALD __iar_builtin_SMLALD #define __SMLALDX __iar_builtin_SMLALDX #define __SMUSD __iar_builtin_SMUSD #define __SMUSDX __iar_builtin_SMUSDX #define __SMLSD __iar_builtin_SMLSD #define __SMLSDX __iar_builtin_SMLSDX #define __SMLSLD __iar_builtin_SMLSLD #define __SMLSLDX __iar_builtin_SMLSLDX #define __SEL __iar_builtin_SEL #define __QADD __iar_builtin_QADD #define __QSUB __iar_builtin_QSUB #define __PKHBT __iar_builtin_PKHBT #define __PKHTB __iar_builtin_PKHTB #endif #else /* __ICCARM_INTRINSICS_VERSION__ == 2 */ #if __IAR_M0_FAMILY /* Avoid clash between intrinsics.h and arm_math.h when compiling for Cortex-M0. */ #define __CLZ __cmsis_iar_clz_not_active #define __SSAT __cmsis_iar_ssat_not_active #define __USAT __cmsis_iar_usat_not_active #define __RBIT __cmsis_iar_rbit_not_active #define __get_APSR __cmsis_iar_get_APSR_not_active #endif #if (!((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) )) #define __get_FPSCR __cmsis_iar_get_FPSR_not_active #define __set_FPSCR __cmsis_iar_set_FPSR_not_active #endif #ifdef __INTRINSICS_INCLUDED #error intrinsics.h is already included previously! #endif #include <intrinsics.h> #if __IAR_M0_FAMILY /* Avoid clash between intrinsics.h and arm_math.h when compiling for Cortex-M0. */ #undef __CLZ #undef __SSAT #undef __USAT #undef __RBIT #undef __get_APSR __STATIC_INLINE uint8_t __CLZ(uint32_t data) { if (data == 0U) { return 32U; } uint32_t count = 0U; uint32_t mask = 0x80000000U; while ((data & mask) == 0U) { count += 1U; mask = mask >> 1U; } return count; } __STATIC_INLINE uint32_t __RBIT(uint32_t v) { uint8_t sc = 31U; uint32_t r = v; for (v >>= 1U; v; v >>= 1U) { r <<= 1U; r |= v & 1U; sc--; } return (r << sc); } __STATIC_INLINE uint32_t __get_APSR(void) { uint32_t res; __asm("MRS %0,APSR" : "=r" (res)); return res; } #endif #if (!((defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U)) && \ (defined (__FPU_USED ) && (__FPU_USED == 1U)) )) #undef __get_FPSCR #undef __set_FPSCR #define __get_FPSCR() (0) #define __set_FPSCR(VALUE) ((void)VALUE) #endif #pragma diag_suppress=Pe940 #pragma diag_suppress=Pe177 #define __enable_irq __enable_interrupt #define __disable_irq __disable_interrupt #define __NOP __no_operation #define __get_xPSR __get_PSR #if (!defined(__ARM_ARCH_6M__) || __ARM_ARCH_6M__==0) __IAR_FT uint32_t __LDREXW(uint32_t volatile *ptr) { return __LDREX((unsigned long *)ptr); } __IAR_FT uint32_t __STREXW(uint32_t value, uint32_t volatile *ptr) { return __STREX(value, (unsigned long *)ptr); } #endif /* __CORTEX_M is defined in core_cm0.h, core_cm3.h and core_cm4.h. */ #if (__CORTEX_M >= 0x03) __IAR_FT uint32_t __RRX(uint32_t value) { uint32_t result; __ASM("RRX %0, %1" : "=r"(result) : "r" (value) : "cc"); return(result); } __IAR_FT void __set_BASEPRI_MAX(uint32_t value) { __asm volatile("MSR BASEPRI_MAX,%0"::"r" (value)); } #define __enable_fault_irq __enable_fiq #define __disable_fault_irq __disable_fiq #endif /* (__CORTEX_M >= 0x03) */ __IAR_FT uint32_t __ROR(uint32_t op1, uint32_t op2) { return (op1 >> op2) | (op1 << ((sizeof(op1)*8)-op2)); } #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) __IAR_FT uint32_t __get_MSPLIM(void) { uint32_t res; #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI res = 0U; #else __asm volatile("MRS %0,MSPLIM" : "=r" (res)); #endif return res; } __IAR_FT void __set_MSPLIM(uint32_t value) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure MSPLIM is RAZ/WI (void)value; #else __asm volatile("MSR MSPLIM,%0" :: "r" (value)); #endif } __IAR_FT uint32_t __get_PSPLIM(void) { uint32_t res; #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI res = 0U; #else __asm volatile("MRS %0,PSPLIM" : "=r" (res)); #endif return res; } __IAR_FT void __set_PSPLIM(uint32_t value) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI (void)value; #else __asm volatile("MSR PSPLIM,%0" :: "r" (value)); #endif } __IAR_FT uint32_t __TZ_get_CONTROL_NS(void) { uint32_t res; __asm volatile("MRS %0,CONTROL_NS" : "=r" (res)); return res; } __IAR_FT void __TZ_set_CONTROL_NS(uint32_t value) { __asm volatile("MSR CONTROL_NS,%0" :: "r" (value)); } __IAR_FT uint32_t __TZ_get_PSP_NS(void) { uint32_t res; __asm volatile("MRS %0,PSP_NS" : "=r" (res)); return res; } __IAR_FT void __TZ_set_PSP_NS(uint32_t value) { __asm volatile("MSR PSP_NS,%0" :: "r" (value)); } __IAR_FT uint32_t __TZ_get_MSP_NS(void) { uint32_t res; __asm volatile("MRS %0,MSP_NS" : "=r" (res)); return res; } __IAR_FT void __TZ_set_MSP_NS(uint32_t value) { __asm volatile("MSR MSP_NS,%0" :: "r" (value)); } __IAR_FT uint32_t __TZ_get_SP_NS(void) { uint32_t res; __asm volatile("MRS %0,SP_NS" : "=r" (res)); return res; } __IAR_FT void __TZ_set_SP_NS(uint32_t value) { __asm volatile("MSR SP_NS,%0" :: "r" (value)); } __IAR_FT uint32_t __TZ_get_PRIMASK_NS(void) { uint32_t res; __asm volatile("MRS %0,PRIMASK_NS" : "=r" (res)); return res; } __IAR_FT void __TZ_set_PRIMASK_NS(uint32_t value) { __asm volatile("MSR PRIMASK_NS,%0" :: "r" (value)); } __IAR_FT uint32_t __TZ_get_BASEPRI_NS(void) { uint32_t res; __asm volatile("MRS %0,BASEPRI_NS" : "=r" (res)); return res; } __IAR_FT void __TZ_set_BASEPRI_NS(uint32_t value) { __asm volatile("MSR BASEPRI_NS,%0" :: "r" (value)); } __IAR_FT uint32_t __TZ_get_FAULTMASK_NS(void) { uint32_t res; __asm volatile("MRS %0,FAULTMASK_NS" : "=r" (res)); return res; } __IAR_FT void __TZ_set_FAULTMASK_NS(uint32_t value) { __asm volatile("MSR FAULTMASK_NS,%0" :: "r" (value)); } __IAR_FT uint32_t __TZ_get_PSPLIM_NS(void) { uint32_t res; #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI res = 0U; #else __asm volatile("MRS %0,PSPLIM_NS" : "=r" (res)); #endif return res; } __IAR_FT void __TZ_set_PSPLIM_NS(uint32_t value) { #if (!(defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) && \ (!defined (__ARM_FEATURE_CMSE ) || (__ARM_FEATURE_CMSE < 3))) // without main extensions, the non-secure PSPLIM is RAZ/WI (void)value; #else __asm volatile("MSR PSPLIM_NS,%0" :: "r" (value)); #endif } __IAR_FT uint32_t __TZ_get_MSPLIM_NS(void) { uint32_t res; __asm volatile("MRS %0,MSPLIM_NS" : "=r" (res)); return res; } __IAR_FT void __TZ_set_MSPLIM_NS(uint32_t value) { __asm volatile("MSR MSPLIM_NS,%0" :: "r" (value)); } #endif /* __ARM_ARCH_8M_MAIN__ or __ARM_ARCH_8M_BASE__ */ #endif /* __ICCARM_INTRINSICS_VERSION__ == 2 */ #define __BKPT(value) __asm volatile ("BKPT %0" : : "i"(value)) #if __IAR_M0_FAMILY __STATIC_INLINE int32_t __SSAT(int32_t val, uint32_t sat) { if ((sat >= 1U) && (sat <= 32U)) { const int32_t max = (int32_t)((1U << (sat - 1U)) - 1U); const int32_t min = -1 - max ; if (val > max) { return max; } else if (val < min) { return min; } } return val; } __STATIC_INLINE uint32_t __USAT(int32_t val, uint32_t sat) { if (sat <= 31U) { const uint32_t max = ((1U << sat) - 1U); if (val > (int32_t)max) { return max; } else if (val < 0) { return 0U; } } return (uint32_t)val; } #endif #if (__CORTEX_M >= 0x03) /* __CORTEX_M is defined in core_cm0.h, core_cm3.h and core_cm4.h. */ __IAR_FT uint8_t __LDRBT(volatile uint8_t *addr) { uint32_t res; __ASM("LDRBT %0, [%1]" : "=r" (res) : "r" (addr) : "memory"); return ((uint8_t)res); } __IAR_FT uint16_t __LDRHT(volatile uint16_t *addr) { uint32_t res; __ASM("LDRHT %0, [%1]" : "=r" (res) : "r" (addr) : "memory"); return ((uint16_t)res); } __IAR_FT uint32_t __LDRT(volatile uint32_t *addr) { uint32_t res; __ASM("LDRT %0, [%1]" : "=r" (res) : "r" (addr) : "memory"); return res; } __IAR_FT void __STRBT(uint8_t value, volatile uint8_t *addr) { __ASM("STRBT %1, [%0]" : : "r" (addr), "r" ((uint32_t)value) : "memory"); } __IAR_FT void __STRHT(uint16_t value, volatile uint16_t *addr) { __ASM("STRHT %1, [%0]" : : "r" (addr), "r" ((uint32_t)value) : "memory"); } __IAR_FT void __STRT(uint32_t value, volatile uint32_t *addr) { __ASM("STRT %1, [%0]" : : "r" (addr), "r" (value) : "memory"); } #endif /* (__CORTEX_M >= 0x03) */ #if ((defined (__ARM_ARCH_8M_MAIN__ ) && (__ARM_ARCH_8M_MAIN__ == 1)) || \ (defined (__ARM_ARCH_8M_BASE__ ) && (__ARM_ARCH_8M_BASE__ == 1)) ) __IAR_FT uint8_t __LDAB(volatile uint8_t *ptr) { uint32_t res; __ASM volatile ("LDAB %0, [%1]" : "=r" (res) : "r" (ptr) : "memory"); return ((uint8_t)res); } __IAR_FT uint16_t __LDAH(volatile uint16_t *ptr) { uint32_t res; __ASM volatile ("LDAH %0, [%1]" : "=r" (res) : "r" (ptr) : "memory"); return ((uint16_t)res); } __IAR_FT uint32_t __LDA(volatile uint32_t *ptr) { uint32_t res; __ASM volatile ("LDA %0, [%1]" : "=r" (res) : "r" (ptr) : "memory"); return res; } __IAR_FT void __STLB(uint8_t value, volatile uint8_t *ptr) { __ASM volatile ("STLB %1, [%0]" :: "r" (ptr), "r" (value) : "memory"); } __IAR_FT void __STLH(uint16_t value, volatile uint16_t *ptr) { __ASM volatile ("STLH %1, [%0]" :: "r" (ptr), "r" (value) : "memory"); } __IAR_FT void __STL(uint32_t value, volatile uint32_t *ptr) { __ASM volatile ("STL %1, [%0]" :: "r" (ptr), "r" (value) : "memory"); } __IAR_FT uint8_t __LDAEXB(volatile uint8_t *ptr) { uint32_t res; __ASM volatile ("LDAEXB %0, [%1]" : "=r" (res) : "r" (ptr) : "memory"); return ((uint8_t)res); } __IAR_FT uint16_t __LDAEXH(volatile uint16_t *ptr) { uint32_t res; __ASM volatile ("LDAEXH %0, [%1]" : "=r" (res) : "r" (ptr) : "memory"); return ((uint16_t)res); } __IAR_FT uint32_t __LDAEX(volatile uint32_t *ptr) { uint32_t res; __ASM volatile ("LDAEX %0, [%1]" : "=r" (res) : "r" (ptr) : "memory"); return res; } __IAR_FT uint32_t __STLEXB(uint8_t value, volatile uint8_t *ptr) { uint32_t res; __ASM volatile ("STLEXB %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory"); return res; } __IAR_FT uint32_t __STLEXH(uint16_t value, volatile uint16_t *ptr) { uint32_t res; __ASM volatile ("STLEXH %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory"); return res; } __IAR_FT uint32_t __STLEX(uint32_t value, volatile uint32_t *ptr) { uint32_t res; __ASM volatile ("STLEX %0, %2, [%1]" : "=r" (res) : "r" (ptr), "r" (value) : "memory"); return res; } #endif /* __ARM_ARCH_8M_MAIN__ or __ARM_ARCH_8M_BASE__ */ #undef __IAR_FT #undef __IAR_M0_FAMILY #undef __ICCARM_V8 #pragma diag_default=Pe940 #pragma diag_default=Pe177 #endif /* __CMSIS_ICCARM_H__ */ Drivers/CMSIS/Include/cmsis_version.h
New file @@ -0,0 +1,39 @@ /**************************************************************************//** * @file cmsis_version.h * @brief CMSIS Core(M) Version definitions * @version V5.0.3 * @date 24. June 2019 ******************************************************************************/ /* * Copyright (c) 2009-2019 ARM Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined ( __ICCARM__ ) #pragma system_include /* treat file as system include file for MISRA check */ #elif defined (__clang__) #pragma clang system_header /* treat file as system include file */ #endif #ifndef __CMSIS_VERSION_H #define __CMSIS_VERSION_H /* CMSIS Version definitions */ #define __CM_CMSIS_VERSION_MAIN ( 5U) /*!< [31:16] CMSIS Core(M) main version */ #define __CM_CMSIS_VERSION_SUB ( 3U) /*!< [15:0] CMSIS Core(M) sub version */ #define __CM_CMSIS_VERSION ((__CM_CMSIS_VERSION_MAIN << 16U) | \ __CM_CMSIS_VERSION_SUB ) /*!< CMSIS Core(M) version number */ #endif Drivers/CMSIS/Include/core_armv81mml.h
New file @@ -0,0 +1,2968 @@ /**************************************************************************//** * @file core_armv81mml.h * @brief CMSIS Armv8.1-M Mainline Core Peripheral Access Layer Header File * @version V1.0.0 * @date 15. March 2019 ******************************************************************************/ /* * Copyright (c) 2018-2019 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined ( __ICCARM__ ) #pragma system_include /* treat file as system include file for MISRA check */ #elif defined (__clang__) #pragma clang system_header /* treat file as system include file */ #endif #ifndef __CORE_ARMV81MML_H_GENERIC #define __CORE_ARMV81MML_H_GENERIC #include <stdint.h> #ifdef __cplusplus extern "C" { #endif /** \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions CMSIS violates the following MISRA-C:2004 rules: \li Required Rule 8.5, object/function definition in header file.<br> Function definitions in header files are used to allow 'inlining'. \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br> Unions are used for effective representation of core registers. \li Advisory Rule 19.7, Function-like macro defined.<br> Function-like macros are used to allow more efficient code. */ /******************************************************************************* * CMSIS definitions ******************************************************************************/ /** \ingroup Cortex_ARMV81MML @{ */ #include "cmsis_version.h" #define __ARM_ARCH_8M_MAIN__ 1 // patching for now /* CMSIS ARMV81MML definitions */ #define __ARMv81MML_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */ #define __ARMv81MML_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */ #define __ARMv81MML_CMSIS_VERSION ((__ARMv81MML_CMSIS_VERSION_MAIN << 16U) | \ __ARMv81MML_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */ #define __CORTEX_M (81U) /*!< Cortex-M Core */ /** __FPU_USED indicates whether an FPU is used or not. For this, __FPU_PRESENT has to be checked prior to making use of FPU specific registers and functions. */ #if defined ( __CC_ARM ) #if defined __TARGET_FPU_VFP #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #if defined(__ARM_FEATURE_DSP) #if defined(__DSP_PRESENT) && (__DSP_PRESENT == 1U) #define __DSP_USED 1U #else #error "Compiler generates DSP (SIMD) instructions for a devices without DSP extensions (check __DSP_PRESENT)" #define __DSP_USED 0U #endif #else #define __DSP_USED 0U #endif #elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) #if defined __ARM_FP #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #if defined(__ARM_FEATURE_DSP) #if defined(__DSP_PRESENT) && (__DSP_PRESENT == 1U) #define __DSP_USED 1U #else #error "Compiler generates DSP (SIMD) instructions for a devices without DSP extensions (check __DSP_PRESENT)" #define __DSP_USED 0U #endif #else #define __DSP_USED 0U #endif #elif defined ( __GNUC__ ) #if defined (__VFP_FP__) && !defined(__SOFTFP__) #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #if defined(__ARM_FEATURE_DSP) #if defined(__DSP_PRESENT) && (__DSP_PRESENT == 1U) #define __DSP_USED 1U #else #error "Compiler generates DSP (SIMD) instructions for a devices without DSP extensions (check __DSP_PRESENT)" #define __DSP_USED 0U #endif #else #define __DSP_USED 0U #endif #elif defined ( __ICCARM__ ) #if defined __ARMVFP__ #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #if defined(__ARM_FEATURE_DSP) #if defined(__DSP_PRESENT) && (__DSP_PRESENT == 1U) #define __DSP_USED 1U #else #error "Compiler generates DSP (SIMD) instructions for a devices without DSP extensions (check __DSP_PRESENT)" #define __DSP_USED 0U #endif #else #define __DSP_USED 0U #endif #elif defined ( __TI_ARM__ ) #if defined __TI_VFP_SUPPORT__ #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #elif defined ( __TASKING__ ) #if defined __FPU_VFP__ #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #elif defined ( __CSMC__ ) #if ( __CSMC__ & 0x400U) #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #endif #include "cmsis_compiler.h" /* CMSIS compiler specific defines */ #ifdef __cplusplus } #endif #endif /* __CORE_ARMV81MML_H_GENERIC */ #ifndef __CMSIS_GENERIC #ifndef __CORE_ARMV81MML_H_DEPENDANT #define __CORE_ARMV81MML_H_DEPENDANT #ifdef __cplusplus extern "C" { #endif /* check device defines and use defaults */ #if defined __CHECK_DEVICE_DEFINES #ifndef __ARMv81MML_REV #define __ARMv81MML_REV 0x0000U #warning "__ARMv81MML_REV not defined in device header file; using default!" #endif #ifndef __FPU_PRESENT #define __FPU_PRESENT 0U #warning "__FPU_PRESENT not defined in device header file; using default!" #endif #ifndef __MPU_PRESENT #define __MPU_PRESENT 0U #warning "__MPU_PRESENT not defined in device header file; using default!" #endif #ifndef __SAUREGION_PRESENT #define __SAUREGION_PRESENT 0U #warning "__SAUREGION_PRESENT not defined in device header file; using default!" #endif #ifndef __DSP_PRESENT #define __DSP_PRESENT 0U #warning "__DSP_PRESENT not defined in device header file; using default!" #endif #ifndef __NVIC_PRIO_BITS #define __NVIC_PRIO_BITS 3U #warning "__NVIC_PRIO_BITS not defined in device header file; using default!" #endif #ifndef __Vendor_SysTickConfig #define __Vendor_SysTickConfig 0U #warning "__Vendor_SysTickConfig not defined in device header file; using default!" #endif #endif /* IO definitions (access restrictions to peripheral registers) */ /** \defgroup CMSIS_glob_defs CMSIS Global Defines <strong>IO Type Qualifiers</strong> are used \li to specify the access to peripheral variables. \li for automatic generation of peripheral register debug information. */ #ifdef __cplusplus #define __I volatile /*!< Defines 'read only' permissions */ #else #define __I volatile const /*!< Defines 'read only' permissions */ #endif #define __O volatile /*!< Defines 'write only' permissions */ #define __IO volatile /*!< Defines 'read / write' permissions */ /* following defines should be used for structure members */ #define __IM volatile const /*! Defines 'read only' structure member permissions */ #define __OM volatile /*! Defines 'write only' structure member permissions */ #define __IOM volatile /*! Defines 'read / write' structure member permissions */ /*@} end of group ARMv81MML */ /******************************************************************************* * Register Abstraction Core Register contain: - Core Register - Core NVIC Register - Core SCB Register - Core SysTick Register - Core Debug Register - Core MPU Register - Core SAU Register - Core FPU Register ******************************************************************************/ /** \defgroup CMSIS_core_register Defines and Type Definitions \brief Type definitions and defines for Cortex-M processor based devices. */ /** \ingroup CMSIS_core_register \defgroup CMSIS_CORE Status and Control Registers \brief Core Register type definitions. @{ */ /** \brief Union type to access the Application Program Status Register (APSR). */ typedef union { struct { uint32_t _reserved0:16; /*!< bit: 0..15 Reserved */ uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */ uint32_t _reserved1:7; /*!< bit: 20..26 Reserved */ uint32_t Q:1; /*!< bit: 27 Saturation condition flag */ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ uint32_t C:1; /*!< bit: 29 Carry condition code flag */ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ uint32_t N:1; /*!< bit: 31 Negative condition code flag */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } APSR_Type; /* APSR Register Definitions */ #define APSR_N_Pos 31U /*!< APSR: N Position */ #define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */ #define APSR_Z_Pos 30U /*!< APSR: Z Position */ #define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */ #define APSR_C_Pos 29U /*!< APSR: C Position */ #define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */ #define APSR_V_Pos 28U /*!< APSR: V Position */ #define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */ #define APSR_Q_Pos 27U /*!< APSR: Q Position */ #define APSR_Q_Msk (1UL << APSR_Q_Pos) /*!< APSR: Q Mask */ #define APSR_GE_Pos 16U /*!< APSR: GE Position */ #define APSR_GE_Msk (0xFUL << APSR_GE_Pos) /*!< APSR: GE Mask */ /** \brief Union type to access the Interrupt Program Status Register (IPSR). */ typedef union { struct { uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } IPSR_Type; /* IPSR Register Definitions */ #define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */ #define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */ /** \brief Union type to access the Special-Purpose Program Status Registers (xPSR). */ typedef union { struct { uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ uint32_t _reserved0:7; /*!< bit: 9..15 Reserved */ uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */ uint32_t _reserved1:4; /*!< bit: 20..23 Reserved */ uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */ uint32_t IT:2; /*!< bit: 25..26 saved IT state (read 0) */ uint32_t Q:1; /*!< bit: 27 Saturation condition flag */ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ uint32_t C:1; /*!< bit: 29 Carry condition code flag */ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ uint32_t N:1; /*!< bit: 31 Negative condition code flag */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } xPSR_Type; /* xPSR Register Definitions */ #define xPSR_N_Pos 31U /*!< xPSR: N Position */ #define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */ #define xPSR_Z_Pos 30U /*!< xPSR: Z Position */ #define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */ #define xPSR_C_Pos 29U /*!< xPSR: C Position */ #define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */ #define xPSR_V_Pos 28U /*!< xPSR: V Position */ #define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */ #define xPSR_Q_Pos 27U /*!< xPSR: Q Position */ #define xPSR_Q_Msk (1UL << xPSR_Q_Pos) /*!< xPSR: Q Mask */ #define xPSR_IT_Pos 25U /*!< xPSR: IT Position */ #define xPSR_IT_Msk (3UL << xPSR_IT_Pos) /*!< xPSR: IT Mask */ #define xPSR_T_Pos 24U /*!< xPSR: T Position */ #define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */ #define xPSR_GE_Pos 16U /*!< xPSR: GE Position */ #define xPSR_GE_Msk (0xFUL << xPSR_GE_Pos) /*!< xPSR: GE Mask */ #define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */ #define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */ /** \brief Union type to access the Control Registers (CONTROL). */ typedef union { struct { uint32_t nPRIV:1; /*!< bit: 0 Execution privilege in Thread mode */ uint32_t SPSEL:1; /*!< bit: 1 Stack-pointer select */ uint32_t FPCA:1; /*!< bit: 2 Floating-point context active */ uint32_t SFPA:1; /*!< bit: 3 Secure floating-point active */ uint32_t _reserved1:28; /*!< bit: 4..31 Reserved */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } CONTROL_Type; /* CONTROL Register Definitions */ #define CONTROL_SFPA_Pos 3U /*!< CONTROL: SFPA Position */ #define CONTROL_SFPA_Msk (1UL << CONTROL_SFPA_Pos) /*!< CONTROL: SFPA Mask */ #define CONTROL_FPCA_Pos 2U /*!< CONTROL: FPCA Position */ #define CONTROL_FPCA_Msk (1UL << CONTROL_FPCA_Pos) /*!< CONTROL: FPCA Mask */ #define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */ #define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */ #define CONTROL_nPRIV_Pos 0U /*!< CONTROL: nPRIV Position */ #define CONTROL_nPRIV_Msk (1UL /*<< CONTROL_nPRIV_Pos*/) /*!< CONTROL: nPRIV Mask */ /*@} end of group CMSIS_CORE */ /** \ingroup CMSIS_core_register \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC) \brief Type definitions for the NVIC Registers @{ */ /** \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC). */ typedef struct { __IOM uint32_t ISER[16U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */ uint32_t RESERVED0[16U]; __IOM uint32_t ICER[16U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */ uint32_t RSERVED1[16U]; __IOM uint32_t ISPR[16U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */ uint32_t RESERVED2[16U]; __IOM uint32_t ICPR[16U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */ uint32_t RESERVED3[16U]; __IOM uint32_t IABR[16U]; /*!< Offset: 0x200 (R/W) Interrupt Active bit Register */ uint32_t RESERVED4[16U]; __IOM uint32_t ITNS[16U]; /*!< Offset: 0x280 (R/W) Interrupt Non-Secure State Register */ uint32_t RESERVED5[16U]; __IOM uint8_t IPR[496U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register (8Bit wide) */ uint32_t RESERVED6[580U]; __OM uint32_t STIR; /*!< Offset: 0xE00 ( /W) Software Trigger Interrupt Register */ } NVIC_Type; /* Software Triggered Interrupt Register Definitions */ #define NVIC_STIR_INTID_Pos 0U /*!< STIR: INTLINESNUM Position */ #define NVIC_STIR_INTID_Msk (0x1FFUL /*<< NVIC_STIR_INTID_Pos*/) /*!< STIR: INTLINESNUM Mask */ /*@} end of group CMSIS_NVIC */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SCB System Control Block (SCB) \brief Type definitions for the System Control Block Registers @{ */ /** \brief Structure type to access the System Control Block (SCB). */ typedef struct { __IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */ __IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */ __IOM uint32_t VTOR; /*!< Offset: 0x008 (R/W) Vector Table Offset Register */ __IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */ __IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */ __IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */ __IOM uint8_t SHPR[12U]; /*!< Offset: 0x018 (R/W) System Handlers Priority Registers (4-7, 8-11, 12-15) */ __IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */ __IOM uint32_t CFSR; /*!< Offset: 0x028 (R/W) Configurable Fault Status Register */ __IOM uint32_t HFSR; /*!< Offset: 0x02C (R/W) HardFault Status Register */ __IOM uint32_t DFSR; /*!< Offset: 0x030 (R/W) Debug Fault Status Register */ __IOM uint32_t MMFAR; /*!< Offset: 0x034 (R/W) MemManage Fault Address Register */ __IOM uint32_t BFAR; /*!< Offset: 0x038 (R/W) BusFault Address Register */ __IOM uint32_t AFSR; /*!< Offset: 0x03C (R/W) Auxiliary Fault Status Register */ __IM uint32_t ID_PFR[2U]; /*!< Offset: 0x040 (R/ ) Processor Feature Register */ __IM uint32_t ID_DFR; /*!< Offset: 0x048 (R/ ) Debug Feature Register */ __IM uint32_t ID_ADR; /*!< Offset: 0x04C (R/ ) Auxiliary Feature Register */ __IM uint32_t ID_MMFR[4U]; /*!< Offset: 0x050 (R/ ) Memory Model Feature Register */ __IM uint32_t ID_ISAR[6U]; /*!< Offset: 0x060 (R/ ) Instruction Set Attributes Register */ __IM uint32_t CLIDR; /*!< Offset: 0x078 (R/ ) Cache Level ID register */ __IM uint32_t CTR; /*!< Offset: 0x07C (R/ ) Cache Type register */ __IM uint32_t CCSIDR; /*!< Offset: 0x080 (R/ ) Cache Size ID Register */ __IOM uint32_t CSSELR; /*!< Offset: 0x084 (R/W) Cache Size Selection Register */ __IOM uint32_t CPACR; /*!< Offset: 0x088 (R/W) Coprocessor Access Control Register */ __IOM uint32_t NSACR; /*!< Offset: 0x08C (R/W) Non-Secure Access Control Register */ uint32_t RESERVED3[92U]; __OM uint32_t STIR; /*!< Offset: 0x200 ( /W) Software Triggered Interrupt Register */ uint32_t RESERVED4[15U]; __IM uint32_t MVFR0; /*!< Offset: 0x240 (R/ ) Media and VFP Feature Register 0 */ __IM uint32_t MVFR1; /*!< Offset: 0x244 (R/ ) Media and VFP Feature Register 1 */ __IM uint32_t MVFR2; /*!< Offset: 0x248 (R/ ) Media and VFP Feature Register 2 */ uint32_t RESERVED5[1U]; __OM uint32_t ICIALLU; /*!< Offset: 0x250 ( /W) I-Cache Invalidate All to PoU */ uint32_t RESERVED6[1U]; __OM uint32_t ICIMVAU; /*!< Offset: 0x258 ( /W) I-Cache Invalidate by MVA to PoU */ __OM uint32_t DCIMVAC; /*!< Offset: 0x25C ( /W) D-Cache Invalidate by MVA to PoC */ __OM uint32_t DCISW; /*!< Offset: 0x260 ( /W) D-Cache Invalidate by Set-way */ __OM uint32_t DCCMVAU; /*!< Offset: 0x264 ( /W) D-Cache Clean by MVA to PoU */ __OM uint32_t DCCMVAC; /*!< Offset: 0x268 ( /W) D-Cache Clean by MVA to PoC */ __OM uint32_t DCCSW; /*!< Offset: 0x26C ( /W) D-Cache Clean by Set-way */ __OM uint32_t DCCIMVAC; /*!< Offset: 0x270 ( /W) D-Cache Clean and Invalidate by MVA to PoC */ __OM uint32_t DCCISW; /*!< Offset: 0x274 ( /W) D-Cache Clean and Invalidate by Set-way */ uint32_t RESERVED7[6U]; __IOM uint32_t ITCMCR; /*!< Offset: 0x290 (R/W) Instruction Tightly-Coupled Memory Control Register */ __IOM uint32_t DTCMCR; /*!< Offset: 0x294 (R/W) Data Tightly-Coupled Memory Control Registers */ __IOM uint32_t AHBPCR; /*!< Offset: 0x298 (R/W) AHBP Control Register */ __IOM uint32_t CACR; /*!< Offset: 0x29C (R/W) L1 Cache Control Register */ __IOM uint32_t AHBSCR; /*!< Offset: 0x2A0 (R/W) AHB Slave Control Register */ uint32_t RESERVED8[1U]; __IOM uint32_t ABFSR; /*!< Offset: 0x2A8 (R/W) Auxiliary Bus Fault Status Register */ } SCB_Type; /* SCB CPUID Register Definitions */ #define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */ #define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */ #define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */ #define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */ #define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */ #define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */ #define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */ #define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */ #define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */ #define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */ /* SCB Interrupt Control State Register Definitions */ #define SCB_ICSR_PENDNMISET_Pos 31U /*!< SCB ICSR: PENDNMISET Position */ #define SCB_ICSR_PENDNMISET_Msk (1UL << SCB_ICSR_PENDNMISET_Pos) /*!< SCB ICSR: PENDNMISET Mask */ #define SCB_ICSR_NMIPENDSET_Pos SCB_ICSR_PENDNMISET_Pos /*!< SCB ICSR: NMIPENDSET Position, backward compatibility */ #define SCB_ICSR_NMIPENDSET_Msk SCB_ICSR_PENDNMISET_Msk /*!< SCB ICSR: NMIPENDSET Mask, backward compatibility */ #define SCB_ICSR_PENDNMICLR_Pos 30U /*!< SCB ICSR: PENDNMICLR Position */ #define SCB_ICSR_PENDNMICLR_Msk (1UL << SCB_ICSR_PENDNMICLR_Pos) /*!< SCB ICSR: PENDNMICLR Mask */ #define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */ #define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */ #define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */ #define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */ #define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */ #define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */ #define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */ #define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */ #define SCB_ICSR_STTNS_Pos 24U /*!< SCB ICSR: STTNS Position (Security Extension) */ #define SCB_ICSR_STTNS_Msk (1UL << SCB_ICSR_STTNS_Pos) /*!< SCB ICSR: STTNS Mask (Security Extension) */ #define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */ #define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */ #define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */ #define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */ #define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */ #define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */ #define SCB_ICSR_RETTOBASE_Pos 11U /*!< SCB ICSR: RETTOBASE Position */ #define SCB_ICSR_RETTOBASE_Msk (1UL << SCB_ICSR_RETTOBASE_Pos) /*!< SCB ICSR: RETTOBASE Mask */ #define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */ #define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */ /* SCB Vector Table Offset Register Definitions */ #define SCB_VTOR_TBLOFF_Pos 7U /*!< SCB VTOR: TBLOFF Position */ #define SCB_VTOR_TBLOFF_Msk (0x1FFFFFFUL << SCB_VTOR_TBLOFF_Pos) /*!< SCB VTOR: TBLOFF Mask */ /* SCB Application Interrupt and Reset Control Register Definitions */ #define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */ #define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */ #define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */ #define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */ #define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */ #define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */ #define SCB_AIRCR_PRIS_Pos 14U /*!< SCB AIRCR: PRIS Position */ #define SCB_AIRCR_PRIS_Msk (1UL << SCB_AIRCR_PRIS_Pos) /*!< SCB AIRCR: PRIS Mask */ #define SCB_AIRCR_BFHFNMINS_Pos 13U /*!< SCB AIRCR: BFHFNMINS Position */ #define SCB_AIRCR_BFHFNMINS_Msk (1UL << SCB_AIRCR_BFHFNMINS_Pos) /*!< SCB AIRCR: BFHFNMINS Mask */ #define SCB_AIRCR_PRIGROUP_Pos 8U /*!< SCB AIRCR: PRIGROUP Position */ #define SCB_AIRCR_PRIGROUP_Msk (7UL << SCB_AIRCR_PRIGROUP_Pos) /*!< SCB AIRCR: PRIGROUP Mask */ #define SCB_AIRCR_SYSRESETREQS_Pos 3U /*!< SCB AIRCR: SYSRESETREQS Position */ #define SCB_AIRCR_SYSRESETREQS_Msk (1UL << SCB_AIRCR_SYSRESETREQS_Pos) /*!< SCB AIRCR: SYSRESETREQS Mask */ #define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */ #define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */ #define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */ #define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */ /* SCB System Control Register Definitions */ #define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */ #define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */ #define SCB_SCR_SLEEPDEEPS_Pos 3U /*!< SCB SCR: SLEEPDEEPS Position */ #define SCB_SCR_SLEEPDEEPS_Msk (1UL << SCB_SCR_SLEEPDEEPS_Pos) /*!< SCB SCR: SLEEPDEEPS Mask */ #define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */ #define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */ #define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */ #define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */ /* SCB Configuration Control Register Definitions */ #define SCB_CCR_BP_Pos 18U /*!< SCB CCR: BP Position */ #define SCB_CCR_BP_Msk (1UL << SCB_CCR_BP_Pos) /*!< SCB CCR: BP Mask */ #define SCB_CCR_IC_Pos 17U /*!< SCB CCR: IC Position */ #define SCB_CCR_IC_Msk (1UL << SCB_CCR_IC_Pos) /*!< SCB CCR: IC Mask */ #define SCB_CCR_DC_Pos 16U /*!< SCB CCR: DC Position */ #define SCB_CCR_DC_Msk (1UL << SCB_CCR_DC_Pos) /*!< SCB CCR: DC Mask */ #define SCB_CCR_STKOFHFNMIGN_Pos 10U /*!< SCB CCR: STKOFHFNMIGN Position */ #define SCB_CCR_STKOFHFNMIGN_Msk (1UL << SCB_CCR_STKOFHFNMIGN_Pos) /*!< SCB CCR: STKOFHFNMIGN Mask */ #define SCB_CCR_BFHFNMIGN_Pos 8U /*!< SCB CCR: BFHFNMIGN Position */ #define SCB_CCR_BFHFNMIGN_Msk (1UL << SCB_CCR_BFHFNMIGN_Pos) /*!< SCB CCR: BFHFNMIGN Mask */ #define SCB_CCR_DIV_0_TRP_Pos 4U /*!< SCB CCR: DIV_0_TRP Position */ #define SCB_CCR_DIV_0_TRP_Msk (1UL << SCB_CCR_DIV_0_TRP_Pos) /*!< SCB CCR: DIV_0_TRP Mask */ #define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */ #define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */ #define SCB_CCR_USERSETMPEND_Pos 1U /*!< SCB CCR: USERSETMPEND Position */ #define SCB_CCR_USERSETMPEND_Msk (1UL << SCB_CCR_USERSETMPEND_Pos) /*!< SCB CCR: USERSETMPEND Mask */ /* SCB System Handler Control and State Register Definitions */ #define SCB_SHCSR_HARDFAULTPENDED_Pos 21U /*!< SCB SHCSR: HARDFAULTPENDED Position */ #define SCB_SHCSR_HARDFAULTPENDED_Msk (1UL << SCB_SHCSR_HARDFAULTPENDED_Pos) /*!< SCB SHCSR: HARDFAULTPENDED Mask */ #define SCB_SHCSR_SECUREFAULTPENDED_Pos 20U /*!< SCB SHCSR: SECUREFAULTPENDED Position */ #define SCB_SHCSR_SECUREFAULTPENDED_Msk (1UL << SCB_SHCSR_SECUREFAULTPENDED_Pos) /*!< SCB SHCSR: SECUREFAULTPENDED Mask */ #define SCB_SHCSR_SECUREFAULTENA_Pos 19U /*!< SCB SHCSR: SECUREFAULTENA Position */ #define SCB_SHCSR_SECUREFAULTENA_Msk (1UL << SCB_SHCSR_SECUREFAULTENA_Pos) /*!< SCB SHCSR: SECUREFAULTENA Mask */ #define SCB_SHCSR_USGFAULTENA_Pos 18U /*!< SCB SHCSR: USGFAULTENA Position */ #define SCB_SHCSR_USGFAULTENA_Msk (1UL << SCB_SHCSR_USGFAULTENA_Pos) /*!< SCB SHCSR: USGFAULTENA Mask */ #define SCB_SHCSR_BUSFAULTENA_Pos 17U /*!< SCB SHCSR: BUSFAULTENA Position */ #define SCB_SHCSR_BUSFAULTENA_Msk (1UL << SCB_SHCSR_BUSFAULTENA_Pos) /*!< SCB SHCSR: BUSFAULTENA Mask */ #define SCB_SHCSR_MEMFAULTENA_Pos 16U /*!< SCB SHCSR: MEMFAULTENA Position */ #define SCB_SHCSR_MEMFAULTENA_Msk (1UL << SCB_SHCSR_MEMFAULTENA_Pos) /*!< SCB SHCSR: MEMFAULTENA Mask */ #define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */ #define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */ #define SCB_SHCSR_BUSFAULTPENDED_Pos 14U /*!< SCB SHCSR: BUSFAULTPENDED Position */ #define SCB_SHCSR_BUSFAULTPENDED_Msk (1UL << SCB_SHCSR_BUSFAULTPENDED_Pos) /*!< SCB SHCSR: BUSFAULTPENDED Mask */ #define SCB_SHCSR_MEMFAULTPENDED_Pos 13U /*!< SCB SHCSR: MEMFAULTPENDED Position */ #define SCB_SHCSR_MEMFAULTPENDED_Msk (1UL << SCB_SHCSR_MEMFAULTPENDED_Pos) /*!< SCB SHCSR: MEMFAULTPENDED Mask */ #define SCB_SHCSR_USGFAULTPENDED_Pos 12U /*!< SCB SHCSR: USGFAULTPENDED Position */ #define SCB_SHCSR_USGFAULTPENDED_Msk (1UL << SCB_SHCSR_USGFAULTPENDED_Pos) /*!< SCB SHCSR: USGFAULTPENDED Mask */ #define SCB_SHCSR_SYSTICKACT_Pos 11U /*!< SCB SHCSR: SYSTICKACT Position */ #define SCB_SHCSR_SYSTICKACT_Msk (1UL << SCB_SHCSR_SYSTICKACT_Pos) /*!< SCB SHCSR: SYSTICKACT Mask */ #define SCB_SHCSR_PENDSVACT_Pos 10U /*!< SCB SHCSR: PENDSVACT Position */ #define SCB_SHCSR_PENDSVACT_Msk (1UL << SCB_SHCSR_PENDSVACT_Pos) /*!< SCB SHCSR: PENDSVACT Mask */ #define SCB_SHCSR_MONITORACT_Pos 8U /*!< SCB SHCSR: MONITORACT Position */ #define SCB_SHCSR_MONITORACT_Msk (1UL << SCB_SHCSR_MONITORACT_Pos) /*!< SCB SHCSR: MONITORACT Mask */ #define SCB_SHCSR_SVCALLACT_Pos 7U /*!< SCB SHCSR: SVCALLACT Position */ #define SCB_SHCSR_SVCALLACT_Msk (1UL << SCB_SHCSR_SVCALLACT_Pos) /*!< SCB SHCSR: SVCALLACT Mask */ #define SCB_SHCSR_NMIACT_Pos 5U /*!< SCB SHCSR: NMIACT Position */ #define SCB_SHCSR_NMIACT_Msk (1UL << SCB_SHCSR_NMIACT_Pos) /*!< SCB SHCSR: NMIACT Mask */ #define SCB_SHCSR_SECUREFAULTACT_Pos 4U /*!< SCB SHCSR: SECUREFAULTACT Position */ #define SCB_SHCSR_SECUREFAULTACT_Msk (1UL << SCB_SHCSR_SECUREFAULTACT_Pos) /*!< SCB SHCSR: SECUREFAULTACT Mask */ #define SCB_SHCSR_USGFAULTACT_Pos 3U /*!< SCB SHCSR: USGFAULTACT Position */ #define SCB_SHCSR_USGFAULTACT_Msk (1UL << SCB_SHCSR_USGFAULTACT_Pos) /*!< SCB SHCSR: USGFAULTACT Mask */ #define SCB_SHCSR_HARDFAULTACT_Pos 2U /*!< SCB SHCSR: HARDFAULTACT Position */ #define SCB_SHCSR_HARDFAULTACT_Msk (1UL << SCB_SHCSR_HARDFAULTACT_Pos) /*!< SCB SHCSR: HARDFAULTACT Mask */ #define SCB_SHCSR_BUSFAULTACT_Pos 1U /*!< SCB SHCSR: BUSFAULTACT Position */ #define SCB_SHCSR_BUSFAULTACT_Msk (1UL << SCB_SHCSR_BUSFAULTACT_Pos) /*!< SCB SHCSR: BUSFAULTACT Mask */ #define SCB_SHCSR_MEMFAULTACT_Pos 0U /*!< SCB SHCSR: MEMFAULTACT Position */ #define SCB_SHCSR_MEMFAULTACT_Msk (1UL /*<< SCB_SHCSR_MEMFAULTACT_Pos*/) /*!< SCB SHCSR: MEMFAULTACT Mask */ /* SCB Configurable Fault Status Register Definitions */ #define SCB_CFSR_USGFAULTSR_Pos 16U /*!< SCB CFSR: Usage Fault Status Register Position */ #define SCB_CFSR_USGFAULTSR_Msk (0xFFFFUL << SCB_CFSR_USGFAULTSR_Pos) /*!< SCB CFSR: Usage Fault Status Register Mask */ #define SCB_CFSR_BUSFAULTSR_Pos 8U /*!< SCB CFSR: Bus Fault Status Register Position */ #define SCB_CFSR_BUSFAULTSR_Msk (0xFFUL << SCB_CFSR_BUSFAULTSR_Pos) /*!< SCB CFSR: Bus Fault Status Register Mask */ #define SCB_CFSR_MEMFAULTSR_Pos 0U /*!< SCB CFSR: Memory Manage Fault Status Register Position */ #define SCB_CFSR_MEMFAULTSR_Msk (0xFFUL /*<< SCB_CFSR_MEMFAULTSR_Pos*/) /*!< SCB CFSR: Memory Manage Fault Status Register Mask */ /* MemManage Fault Status Register (part of SCB Configurable Fault Status Register) */ #define SCB_CFSR_MMARVALID_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 7U) /*!< SCB CFSR (MMFSR): MMARVALID Position */ #define SCB_CFSR_MMARVALID_Msk (1UL << SCB_CFSR_MMARVALID_Pos) /*!< SCB CFSR (MMFSR): MMARVALID Mask */ #define SCB_CFSR_MLSPERR_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 5U) /*!< SCB CFSR (MMFSR): MLSPERR Position */ #define SCB_CFSR_MLSPERR_Msk (1UL << SCB_CFSR_MLSPERR_Pos) /*!< SCB CFSR (MMFSR): MLSPERR Mask */ #define SCB_CFSR_MSTKERR_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 4U) /*!< SCB CFSR (MMFSR): MSTKERR Position */ #define SCB_CFSR_MSTKERR_Msk (1UL << SCB_CFSR_MSTKERR_Pos) /*!< SCB CFSR (MMFSR): MSTKERR Mask */ #define SCB_CFSR_MUNSTKERR_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 3U) /*!< SCB CFSR (MMFSR): MUNSTKERR Position */ #define SCB_CFSR_MUNSTKERR_Msk (1UL << SCB_CFSR_MUNSTKERR_Pos) /*!< SCB CFSR (MMFSR): MUNSTKERR Mask */ #define SCB_CFSR_DACCVIOL_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 1U) /*!< SCB CFSR (MMFSR): DACCVIOL Position */ #define SCB_CFSR_DACCVIOL_Msk (1UL << SCB_CFSR_DACCVIOL_Pos) /*!< SCB CFSR (MMFSR): DACCVIOL Mask */ #define SCB_CFSR_IACCVIOL_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 0U) /*!< SCB CFSR (MMFSR): IACCVIOL Position */ #define SCB_CFSR_IACCVIOL_Msk (1UL /*<< SCB_CFSR_IACCVIOL_Pos*/) /*!< SCB CFSR (MMFSR): IACCVIOL Mask */ /* BusFault Status Register (part of SCB Configurable Fault Status Register) */ #define SCB_CFSR_BFARVALID_Pos (SCB_CFSR_BUSFAULTSR_Pos + 7U) /*!< SCB CFSR (BFSR): BFARVALID Position */ #define SCB_CFSR_BFARVALID_Msk (1UL << SCB_CFSR_BFARVALID_Pos) /*!< SCB CFSR (BFSR): BFARVALID Mask */ #define SCB_CFSR_LSPERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 5U) /*!< SCB CFSR (BFSR): LSPERR Position */ #define SCB_CFSR_LSPERR_Msk (1UL << SCB_CFSR_LSPERR_Pos) /*!< SCB CFSR (BFSR): LSPERR Mask */ #define SCB_CFSR_STKERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 4U) /*!< SCB CFSR (BFSR): STKERR Position */ #define SCB_CFSR_STKERR_Msk (1UL << SCB_CFSR_STKERR_Pos) /*!< SCB CFSR (BFSR): STKERR Mask */ #define SCB_CFSR_UNSTKERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 3U) /*!< SCB CFSR (BFSR): UNSTKERR Position */ #define SCB_CFSR_UNSTKERR_Msk (1UL << SCB_CFSR_UNSTKERR_Pos) /*!< SCB CFSR (BFSR): UNSTKERR Mask */ #define SCB_CFSR_IMPRECISERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 2U) /*!< SCB CFSR (BFSR): IMPRECISERR Position */ #define SCB_CFSR_IMPRECISERR_Msk (1UL << SCB_CFSR_IMPRECISERR_Pos) /*!< SCB CFSR (BFSR): IMPRECISERR Mask */ #define SCB_CFSR_PRECISERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 1U) /*!< SCB CFSR (BFSR): PRECISERR Position */ #define SCB_CFSR_PRECISERR_Msk (1UL << SCB_CFSR_PRECISERR_Pos) /*!< SCB CFSR (BFSR): PRECISERR Mask */ #define SCB_CFSR_IBUSERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 0U) /*!< SCB CFSR (BFSR): IBUSERR Position */ #define SCB_CFSR_IBUSERR_Msk (1UL << SCB_CFSR_IBUSERR_Pos) /*!< SCB CFSR (BFSR): IBUSERR Mask */ /* UsageFault Status Register (part of SCB Configurable Fault Status Register) */ #define SCB_CFSR_DIVBYZERO_Pos (SCB_CFSR_USGFAULTSR_Pos + 9U) /*!< SCB CFSR (UFSR): DIVBYZERO Position */ #define SCB_CFSR_DIVBYZERO_Msk (1UL << SCB_CFSR_DIVBYZERO_Pos) /*!< SCB CFSR (UFSR): DIVBYZERO Mask */ #define SCB_CFSR_UNALIGNED_Pos (SCB_CFSR_USGFAULTSR_Pos + 8U) /*!< SCB CFSR (UFSR): UNALIGNED Position */ #define SCB_CFSR_UNALIGNED_Msk (1UL << SCB_CFSR_UNALIGNED_Pos) /*!< SCB CFSR (UFSR): UNALIGNED Mask */ #define SCB_CFSR_STKOF_Pos (SCB_CFSR_USGFAULTSR_Pos + 4U) /*!< SCB CFSR (UFSR): STKOF Position */ #define SCB_CFSR_STKOF_Msk (1UL << SCB_CFSR_STKOF_Pos) /*!< SCB CFSR (UFSR): STKOF Mask */ #define SCB_CFSR_NOCP_Pos (SCB_CFSR_USGFAULTSR_Pos + 3U) /*!< SCB CFSR (UFSR): NOCP Position */ #define SCB_CFSR_NOCP_Msk (1UL << SCB_CFSR_NOCP_Pos) /*!< SCB CFSR (UFSR): NOCP Mask */ #define SCB_CFSR_INVPC_Pos (SCB_CFSR_USGFAULTSR_Pos + 2U) /*!< SCB CFSR (UFSR): INVPC Position */ #define SCB_CFSR_INVPC_Msk (1UL << SCB_CFSR_INVPC_Pos) /*!< SCB CFSR (UFSR): INVPC Mask */ #define SCB_CFSR_INVSTATE_Pos (SCB_CFSR_USGFAULTSR_Pos + 1U) /*!< SCB CFSR (UFSR): INVSTATE Position */ #define SCB_CFSR_INVSTATE_Msk (1UL << SCB_CFSR_INVSTATE_Pos) /*!< SCB CFSR (UFSR): INVSTATE Mask */ #define SCB_CFSR_UNDEFINSTR_Pos (SCB_CFSR_USGFAULTSR_Pos + 0U) /*!< SCB CFSR (UFSR): UNDEFINSTR Position */ #define SCB_CFSR_UNDEFINSTR_Msk (1UL << SCB_CFSR_UNDEFINSTR_Pos) /*!< SCB CFSR (UFSR): UNDEFINSTR Mask */ /* SCB Hard Fault Status Register Definitions */ #define SCB_HFSR_DEBUGEVT_Pos 31U /*!< SCB HFSR: DEBUGEVT Position */ #define SCB_HFSR_DEBUGEVT_Msk (1UL << SCB_HFSR_DEBUGEVT_Pos) /*!< SCB HFSR: DEBUGEVT Mask */ #define SCB_HFSR_FORCED_Pos 30U /*!< SCB HFSR: FORCED Position */ #define SCB_HFSR_FORCED_Msk (1UL << SCB_HFSR_FORCED_Pos) /*!< SCB HFSR: FORCED Mask */ #define SCB_HFSR_VECTTBL_Pos 1U /*!< SCB HFSR: VECTTBL Position */ #define SCB_HFSR_VECTTBL_Msk (1UL << SCB_HFSR_VECTTBL_Pos) /*!< SCB HFSR: VECTTBL Mask */ /* SCB Debug Fault Status Register Definitions */ #define SCB_DFSR_EXTERNAL_Pos 4U /*!< SCB DFSR: EXTERNAL Position */ #define SCB_DFSR_EXTERNAL_Msk (1UL << SCB_DFSR_EXTERNAL_Pos) /*!< SCB DFSR: EXTERNAL Mask */ #define SCB_DFSR_VCATCH_Pos 3U /*!< SCB DFSR: VCATCH Position */ #define SCB_DFSR_VCATCH_Msk (1UL << SCB_DFSR_VCATCH_Pos) /*!< SCB DFSR: VCATCH Mask */ #define SCB_DFSR_DWTTRAP_Pos 2U /*!< SCB DFSR: DWTTRAP Position */ #define SCB_DFSR_DWTTRAP_Msk (1UL << SCB_DFSR_DWTTRAP_Pos) /*!< SCB DFSR: DWTTRAP Mask */ #define SCB_DFSR_BKPT_Pos 1U /*!< SCB DFSR: BKPT Position */ #define SCB_DFSR_BKPT_Msk (1UL << SCB_DFSR_BKPT_Pos) /*!< SCB DFSR: BKPT Mask */ #define SCB_DFSR_HALTED_Pos 0U /*!< SCB DFSR: HALTED Position */ #define SCB_DFSR_HALTED_Msk (1UL /*<< SCB_DFSR_HALTED_Pos*/) /*!< SCB DFSR: HALTED Mask */ /* SCB Non-Secure Access Control Register Definitions */ #define SCB_NSACR_CP11_Pos 11U /*!< SCB NSACR: CP11 Position */ #define SCB_NSACR_CP11_Msk (1UL << SCB_NSACR_CP11_Pos) /*!< SCB NSACR: CP11 Mask */ #define SCB_NSACR_CP10_Pos 10U /*!< SCB NSACR: CP10 Position */ #define SCB_NSACR_CP10_Msk (1UL << SCB_NSACR_CP10_Pos) /*!< SCB NSACR: CP10 Mask */ #define SCB_NSACR_CPn_Pos 0U /*!< SCB NSACR: CPn Position */ #define SCB_NSACR_CPn_Msk (1UL /*<< SCB_NSACR_CPn_Pos*/) /*!< SCB NSACR: CPn Mask */ /* SCB Cache Level ID Register Definitions */ #define SCB_CLIDR_LOUU_Pos 27U /*!< SCB CLIDR: LoUU Position */ #define SCB_CLIDR_LOUU_Msk (7UL << SCB_CLIDR_LOUU_Pos) /*!< SCB CLIDR: LoUU Mask */ #define SCB_CLIDR_LOC_Pos 24U /*!< SCB CLIDR: LoC Position */ #define SCB_CLIDR_LOC_Msk (7UL << SCB_CLIDR_LOC_Pos) /*!< SCB CLIDR: LoC Mask */ /* SCB Cache Type Register Definitions */ #define SCB_CTR_FORMAT_Pos 29U /*!< SCB CTR: Format Position */ #define SCB_CTR_FORMAT_Msk (7UL << SCB_CTR_FORMAT_Pos) /*!< SCB CTR: Format Mask */ #define SCB_CTR_CWG_Pos 24U /*!< SCB CTR: CWG Position */ #define SCB_CTR_CWG_Msk (0xFUL << SCB_CTR_CWG_Pos) /*!< SCB CTR: CWG Mask */ #define SCB_CTR_ERG_Pos 20U /*!< SCB CTR: ERG Position */ #define SCB_CTR_ERG_Msk (0xFUL << SCB_CTR_ERG_Pos) /*!< SCB CTR: ERG Mask */ #define SCB_CTR_DMINLINE_Pos 16U /*!< SCB CTR: DminLine Position */ #define SCB_CTR_DMINLINE_Msk (0xFUL << SCB_CTR_DMINLINE_Pos) /*!< SCB CTR: DminLine Mask */ #define SCB_CTR_IMINLINE_Pos 0U /*!< SCB CTR: ImInLine Position */ #define SCB_CTR_IMINLINE_Msk (0xFUL /*<< SCB_CTR_IMINLINE_Pos*/) /*!< SCB CTR: ImInLine Mask */ /* SCB Cache Size ID Register Definitions */ #define SCB_CCSIDR_WT_Pos 31U /*!< SCB CCSIDR: WT Position */ #define SCB_CCSIDR_WT_Msk (1UL << SCB_CCSIDR_WT_Pos) /*!< SCB CCSIDR: WT Mask */ #define SCB_CCSIDR_WB_Pos 30U /*!< SCB CCSIDR: WB Position */ #define SCB_CCSIDR_WB_Msk (1UL << SCB_CCSIDR_WB_Pos) /*!< SCB CCSIDR: WB Mask */ #define SCB_CCSIDR_RA_Pos 29U /*!< SCB CCSIDR: RA Position */ #define SCB_CCSIDR_RA_Msk (1UL << SCB_CCSIDR_RA_Pos) /*!< SCB CCSIDR: RA Mask */ #define SCB_CCSIDR_WA_Pos 28U /*!< SCB CCSIDR: WA Position */ #define SCB_CCSIDR_WA_Msk (1UL << SCB_CCSIDR_WA_Pos) /*!< SCB CCSIDR: WA Mask */ #define SCB_CCSIDR_NUMSETS_Pos 13U /*!< SCB CCSIDR: NumSets Position */ #define SCB_CCSIDR_NUMSETS_Msk (0x7FFFUL << SCB_CCSIDR_NUMSETS_Pos) /*!< SCB CCSIDR: NumSets Mask */ #define SCB_CCSIDR_ASSOCIATIVITY_Pos 3U /*!< SCB CCSIDR: Associativity Position */ #define SCB_CCSIDR_ASSOCIATIVITY_Msk (0x3FFUL << SCB_CCSIDR_ASSOCIATIVITY_Pos) /*!< SCB CCSIDR: Associativity Mask */ #define SCB_CCSIDR_LINESIZE_Pos 0U /*!< SCB CCSIDR: LineSize Position */ #define SCB_CCSIDR_LINESIZE_Msk (7UL /*<< SCB_CCSIDR_LINESIZE_Pos*/) /*!< SCB CCSIDR: LineSize Mask */ /* SCB Cache Size Selection Register Definitions */ #define SCB_CSSELR_LEVEL_Pos 1U /*!< SCB CSSELR: Level Position */ #define SCB_CSSELR_LEVEL_Msk (7UL << SCB_CSSELR_LEVEL_Pos) /*!< SCB CSSELR: Level Mask */ #define SCB_CSSELR_IND_Pos 0U /*!< SCB CSSELR: InD Position */ #define SCB_CSSELR_IND_Msk (1UL /*<< SCB_CSSELR_IND_Pos*/) /*!< SCB CSSELR: InD Mask */ /* SCB Software Triggered Interrupt Register Definitions */ #define SCB_STIR_INTID_Pos 0U /*!< SCB STIR: INTID Position */ #define SCB_STIR_INTID_Msk (0x1FFUL /*<< SCB_STIR_INTID_Pos*/) /*!< SCB STIR: INTID Mask */ /* SCB D-Cache Invalidate by Set-way Register Definitions */ #define SCB_DCISW_WAY_Pos 30U /*!< SCB DCISW: Way Position */ #define SCB_DCISW_WAY_Msk (3UL << SCB_DCISW_WAY_Pos) /*!< SCB DCISW: Way Mask */ #define SCB_DCISW_SET_Pos 5U /*!< SCB DCISW: Set Position */ #define SCB_DCISW_SET_Msk (0x1FFUL << SCB_DCISW_SET_Pos) /*!< SCB DCISW: Set Mask */ /* SCB D-Cache Clean by Set-way Register Definitions */ #define SCB_DCCSW_WAY_Pos 30U /*!< SCB DCCSW: Way Position */ #define SCB_DCCSW_WAY_Msk (3UL << SCB_DCCSW_WAY_Pos) /*!< SCB DCCSW: Way Mask */ #define SCB_DCCSW_SET_Pos 5U /*!< SCB DCCSW: Set Position */ #define SCB_DCCSW_SET_Msk (0x1FFUL << SCB_DCCSW_SET_Pos) /*!< SCB DCCSW: Set Mask */ /* SCB D-Cache Clean and Invalidate by Set-way Register Definitions */ #define SCB_DCCISW_WAY_Pos 30U /*!< SCB DCCISW: Way Position */ #define SCB_DCCISW_WAY_Msk (3UL << SCB_DCCISW_WAY_Pos) /*!< SCB DCCISW: Way Mask */ #define SCB_DCCISW_SET_Pos 5U /*!< SCB DCCISW: Set Position */ #define SCB_DCCISW_SET_Msk (0x1FFUL << SCB_DCCISW_SET_Pos) /*!< SCB DCCISW: Set Mask */ /* Instruction Tightly-Coupled Memory Control Register Definitions */ #define SCB_ITCMCR_SZ_Pos 3U /*!< SCB ITCMCR: SZ Position */ #define SCB_ITCMCR_SZ_Msk (0xFUL << SCB_ITCMCR_SZ_Pos) /*!< SCB ITCMCR: SZ Mask */ #define SCB_ITCMCR_RETEN_Pos 2U /*!< SCB ITCMCR: RETEN Position */ #define SCB_ITCMCR_RETEN_Msk (1UL << SCB_ITCMCR_RETEN_Pos) /*!< SCB ITCMCR: RETEN Mask */ #define SCB_ITCMCR_RMW_Pos 1U /*!< SCB ITCMCR: RMW Position */ #define SCB_ITCMCR_RMW_Msk (1UL << SCB_ITCMCR_RMW_Pos) /*!< SCB ITCMCR: RMW Mask */ #define SCB_ITCMCR_EN_Pos 0U /*!< SCB ITCMCR: EN Position */ #define SCB_ITCMCR_EN_Msk (1UL /*<< SCB_ITCMCR_EN_Pos*/) /*!< SCB ITCMCR: EN Mask */ /* Data Tightly-Coupled Memory Control Register Definitions */ #define SCB_DTCMCR_SZ_Pos 3U /*!< SCB DTCMCR: SZ Position */ #define SCB_DTCMCR_SZ_Msk (0xFUL << SCB_DTCMCR_SZ_Pos) /*!< SCB DTCMCR: SZ Mask */ #define SCB_DTCMCR_RETEN_Pos 2U /*!< SCB DTCMCR: RETEN Position */ #define SCB_DTCMCR_RETEN_Msk (1UL << SCB_DTCMCR_RETEN_Pos) /*!< SCB DTCMCR: RETEN Mask */ #define SCB_DTCMCR_RMW_Pos 1U /*!< SCB DTCMCR: RMW Position */ #define SCB_DTCMCR_RMW_Msk (1UL << SCB_DTCMCR_RMW_Pos) /*!< SCB DTCMCR: RMW Mask */ #define SCB_DTCMCR_EN_Pos 0U /*!< SCB DTCMCR: EN Position */ #define SCB_DTCMCR_EN_Msk (1UL /*<< SCB_DTCMCR_EN_Pos*/) /*!< SCB DTCMCR: EN Mask */ /* AHBP Control Register Definitions */ #define SCB_AHBPCR_SZ_Pos 1U /*!< SCB AHBPCR: SZ Position */ #define SCB_AHBPCR_SZ_Msk (7UL << SCB_AHBPCR_SZ_Pos) /*!< SCB AHBPCR: SZ Mask */ #define SCB_AHBPCR_EN_Pos 0U /*!< SCB AHBPCR: EN Position */ #define SCB_AHBPCR_EN_Msk (1UL /*<< SCB_AHBPCR_EN_Pos*/) /*!< SCB AHBPCR: EN Mask */ /* L1 Cache Control Register Definitions */ #define SCB_CACR_FORCEWT_Pos 2U /*!< SCB CACR: FORCEWT Position */ #define SCB_CACR_FORCEWT_Msk (1UL << SCB_CACR_FORCEWT_Pos) /*!< SCB CACR: FORCEWT Mask */ #define SCB_CACR_ECCEN_Pos 1U /*!< SCB CACR: ECCEN Position */ #define SCB_CACR_ECCEN_Msk (1UL << SCB_CACR_ECCEN_Pos) /*!< SCB CACR: ECCEN Mask */ #define SCB_CACR_SIWT_Pos 0U /*!< SCB CACR: SIWT Position */ #define SCB_CACR_SIWT_Msk (1UL /*<< SCB_CACR_SIWT_Pos*/) /*!< SCB CACR: SIWT Mask */ /* AHBS Control Register Definitions */ #define SCB_AHBSCR_INITCOUNT_Pos 11U /*!< SCB AHBSCR: INITCOUNT Position */ #define SCB_AHBSCR_INITCOUNT_Msk (0x1FUL << SCB_AHBPCR_INITCOUNT_Pos) /*!< SCB AHBSCR: INITCOUNT Mask */ #define SCB_AHBSCR_TPRI_Pos 2U /*!< SCB AHBSCR: TPRI Position */ #define SCB_AHBSCR_TPRI_Msk (0x1FFUL << SCB_AHBPCR_TPRI_Pos) /*!< SCB AHBSCR: TPRI Mask */ #define SCB_AHBSCR_CTL_Pos 0U /*!< SCB AHBSCR: CTL Position*/ #define SCB_AHBSCR_CTL_Msk (3UL /*<< SCB_AHBPCR_CTL_Pos*/) /*!< SCB AHBSCR: CTL Mask */ /* Auxiliary Bus Fault Status Register Definitions */ #define SCB_ABFSR_AXIMTYPE_Pos 8U /*!< SCB ABFSR: AXIMTYPE Position*/ #define SCB_ABFSR_AXIMTYPE_Msk (3UL << SCB_ABFSR_AXIMTYPE_Pos) /*!< SCB ABFSR: AXIMTYPE Mask */ #define SCB_ABFSR_EPPB_Pos 4U /*!< SCB ABFSR: EPPB Position*/ #define SCB_ABFSR_EPPB_Msk (1UL << SCB_ABFSR_EPPB_Pos) /*!< SCB ABFSR: EPPB Mask */ #define SCB_ABFSR_AXIM_Pos 3U /*!< SCB ABFSR: AXIM Position*/ #define SCB_ABFSR_AXIM_Msk (1UL << SCB_ABFSR_AXIM_Pos) /*!< SCB ABFSR: AXIM Mask */ #define SCB_ABFSR_AHBP_Pos 2U /*!< SCB ABFSR: AHBP Position*/ #define SCB_ABFSR_AHBP_Msk (1UL << SCB_ABFSR_AHBP_Pos) /*!< SCB ABFSR: AHBP Mask */ #define SCB_ABFSR_DTCM_Pos 1U /*!< SCB ABFSR: DTCM Position*/ #define SCB_ABFSR_DTCM_Msk (1UL << SCB_ABFSR_DTCM_Pos) /*!< SCB ABFSR: DTCM Mask */ #define SCB_ABFSR_ITCM_Pos 0U /*!< SCB ABFSR: ITCM Position*/ #define SCB_ABFSR_ITCM_Msk (1UL /*<< SCB_ABFSR_ITCM_Pos*/) /*!< SCB ABFSR: ITCM Mask */ /*@} end of group CMSIS_SCB */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB) \brief Type definitions for the System Control and ID Register not in the SCB @{ */ /** \brief Structure type to access the System Control and ID Register not in the SCB. */ typedef struct { uint32_t RESERVED0[1U]; __IM uint32_t ICTR; /*!< Offset: 0x004 (R/ ) Interrupt Controller Type Register */ __IOM uint32_t ACTLR; /*!< Offset: 0x008 (R/W) Auxiliary Control Register */ __IOM uint32_t CPPWR; /*!< Offset: 0x00C (R/W) Coprocessor Power Control Register */ } SCnSCB_Type; /* Interrupt Controller Type Register Definitions */ #define SCnSCB_ICTR_INTLINESNUM_Pos 0U /*!< ICTR: INTLINESNUM Position */ #define SCnSCB_ICTR_INTLINESNUM_Msk (0xFUL /*<< SCnSCB_ICTR_INTLINESNUM_Pos*/) /*!< ICTR: INTLINESNUM Mask */ /*@} end of group CMSIS_SCnotSCB */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SysTick System Tick Timer (SysTick) \brief Type definitions for the System Timer Registers. @{ */ /** \brief Structure type to access the System Timer (SysTick). */ typedef struct { __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */ __IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */ __IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */ __IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */ } SysTick_Type; /* SysTick Control / Status Register Definitions */ #define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */ #define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */ #define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */ #define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */ #define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */ #define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */ #define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */ #define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */ /* SysTick Reload Register Definitions */ #define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */ #define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */ /* SysTick Current Register Definitions */ #define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */ #define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */ /* SysTick Calibration Register Definitions */ #define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */ #define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */ #define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */ #define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */ #define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */ #define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */ /*@} end of group CMSIS_SysTick */ /** \ingroup CMSIS_core_register \defgroup CMSIS_ITM Instrumentation Trace Macrocell (ITM) \brief Type definitions for the Instrumentation Trace Macrocell (ITM) @{ */ /** \brief Structure type to access the Instrumentation Trace Macrocell Register (ITM). */ typedef struct { __OM union { __OM uint8_t u8; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 8-bit */ __OM uint16_t u16; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 16-bit */ __OM uint32_t u32; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 32-bit */ } PORT [32U]; /*!< Offset: 0x000 ( /W) ITM Stimulus Port Registers */ uint32_t RESERVED0[864U]; __IOM uint32_t TER; /*!< Offset: 0xE00 (R/W) ITM Trace Enable Register */ uint32_t RESERVED1[15U]; __IOM uint32_t TPR; /*!< Offset: 0xE40 (R/W) ITM Trace Privilege Register */ uint32_t RESERVED2[15U]; __IOM uint32_t TCR; /*!< Offset: 0xE80 (R/W) ITM Trace Control Register */ uint32_t RESERVED3[29U]; __OM uint32_t IWR; /*!< Offset: 0xEF8 ( /W) ITM Integration Write Register */ __IM uint32_t IRR; /*!< Offset: 0xEFC (R/ ) ITM Integration Read Register */ __IOM uint32_t IMCR; /*!< Offset: 0xF00 (R/W) ITM Integration Mode Control Register */ uint32_t RESERVED4[43U]; __OM uint32_t LAR; /*!< Offset: 0xFB0 ( /W) ITM Lock Access Register */ __IM uint32_t LSR; /*!< Offset: 0xFB4 (R/ ) ITM Lock Status Register */ uint32_t RESERVED5[1U]; __IM uint32_t DEVARCH; /*!< Offset: 0xFBC (R/ ) ITM Device Architecture Register */ uint32_t RESERVED6[4U]; __IM uint32_t PID4; /*!< Offset: 0xFD0 (R/ ) ITM Peripheral Identification Register #4 */ __IM uint32_t PID5; /*!< Offset: 0xFD4 (R/ ) ITM Peripheral Identification Register #5 */ __IM uint32_t PID6; /*!< Offset: 0xFD8 (R/ ) ITM Peripheral Identification Register #6 */ __IM uint32_t PID7; /*!< Offset: 0xFDC (R/ ) ITM Peripheral Identification Register #7 */ __IM uint32_t PID0; /*!< Offset: 0xFE0 (R/ ) ITM Peripheral Identification Register #0 */ __IM uint32_t PID1; /*!< Offset: 0xFE4 (R/ ) ITM Peripheral Identification Register #1 */ __IM uint32_t PID2; /*!< Offset: 0xFE8 (R/ ) ITM Peripheral Identification Register #2 */ __IM uint32_t PID3; /*!< Offset: 0xFEC (R/ ) ITM Peripheral Identification Register #3 */ __IM uint32_t CID0; /*!< Offset: 0xFF0 (R/ ) ITM Component Identification Register #0 */ __IM uint32_t CID1; /*!< Offset: 0xFF4 (R/ ) ITM Component Identification Register #1 */ __IM uint32_t CID2; /*!< Offset: 0xFF8 (R/ ) ITM Component Identification Register #2 */ __IM uint32_t CID3; /*!< Offset: 0xFFC (R/ ) ITM Component Identification Register #3 */ } ITM_Type; /* ITM Stimulus Port Register Definitions */ #define ITM_STIM_DISABLED_Pos 1U /*!< ITM STIM: DISABLED Position */ #define ITM_STIM_DISABLED_Msk (0x1UL << ITM_STIM_DISABLED_Pos) /*!< ITM STIM: DISABLED Mask */ #define ITM_STIM_FIFOREADY_Pos 0U /*!< ITM STIM: FIFOREADY Position */ #define ITM_STIM_FIFOREADY_Msk (0x1UL /*<< ITM_STIM_FIFOREADY_Pos*/) /*!< ITM STIM: FIFOREADY Mask */ /* ITM Trace Privilege Register Definitions */ #define ITM_TPR_PRIVMASK_Pos 0U /*!< ITM TPR: PRIVMASK Position */ #define ITM_TPR_PRIVMASK_Msk (0xFUL /*<< ITM_TPR_PRIVMASK_Pos*/) /*!< ITM TPR: PRIVMASK Mask */ /* ITM Trace Control Register Definitions */ #define ITM_TCR_BUSY_Pos 23U /*!< ITM TCR: BUSY Position */ #define ITM_TCR_BUSY_Msk (1UL << ITM_TCR_BUSY_Pos) /*!< ITM TCR: BUSY Mask */ #define ITM_TCR_TRACEBUSID_Pos 16U /*!< ITM TCR: ATBID Position */ #define ITM_TCR_TRACEBUSID_Msk (0x7FUL << ITM_TCR_TRACEBUSID_Pos) /*!< ITM TCR: ATBID Mask */ #define ITM_TCR_GTSFREQ_Pos 10U /*!< ITM TCR: Global timestamp frequency Position */ #define ITM_TCR_GTSFREQ_Msk (3UL << ITM_TCR_GTSFREQ_Pos) /*!< ITM TCR: Global timestamp frequency Mask */ #define ITM_TCR_TSPRESCALE_Pos 8U /*!< ITM TCR: TSPRESCALE Position */ #define ITM_TCR_TSPRESCALE_Msk (3UL << ITM_TCR_TSPRESCALE_Pos) /*!< ITM TCR: TSPRESCALE Mask */ #define ITM_TCR_STALLENA_Pos 5U /*!< ITM TCR: STALLENA Position */ #define ITM_TCR_STALLENA_Msk (1UL << ITM_TCR_STALLENA_Pos) /*!< ITM TCR: STALLENA Mask */ #define ITM_TCR_SWOENA_Pos 4U /*!< ITM TCR: SWOENA Position */ #define ITM_TCR_SWOENA_Msk (1UL << ITM_TCR_SWOENA_Pos) /*!< ITM TCR: SWOENA Mask */ #define ITM_TCR_DWTENA_Pos 3U /*!< ITM TCR: DWTENA Position */ #define ITM_TCR_DWTENA_Msk (1UL << ITM_TCR_DWTENA_Pos) /*!< ITM TCR: DWTENA Mask */ #define ITM_TCR_SYNCENA_Pos 2U /*!< ITM TCR: SYNCENA Position */ #define ITM_TCR_SYNCENA_Msk (1UL << ITM_TCR_SYNCENA_Pos) /*!< ITM TCR: SYNCENA Mask */ #define ITM_TCR_TSENA_Pos 1U /*!< ITM TCR: TSENA Position */ #define ITM_TCR_TSENA_Msk (1UL << ITM_TCR_TSENA_Pos) /*!< ITM TCR: TSENA Mask */ #define ITM_TCR_ITMENA_Pos 0U /*!< ITM TCR: ITM Enable bit Position */ #define ITM_TCR_ITMENA_Msk (1UL /*<< ITM_TCR_ITMENA_Pos*/) /*!< ITM TCR: ITM Enable bit Mask */ /* ITM Integration Write Register Definitions */ #define ITM_IWR_ATVALIDM_Pos 0U /*!< ITM IWR: ATVALIDM Position */ #define ITM_IWR_ATVALIDM_Msk (1UL /*<< ITM_IWR_ATVALIDM_Pos*/) /*!< ITM IWR: ATVALIDM Mask */ /* ITM Integration Read Register Definitions */ #define ITM_IRR_ATREADYM_Pos 0U /*!< ITM IRR: ATREADYM Position */ #define ITM_IRR_ATREADYM_Msk (1UL /*<< ITM_IRR_ATREADYM_Pos*/) /*!< ITM IRR: ATREADYM Mask */ /* ITM Integration Mode Control Register Definitions */ #define ITM_IMCR_INTEGRATION_Pos 0U /*!< ITM IMCR: INTEGRATION Position */ #define ITM_IMCR_INTEGRATION_Msk (1UL /*<< ITM_IMCR_INTEGRATION_Pos*/) /*!< ITM IMCR: INTEGRATION Mask */ /* ITM Lock Status Register Definitions */ #define ITM_LSR_ByteAcc_Pos 2U /*!< ITM LSR: ByteAcc Position */ #define ITM_LSR_ByteAcc_Msk (1UL << ITM_LSR_ByteAcc_Pos) /*!< ITM LSR: ByteAcc Mask */ #define ITM_LSR_Access_Pos 1U /*!< ITM LSR: Access Position */ #define ITM_LSR_Access_Msk (1UL << ITM_LSR_Access_Pos) /*!< ITM LSR: Access Mask */ #define ITM_LSR_Present_Pos 0U /*!< ITM LSR: Present Position */ #define ITM_LSR_Present_Msk (1UL /*<< ITM_LSR_Present_Pos*/) /*!< ITM LSR: Present Mask */ /*@}*/ /* end of group CMSIS_ITM */ /** \ingroup CMSIS_core_register \defgroup CMSIS_DWT Data Watchpoint and Trace (DWT) \brief Type definitions for the Data Watchpoint and Trace (DWT) @{ */ /** \brief Structure type to access the Data Watchpoint and Trace Register (DWT). */ typedef struct { __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) Control Register */ __IOM uint32_t CYCCNT; /*!< Offset: 0x004 (R/W) Cycle Count Register */ __IOM uint32_t CPICNT; /*!< Offset: 0x008 (R/W) CPI Count Register */ __IOM uint32_t EXCCNT; /*!< Offset: 0x00C (R/W) Exception Overhead Count Register */ __IOM uint32_t SLEEPCNT; /*!< Offset: 0x010 (R/W) Sleep Count Register */ __IOM uint32_t LSUCNT; /*!< Offset: 0x014 (R/W) LSU Count Register */ __IOM uint32_t FOLDCNT; /*!< Offset: 0x018 (R/W) Folded-instruction Count Register */ __IM uint32_t PCSR; /*!< Offset: 0x01C (R/ ) Program Counter Sample Register */ __IOM uint32_t COMP0; /*!< Offset: 0x020 (R/W) Comparator Register 0 */ uint32_t RESERVED1[1U]; __IOM uint32_t FUNCTION0; /*!< Offset: 0x028 (R/W) Function Register 0 */ uint32_t RESERVED2[1U]; __IOM uint32_t COMP1; /*!< Offset: 0x030 (R/W) Comparator Register 1 */ uint32_t RESERVED3[1U]; __IOM uint32_t FUNCTION1; /*!< Offset: 0x038 (R/W) Function Register 1 */ uint32_t RESERVED4[1U]; __IOM uint32_t COMP2; /*!< Offset: 0x040 (R/W) Comparator Register 2 */ uint32_t RESERVED5[1U]; __IOM uint32_t FUNCTION2; /*!< Offset: 0x048 (R/W) Function Register 2 */ uint32_t RESERVED6[1U]; __IOM uint32_t COMP3; /*!< Offset: 0x050 (R/W) Comparator Register 3 */ uint32_t RESERVED7[1U]; __IOM uint32_t FUNCTION3; /*!< Offset: 0x058 (R/W) Function Register 3 */ uint32_t RESERVED8[1U]; __IOM uint32_t COMP4; /*!< Offset: 0x060 (R/W) Comparator Register 4 */ uint32_t RESERVED9[1U]; __IOM uint32_t FUNCTION4; /*!< Offset: 0x068 (R/W) Function Register 4 */ uint32_t RESERVED10[1U]; __IOM uint32_t COMP5; /*!< Offset: 0x070 (R/W) Comparator Register 5 */ uint32_t RESERVED11[1U]; __IOM uint32_t FUNCTION5; /*!< Offset: 0x078 (R/W) Function Register 5 */ uint32_t RESERVED12[1U]; __IOM uint32_t COMP6; /*!< Offset: 0x080 (R/W) Comparator Register 6 */ uint32_t RESERVED13[1U]; __IOM uint32_t FUNCTION6; /*!< Offset: 0x088 (R/W) Function Register 6 */ uint32_t RESERVED14[1U]; __IOM uint32_t COMP7; /*!< Offset: 0x090 (R/W) Comparator Register 7 */ uint32_t RESERVED15[1U]; __IOM uint32_t FUNCTION7; /*!< Offset: 0x098 (R/W) Function Register 7 */ uint32_t RESERVED16[1U]; __IOM uint32_t COMP8; /*!< Offset: 0x0A0 (R/W) Comparator Register 8 */ uint32_t RESERVED17[1U]; __IOM uint32_t FUNCTION8; /*!< Offset: 0x0A8 (R/W) Function Register 8 */ uint32_t RESERVED18[1U]; __IOM uint32_t COMP9; /*!< Offset: 0x0B0 (R/W) Comparator Register 9 */ uint32_t RESERVED19[1U]; __IOM uint32_t FUNCTION9; /*!< Offset: 0x0B8 (R/W) Function Register 9 */ uint32_t RESERVED20[1U]; __IOM uint32_t COMP10; /*!< Offset: 0x0C0 (R/W) Comparator Register 10 */ uint32_t RESERVED21[1U]; __IOM uint32_t FUNCTION10; /*!< Offset: 0x0C8 (R/W) Function Register 10 */ uint32_t RESERVED22[1U]; __IOM uint32_t COMP11; /*!< Offset: 0x0D0 (R/W) Comparator Register 11 */ uint32_t RESERVED23[1U]; __IOM uint32_t FUNCTION11; /*!< Offset: 0x0D8 (R/W) Function Register 11 */ uint32_t RESERVED24[1U]; __IOM uint32_t COMP12; /*!< Offset: 0x0E0 (R/W) Comparator Register 12 */ uint32_t RESERVED25[1U]; __IOM uint32_t FUNCTION12; /*!< Offset: 0x0E8 (R/W) Function Register 12 */ uint32_t RESERVED26[1U]; __IOM uint32_t COMP13; /*!< Offset: 0x0F0 (R/W) Comparator Register 13 */ uint32_t RESERVED27[1U]; __IOM uint32_t FUNCTION13; /*!< Offset: 0x0F8 (R/W) Function Register 13 */ uint32_t RESERVED28[1U]; __IOM uint32_t COMP14; /*!< Offset: 0x100 (R/W) Comparator Register 14 */ uint32_t RESERVED29[1U]; __IOM uint32_t FUNCTION14; /*!< Offset: 0x108 (R/W) Function Register 14 */ uint32_t RESERVED30[1U]; __IOM uint32_t COMP15; /*!< Offset: 0x110 (R/W) Comparator Register 15 */ uint32_t RESERVED31[1U]; __IOM uint32_t FUNCTION15; /*!< Offset: 0x118 (R/W) Function Register 15 */ uint32_t RESERVED32[934U]; __IM uint32_t LSR; /*!< Offset: 0xFB4 (R ) Lock Status Register */ uint32_t RESERVED33[1U]; __IM uint32_t DEVARCH; /*!< Offset: 0xFBC (R/ ) Device Architecture Register */ } DWT_Type; /* DWT Control Register Definitions */ #define DWT_CTRL_NUMCOMP_Pos 28U /*!< DWT CTRL: NUMCOMP Position */ #define DWT_CTRL_NUMCOMP_Msk (0xFUL << DWT_CTRL_NUMCOMP_Pos) /*!< DWT CTRL: NUMCOMP Mask */ #define DWT_CTRL_NOTRCPKT_Pos 27U /*!< DWT CTRL: NOTRCPKT Position */ #define DWT_CTRL_NOTRCPKT_Msk (0x1UL << DWT_CTRL_NOTRCPKT_Pos) /*!< DWT CTRL: NOTRCPKT Mask */ #define DWT_CTRL_NOEXTTRIG_Pos 26U /*!< DWT CTRL: NOEXTTRIG Position */ #define DWT_CTRL_NOEXTTRIG_Msk (0x1UL << DWT_CTRL_NOEXTTRIG_Pos) /*!< DWT CTRL: NOEXTTRIG Mask */ #define DWT_CTRL_NOCYCCNT_Pos 25U /*!< DWT CTRL: NOCYCCNT Position */ #define DWT_CTRL_NOCYCCNT_Msk (0x1UL << DWT_CTRL_NOCYCCNT_Pos) /*!< DWT CTRL: NOCYCCNT Mask */ #define DWT_CTRL_NOPRFCNT_Pos 24U /*!< DWT CTRL: NOPRFCNT Position */ #define DWT_CTRL_NOPRFCNT_Msk (0x1UL << DWT_CTRL_NOPRFCNT_Pos) /*!< DWT CTRL: NOPRFCNT Mask */ #define DWT_CTRL_CYCDISS_Pos 23U /*!< DWT CTRL: CYCDISS Position */ #define DWT_CTRL_CYCDISS_Msk (0x1UL << DWT_CTRL_CYCDISS_Pos) /*!< DWT CTRL: CYCDISS Mask */ #define DWT_CTRL_CYCEVTENA_Pos 22U /*!< DWT CTRL: CYCEVTENA Position */ #define DWT_CTRL_CYCEVTENA_Msk (0x1UL << DWT_CTRL_CYCEVTENA_Pos) /*!< DWT CTRL: CYCEVTENA Mask */ #define DWT_CTRL_FOLDEVTENA_Pos 21U /*!< DWT CTRL: FOLDEVTENA Position */ #define DWT_CTRL_FOLDEVTENA_Msk (0x1UL << DWT_CTRL_FOLDEVTENA_Pos) /*!< DWT CTRL: FOLDEVTENA Mask */ #define DWT_CTRL_LSUEVTENA_Pos 20U /*!< DWT CTRL: LSUEVTENA Position */ #define DWT_CTRL_LSUEVTENA_Msk (0x1UL << DWT_CTRL_LSUEVTENA_Pos) /*!< DWT CTRL: LSUEVTENA Mask */ #define DWT_CTRL_SLEEPEVTENA_Pos 19U /*!< DWT CTRL: SLEEPEVTENA Position */ #define DWT_CTRL_SLEEPEVTENA_Msk (0x1UL << DWT_CTRL_SLEEPEVTENA_Pos) /*!< DWT CTRL: SLEEPEVTENA Mask */ #define DWT_CTRL_EXCEVTENA_Pos 18U /*!< DWT CTRL: EXCEVTENA Position */ #define DWT_CTRL_EXCEVTENA_Msk (0x1UL << DWT_CTRL_EXCEVTENA_Pos) /*!< DWT CTRL: EXCEVTENA Mask */ #define DWT_CTRL_CPIEVTENA_Pos 17U /*!< DWT CTRL: CPIEVTENA Position */ #define DWT_CTRL_CPIEVTENA_Msk (0x1UL << DWT_CTRL_CPIEVTENA_Pos) /*!< DWT CTRL: CPIEVTENA Mask */ #define DWT_CTRL_EXCTRCENA_Pos 16U /*!< DWT CTRL: EXCTRCENA Position */ #define DWT_CTRL_EXCTRCENA_Msk (0x1UL << DWT_CTRL_EXCTRCENA_Pos) /*!< DWT CTRL: EXCTRCENA Mask */ #define DWT_CTRL_PCSAMPLENA_Pos 12U /*!< DWT CTRL: PCSAMPLENA Position */ #define DWT_CTRL_PCSAMPLENA_Msk (0x1UL << DWT_CTRL_PCSAMPLENA_Pos) /*!< DWT CTRL: PCSAMPLENA Mask */ #define DWT_CTRL_SYNCTAP_Pos 10U /*!< DWT CTRL: SYNCTAP Position */ #define DWT_CTRL_SYNCTAP_Msk (0x3UL << DWT_CTRL_SYNCTAP_Pos) /*!< DWT CTRL: SYNCTAP Mask */ #define DWT_CTRL_CYCTAP_Pos 9U /*!< DWT CTRL: CYCTAP Position */ #define DWT_CTRL_CYCTAP_Msk (0x1UL << DWT_CTRL_CYCTAP_Pos) /*!< DWT CTRL: CYCTAP Mask */ #define DWT_CTRL_POSTINIT_Pos 5U /*!< DWT CTRL: POSTINIT Position */ #define DWT_CTRL_POSTINIT_Msk (0xFUL << DWT_CTRL_POSTINIT_Pos) /*!< DWT CTRL: POSTINIT Mask */ #define DWT_CTRL_POSTPRESET_Pos 1U /*!< DWT CTRL: POSTPRESET Position */ #define DWT_CTRL_POSTPRESET_Msk (0xFUL << DWT_CTRL_POSTPRESET_Pos) /*!< DWT CTRL: POSTPRESET Mask */ #define DWT_CTRL_CYCCNTENA_Pos 0U /*!< DWT CTRL: CYCCNTENA Position */ #define DWT_CTRL_CYCCNTENA_Msk (0x1UL /*<< DWT_CTRL_CYCCNTENA_Pos*/) /*!< DWT CTRL: CYCCNTENA Mask */ /* DWT CPI Count Register Definitions */ #define DWT_CPICNT_CPICNT_Pos 0U /*!< DWT CPICNT: CPICNT Position */ #define DWT_CPICNT_CPICNT_Msk (0xFFUL /*<< DWT_CPICNT_CPICNT_Pos*/) /*!< DWT CPICNT: CPICNT Mask */ /* DWT Exception Overhead Count Register Definitions */ #define DWT_EXCCNT_EXCCNT_Pos 0U /*!< DWT EXCCNT: EXCCNT Position */ #define DWT_EXCCNT_EXCCNT_Msk (0xFFUL /*<< DWT_EXCCNT_EXCCNT_Pos*/) /*!< DWT EXCCNT: EXCCNT Mask */ /* DWT Sleep Count Register Definitions */ #define DWT_SLEEPCNT_SLEEPCNT_Pos 0U /*!< DWT SLEEPCNT: SLEEPCNT Position */ #define DWT_SLEEPCNT_SLEEPCNT_Msk (0xFFUL /*<< DWT_SLEEPCNT_SLEEPCNT_Pos*/) /*!< DWT SLEEPCNT: SLEEPCNT Mask */ /* DWT LSU Count Register Definitions */ #define DWT_LSUCNT_LSUCNT_Pos 0U /*!< DWT LSUCNT: LSUCNT Position */ #define DWT_LSUCNT_LSUCNT_Msk (0xFFUL /*<< DWT_LSUCNT_LSUCNT_Pos*/) /*!< DWT LSUCNT: LSUCNT Mask */ /* DWT Folded-instruction Count Register Definitions */ #define DWT_FOLDCNT_FOLDCNT_Pos 0U /*!< DWT FOLDCNT: FOLDCNT Position */ #define DWT_FOLDCNT_FOLDCNT_Msk (0xFFUL /*<< DWT_FOLDCNT_FOLDCNT_Pos*/) /*!< DWT FOLDCNT: FOLDCNT Mask */ /* DWT Comparator Function Register Definitions */ #define DWT_FUNCTION_ID_Pos 27U /*!< DWT FUNCTION: ID Position */ #define DWT_FUNCTION_ID_Msk (0x1FUL << DWT_FUNCTION_ID_Pos) /*!< DWT FUNCTION: ID Mask */ #define DWT_FUNCTION_MATCHED_Pos 24U /*!< DWT FUNCTION: MATCHED Position */ #define DWT_FUNCTION_MATCHED_Msk (0x1UL << DWT_FUNCTION_MATCHED_Pos) /*!< DWT FUNCTION: MATCHED Mask */ #define DWT_FUNCTION_DATAVSIZE_Pos 10U /*!< DWT FUNCTION: DATAVSIZE Position */ #define DWT_FUNCTION_DATAVSIZE_Msk (0x3UL << DWT_FUNCTION_DATAVSIZE_Pos) /*!< DWT FUNCTION: DATAVSIZE Mask */ #define DWT_FUNCTION_ACTION_Pos 4U /*!< DWT FUNCTION: ACTION Position */ #define DWT_FUNCTION_ACTION_Msk (0x1UL << DWT_FUNCTION_ACTION_Pos) /*!< DWT FUNCTION: ACTION Mask */ #define DWT_FUNCTION_MATCH_Pos 0U /*!< DWT FUNCTION: MATCH Position */ #define DWT_FUNCTION_MATCH_Msk (0xFUL /*<< DWT_FUNCTION_MATCH_Pos*/) /*!< DWT FUNCTION: MATCH Mask */ /*@}*/ /* end of group CMSIS_DWT */ /** \ingroup CMSIS_core_register \defgroup CMSIS_TPI Trace Port Interface (TPI) \brief Type definitions for the Trace Port Interface (TPI) @{ */ /** \brief Structure type to access the Trace Port Interface Register (TPI). */ typedef struct { __IM uint32_t SSPSR; /*!< Offset: 0x000 (R/ ) Supported Parallel Port Sizes Register */ __IOM uint32_t CSPSR; /*!< Offset: 0x004 (R/W) Current Parallel Port Sizes Register */ uint32_t RESERVED0[2U]; __IOM uint32_t ACPR; /*!< Offset: 0x010 (R/W) Asynchronous Clock Prescaler Register */ uint32_t RESERVED1[55U]; __IOM uint32_t SPPR; /*!< Offset: 0x0F0 (R/W) Selected Pin Protocol Register */ uint32_t RESERVED2[131U]; __IM uint32_t FFSR; /*!< Offset: 0x300 (R/ ) Formatter and Flush Status Register */ __IOM uint32_t FFCR; /*!< Offset: 0x304 (R/W) Formatter and Flush Control Register */ __IM uint32_t FSCR; /*!< Offset: 0x308 (R/ ) Formatter Synchronization Counter Register */ uint32_t RESERVED3[759U]; __IM uint32_t TRIGGER; /*!< Offset: 0xEE8 (R/ ) TRIGGER */ __IM uint32_t FIFO0; /*!< Offset: 0xEEC (R/ ) Integration ETM Data */ __IM uint32_t ITATBCTR2; /*!< Offset: 0xEF0 (R/ ) ITATBCTR2 */ uint32_t RESERVED4[1U]; __IM uint32_t ITATBCTR0; /*!< Offset: 0xEF8 (R/ ) ITATBCTR0 */ __IM uint32_t FIFO1; /*!< Offset: 0xEFC (R/ ) Integration ITM Data */ __IOM uint32_t ITCTRL; /*!< Offset: 0xF00 (R/W) Integration Mode Control */ uint32_t RESERVED5[39U]; __IOM uint32_t CLAIMSET; /*!< Offset: 0xFA0 (R/W) Claim tag set */ __IOM uint32_t CLAIMCLR; /*!< Offset: 0xFA4 (R/W) Claim tag clear */ uint32_t RESERVED7[8U]; __IM uint32_t DEVID; /*!< Offset: 0xFC8 (R/ ) TPIU_DEVID */ __IM uint32_t DEVTYPE; /*!< Offset: 0xFCC (R/ ) TPIU_DEVTYPE */ } TPI_Type; /* TPI Asynchronous Clock Prescaler Register Definitions */ #define TPI_ACPR_PRESCALER_Pos 0U /*!< TPI ACPR: PRESCALER Position */ #define TPI_ACPR_PRESCALER_Msk (0x1FFFUL /*<< TPI_ACPR_PRESCALER_Pos*/) /*!< TPI ACPR: PRESCALER Mask */ /* TPI Selected Pin Protocol Register Definitions */ #define TPI_SPPR_TXMODE_Pos 0U /*!< TPI SPPR: TXMODE Position */ #define TPI_SPPR_TXMODE_Msk (0x3UL /*<< TPI_SPPR_TXMODE_Pos*/) /*!< TPI SPPR: TXMODE Mask */ /* TPI Formatter and Flush Status Register Definitions */ #define TPI_FFSR_FtNonStop_Pos 3U /*!< TPI FFSR: FtNonStop Position */ #define TPI_FFSR_FtNonStop_Msk (0x1UL << TPI_FFSR_FtNonStop_Pos) /*!< TPI FFSR: FtNonStop Mask */ #define TPI_FFSR_TCPresent_Pos 2U /*!< TPI FFSR: TCPresent Position */ #define TPI_FFSR_TCPresent_Msk (0x1UL << TPI_FFSR_TCPresent_Pos) /*!< TPI FFSR: TCPresent Mask */ #define TPI_FFSR_FtStopped_Pos 1U /*!< TPI FFSR: FtStopped Position */ #define TPI_FFSR_FtStopped_Msk (0x1UL << TPI_FFSR_FtStopped_Pos) /*!< TPI FFSR: FtStopped Mask */ #define TPI_FFSR_FlInProg_Pos 0U /*!< TPI FFSR: FlInProg Position */ #define TPI_FFSR_FlInProg_Msk (0x1UL /*<< TPI_FFSR_FlInProg_Pos*/) /*!< TPI FFSR: FlInProg Mask */ /* TPI Formatter and Flush Control Register Definitions */ #define TPI_FFCR_TrigIn_Pos 8U /*!< TPI FFCR: TrigIn Position */ #define TPI_FFCR_TrigIn_Msk (0x1UL << TPI_FFCR_TrigIn_Pos) /*!< TPI FFCR: TrigIn Mask */ #define TPI_FFCR_EnFCont_Pos 1U /*!< TPI FFCR: EnFCont Position */ #define TPI_FFCR_EnFCont_Msk (0x1UL << TPI_FFCR_EnFCont_Pos) /*!< TPI FFCR: EnFCont Mask */ /* TPI TRIGGER Register Definitions */ #define TPI_TRIGGER_TRIGGER_Pos 0U /*!< TPI TRIGGER: TRIGGER Position */ #define TPI_TRIGGER_TRIGGER_Msk (0x1UL /*<< TPI_TRIGGER_TRIGGER_Pos*/) /*!< TPI TRIGGER: TRIGGER Mask */ /* TPI Integration ETM Data Register Definitions (FIFO0) */ #define TPI_FIFO0_ITM_ATVALID_Pos 29U /*!< TPI FIFO0: ITM_ATVALID Position */ #define TPI_FIFO0_ITM_ATVALID_Msk (0x3UL << TPI_FIFO0_ITM_ATVALID_Pos) /*!< TPI FIFO0: ITM_ATVALID Mask */ #define TPI_FIFO0_ITM_bytecount_Pos 27U /*!< TPI FIFO0: ITM_bytecount Position */ #define TPI_FIFO0_ITM_bytecount_Msk (0x3UL << TPI_FIFO0_ITM_bytecount_Pos) /*!< TPI FIFO0: ITM_bytecount Mask */ #define TPI_FIFO0_ETM_ATVALID_Pos 26U /*!< TPI FIFO0: ETM_ATVALID Position */ #define TPI_FIFO0_ETM_ATVALID_Msk (0x3UL << TPI_FIFO0_ETM_ATVALID_Pos) /*!< TPI FIFO0: ETM_ATVALID Mask */ #define TPI_FIFO0_ETM_bytecount_Pos 24U /*!< TPI FIFO0: ETM_bytecount Position */ #define TPI_FIFO0_ETM_bytecount_Msk (0x3UL << TPI_FIFO0_ETM_bytecount_Pos) /*!< TPI FIFO0: ETM_bytecount Mask */ #define TPI_FIFO0_ETM2_Pos 16U /*!< TPI FIFO0: ETM2 Position */ #define TPI_FIFO0_ETM2_Msk (0xFFUL << TPI_FIFO0_ETM2_Pos) /*!< TPI FIFO0: ETM2 Mask */ #define TPI_FIFO0_ETM1_Pos 8U /*!< TPI FIFO0: ETM1 Position */ #define TPI_FIFO0_ETM1_Msk (0xFFUL << TPI_FIFO0_ETM1_Pos) /*!< TPI FIFO0: ETM1 Mask */ #define TPI_FIFO0_ETM0_Pos 0U /*!< TPI FIFO0: ETM0 Position */ #define TPI_FIFO0_ETM0_Msk (0xFFUL /*<< TPI_FIFO0_ETM0_Pos*/) /*!< TPI FIFO0: ETM0 Mask */ /* TPI ITATBCTR2 Register Definitions */ #define TPI_ITATBCTR2_ATREADY_Pos 0U /*!< TPI ITATBCTR2: ATREADY Position */ #define TPI_ITATBCTR2_ATREADY_Msk (0x1UL /*<< TPI_ITATBCTR2_ATREADY_Pos*/) /*!< TPI ITATBCTR2: ATREADY Mask */ /* TPI Integration ITM Data Register Definitions (FIFO1) */ #define TPI_FIFO1_ITM_ATVALID_Pos 29U /*!< TPI FIFO1: ITM_ATVALID Position */ #define TPI_FIFO1_ITM_ATVALID_Msk (0x3UL << TPI_FIFO1_ITM_ATVALID_Pos) /*!< TPI FIFO1: ITM_ATVALID Mask */ #define TPI_FIFO1_ITM_bytecount_Pos 27U /*!< TPI FIFO1: ITM_bytecount Position */ #define TPI_FIFO1_ITM_bytecount_Msk (0x3UL << TPI_FIFO1_ITM_bytecount_Pos) /*!< TPI FIFO1: ITM_bytecount Mask */ #define TPI_FIFO1_ETM_ATVALID_Pos 26U /*!< TPI FIFO1: ETM_ATVALID Position */ #define TPI_FIFO1_ETM_ATVALID_Msk (0x3UL << TPI_FIFO1_ETM_ATVALID_Pos) /*!< TPI FIFO1: ETM_ATVALID Mask */ #define TPI_FIFO1_ETM_bytecount_Pos 24U /*!< TPI FIFO1: ETM_bytecount Position */ #define TPI_FIFO1_ETM_bytecount_Msk (0x3UL << TPI_FIFO1_ETM_bytecount_Pos) /*!< TPI FIFO1: ETM_bytecount Mask */ #define TPI_FIFO1_ITM2_Pos 16U /*!< TPI FIFO1: ITM2 Position */ #define TPI_FIFO1_ITM2_Msk (0xFFUL << TPI_FIFO1_ITM2_Pos) /*!< TPI FIFO1: ITM2 Mask */ #define TPI_FIFO1_ITM1_Pos 8U /*!< TPI FIFO1: ITM1 Position */ #define TPI_FIFO1_ITM1_Msk (0xFFUL << TPI_FIFO1_ITM1_Pos) /*!< TPI FIFO1: ITM1 Mask */ #define TPI_FIFO1_ITM0_Pos 0U /*!< TPI FIFO1: ITM0 Position */ #define TPI_FIFO1_ITM0_Msk (0xFFUL /*<< TPI_FIFO1_ITM0_Pos*/) /*!< TPI FIFO1: ITM0 Mask */ /* TPI ITATBCTR0 Register Definitions */ #define TPI_ITATBCTR0_ATREADY_Pos 0U /*!< TPI ITATBCTR0: ATREADY Position */ #define TPI_ITATBCTR0_ATREADY_Msk (0x1UL /*<< TPI_ITATBCTR0_ATREADY_Pos*/) /*!< TPI ITATBCTR0: ATREADY Mask */ /* TPI Integration Mode Control Register Definitions */ #define TPI_ITCTRL_Mode_Pos 0U /*!< TPI ITCTRL: Mode Position */ #define TPI_ITCTRL_Mode_Msk (0x1UL /*<< TPI_ITCTRL_Mode_Pos*/) /*!< TPI ITCTRL: Mode Mask */ /* TPI DEVID Register Definitions */ #define TPI_DEVID_NRZVALID_Pos 11U /*!< TPI DEVID: NRZVALID Position */ #define TPI_DEVID_NRZVALID_Msk (0x1UL << TPI_DEVID_NRZVALID_Pos) /*!< TPI DEVID: NRZVALID Mask */ #define TPI_DEVID_MANCVALID_Pos 10U /*!< TPI DEVID: MANCVALID Position */ #define TPI_DEVID_MANCVALID_Msk (0x1UL << TPI_DEVID_MANCVALID_Pos) /*!< TPI DEVID: MANCVALID Mask */ #define TPI_DEVID_PTINVALID_Pos 9U /*!< TPI DEVID: PTINVALID Position */ #define TPI_DEVID_PTINVALID_Msk (0x1UL << TPI_DEVID_PTINVALID_Pos) /*!< TPI DEVID: PTINVALID Mask */ #define TPI_DEVID_MinBufSz_Pos 6U /*!< TPI DEVID: MinBufSz Position */ #define TPI_DEVID_MinBufSz_Msk (0x7UL << TPI_DEVID_MinBufSz_Pos) /*!< TPI DEVID: MinBufSz Mask */ #define TPI_DEVID_AsynClkIn_Pos 5U /*!< TPI DEVID: AsynClkIn Position */ #define TPI_DEVID_AsynClkIn_Msk (0x1UL << TPI_DEVID_AsynClkIn_Pos) /*!< TPI DEVID: AsynClkIn Mask */ #define TPI_DEVID_NrTraceInput_Pos 0U /*!< TPI DEVID: NrTraceInput Position */ #define TPI_DEVID_NrTraceInput_Msk (0x1FUL /*<< TPI_DEVID_NrTraceInput_Pos*/) /*!< TPI DEVID: NrTraceInput Mask */ /* TPI DEVTYPE Register Definitions */ #define TPI_DEVTYPE_MajorType_Pos 4U /*!< TPI DEVTYPE: MajorType Position */ #define TPI_DEVTYPE_MajorType_Msk (0xFUL << TPI_DEVTYPE_MajorType_Pos) /*!< TPI DEVTYPE: MajorType Mask */ #define TPI_DEVTYPE_SubType_Pos 0U /*!< TPI DEVTYPE: SubType Position */ #define TPI_DEVTYPE_SubType_Msk (0xFUL /*<< TPI_DEVTYPE_SubType_Pos*/) /*!< TPI DEVTYPE: SubType Mask */ /*@}*/ /* end of group CMSIS_TPI */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) /** \ingroup CMSIS_core_register \defgroup CMSIS_MPU Memory Protection Unit (MPU) \brief Type definitions for the Memory Protection Unit (MPU) @{ */ /** \brief Structure type to access the Memory Protection Unit (MPU). */ typedef struct { __IM uint32_t TYPE; /*!< Offset: 0x000 (R/ ) MPU Type Register */ __IOM uint32_t CTRL; /*!< Offset: 0x004 (R/W) MPU Control Register */ __IOM uint32_t RNR; /*!< Offset: 0x008 (R/W) MPU Region Number Register */ __IOM uint32_t RBAR; /*!< Offset: 0x00C (R/W) MPU Region Base Address Register */ __IOM uint32_t RLAR; /*!< Offset: 0x010 (R/W) MPU Region Limit Address Register */ __IOM uint32_t RBAR_A1; /*!< Offset: 0x014 (R/W) MPU Region Base Address Register Alias 1 */ __IOM uint32_t RLAR_A1; /*!< Offset: 0x018 (R/W) MPU Region Limit Address Register Alias 1 */ __IOM uint32_t RBAR_A2; /*!< Offset: 0x01C (R/W) MPU Region Base Address Register Alias 2 */ __IOM uint32_t RLAR_A2; /*!< Offset: 0x020 (R/W) MPU Region Limit Address Register Alias 2 */ __IOM uint32_t RBAR_A3; /*!< Offset: 0x024 (R/W) MPU Region Base Address Register Alias 3 */ __IOM uint32_t RLAR_A3; /*!< Offset: 0x028 (R/W) MPU Region Limit Address Register Alias 3 */ uint32_t RESERVED0[1]; union { __IOM uint32_t MAIR[2]; struct { __IOM uint32_t MAIR0; /*!< Offset: 0x030 (R/W) MPU Memory Attribute Indirection Register 0 */ __IOM uint32_t MAIR1; /*!< Offset: 0x034 (R/W) MPU Memory Attribute Indirection Register 1 */ }; }; } MPU_Type; #define MPU_TYPE_RALIASES 4U /* MPU Type Register Definitions */ #define MPU_TYPE_IREGION_Pos 16U /*!< MPU TYPE: IREGION Position */ #define MPU_TYPE_IREGION_Msk (0xFFUL << MPU_TYPE_IREGION_Pos) /*!< MPU TYPE: IREGION Mask */ #define MPU_TYPE_DREGION_Pos 8U /*!< MPU TYPE: DREGION Position */ #define MPU_TYPE_DREGION_Msk (0xFFUL << MPU_TYPE_DREGION_Pos) /*!< MPU TYPE: DREGION Mask */ #define MPU_TYPE_SEPARATE_Pos 0U /*!< MPU TYPE: SEPARATE Position */ #define MPU_TYPE_SEPARATE_Msk (1UL /*<< MPU_TYPE_SEPARATE_Pos*/) /*!< MPU TYPE: SEPARATE Mask */ /* MPU Control Register Definitions */ #define MPU_CTRL_PRIVDEFENA_Pos 2U /*!< MPU CTRL: PRIVDEFENA Position */ #define MPU_CTRL_PRIVDEFENA_Msk (1UL << MPU_CTRL_PRIVDEFENA_Pos) /*!< MPU CTRL: PRIVDEFENA Mask */ #define MPU_CTRL_HFNMIENA_Pos 1U /*!< MPU CTRL: HFNMIENA Position */ #define MPU_CTRL_HFNMIENA_Msk (1UL << MPU_CTRL_HFNMIENA_Pos) /*!< MPU CTRL: HFNMIENA Mask */ #define MPU_CTRL_ENABLE_Pos 0U /*!< MPU CTRL: ENABLE Position */ #define MPU_CTRL_ENABLE_Msk (1UL /*<< MPU_CTRL_ENABLE_Pos*/) /*!< MPU CTRL: ENABLE Mask */ /* MPU Region Number Register Definitions */ #define MPU_RNR_REGION_Pos 0U /*!< MPU RNR: REGION Position */ #define MPU_RNR_REGION_Msk (0xFFUL /*<< MPU_RNR_REGION_Pos*/) /*!< MPU RNR: REGION Mask */ /* MPU Region Base Address Register Definitions */ #define MPU_RBAR_ADDR_Pos 5U /*!< MPU RBAR: ADDR Position */ #define MPU_RBAR_ADDR_Msk (0x7FFFFFFUL << MPU_RBAR_ADDR_Pos) /*!< MPU RBAR: ADDR Mask */ #define MPU_RBAR_SH_Pos 3U /*!< MPU RBAR: SH Position */ #define MPU_RBAR_SH_Msk (0x3UL << MPU_RBAR_SH_Pos) /*!< MPU RBAR: SH Mask */ #define MPU_RBAR_AP_Pos 1U /*!< MPU RBAR: AP Position */ #define MPU_RBAR_AP_Msk (0x3UL << MPU_RBAR_AP_Pos) /*!< MPU RBAR: AP Mask */ #define MPU_RBAR_XN_Pos 0U /*!< MPU RBAR: XN Position */ #define MPU_RBAR_XN_Msk (01UL /*<< MPU_RBAR_XN_Pos*/) /*!< MPU RBAR: XN Mask */ /* MPU Region Limit Address Register Definitions */ #define MPU_RLAR_LIMIT_Pos 5U /*!< MPU RLAR: LIMIT Position */ #define MPU_RLAR_LIMIT_Msk (0x7FFFFFFUL << MPU_RLAR_LIMIT_Pos) /*!< MPU RLAR: LIMIT Mask */ #define MPU_RLAR_PXN_Pos 4U /*!< MPU RLAR: PXN Position */ #define MPU_RLAR_PXN_Msk (0x1UL << MPU_RLAR_PXN_Pos) /*!< MPU RLAR: PXN Mask */ #define MPU_RLAR_AttrIndx_Pos 1U /*!< MPU RLAR: AttrIndx Position */ #define MPU_RLAR_AttrIndx_Msk (0x7UL << MPU_RLAR_AttrIndx_Pos) /*!< MPU RLAR: AttrIndx Mask */ #define MPU_RLAR_EN_Pos 0U /*!< MPU RLAR: Region enable bit Position */ #define MPU_RLAR_EN_Msk (1UL /*<< MPU_RLAR_EN_Pos*/) /*!< MPU RLAR: Region enable bit Disable Mask */ /* MPU Memory Attribute Indirection Register 0 Definitions */ #define MPU_MAIR0_Attr3_Pos 24U /*!< MPU MAIR0: Attr3 Position */ #define MPU_MAIR0_Attr3_Msk (0xFFUL << MPU_MAIR0_Attr3_Pos) /*!< MPU MAIR0: Attr3 Mask */ #define MPU_MAIR0_Attr2_Pos 16U /*!< MPU MAIR0: Attr2 Position */ #define MPU_MAIR0_Attr2_Msk (0xFFUL << MPU_MAIR0_Attr2_Pos) /*!< MPU MAIR0: Attr2 Mask */ #define MPU_MAIR0_Attr1_Pos 8U /*!< MPU MAIR0: Attr1 Position */ #define MPU_MAIR0_Attr1_Msk (0xFFUL << MPU_MAIR0_Attr1_Pos) /*!< MPU MAIR0: Attr1 Mask */ #define MPU_MAIR0_Attr0_Pos 0U /*!< MPU MAIR0: Attr0 Position */ #define MPU_MAIR0_Attr0_Msk (0xFFUL /*<< MPU_MAIR0_Attr0_Pos*/) /*!< MPU MAIR0: Attr0 Mask */ /* MPU Memory Attribute Indirection Register 1 Definitions */ #define MPU_MAIR1_Attr7_Pos 24U /*!< MPU MAIR1: Attr7 Position */ #define MPU_MAIR1_Attr7_Msk (0xFFUL << MPU_MAIR1_Attr7_Pos) /*!< MPU MAIR1: Attr7 Mask */ #define MPU_MAIR1_Attr6_Pos 16U /*!< MPU MAIR1: Attr6 Position */ #define MPU_MAIR1_Attr6_Msk (0xFFUL << MPU_MAIR1_Attr6_Pos) /*!< MPU MAIR1: Attr6 Mask */ #define MPU_MAIR1_Attr5_Pos 8U /*!< MPU MAIR1: Attr5 Position */ #define MPU_MAIR1_Attr5_Msk (0xFFUL << MPU_MAIR1_Attr5_Pos) /*!< MPU MAIR1: Attr5 Mask */ #define MPU_MAIR1_Attr4_Pos 0U /*!< MPU MAIR1: Attr4 Position */ #define MPU_MAIR1_Attr4_Msk (0xFFUL /*<< MPU_MAIR1_Attr4_Pos*/) /*!< MPU MAIR1: Attr4 Mask */ /*@} end of group CMSIS_MPU */ #endif #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \ingroup CMSIS_core_register \defgroup CMSIS_SAU Security Attribution Unit (SAU) \brief Type definitions for the Security Attribution Unit (SAU) @{ */ /** \brief Structure type to access the Security Attribution Unit (SAU). */ typedef struct { __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SAU Control Register */ __IM uint32_t TYPE; /*!< Offset: 0x004 (R/ ) SAU Type Register */ #if defined (__SAUREGION_PRESENT) && (__SAUREGION_PRESENT == 1U) __IOM uint32_t RNR; /*!< Offset: 0x008 (R/W) SAU Region Number Register */ __IOM uint32_t RBAR; /*!< Offset: 0x00C (R/W) SAU Region Base Address Register */ __IOM uint32_t RLAR; /*!< Offset: 0x010 (R/W) SAU Region Limit Address Register */ #else uint32_t RESERVED0[3]; #endif __IOM uint32_t SFSR; /*!< Offset: 0x014 (R/W) Secure Fault Status Register */ __IOM uint32_t SFAR; /*!< Offset: 0x018 (R/W) Secure Fault Address Register */ } SAU_Type; /* SAU Control Register Definitions */ #define SAU_CTRL_ALLNS_Pos 1U /*!< SAU CTRL: ALLNS Position */ #define SAU_CTRL_ALLNS_Msk (1UL << SAU_CTRL_ALLNS_Pos) /*!< SAU CTRL: ALLNS Mask */ #define SAU_CTRL_ENABLE_Pos 0U /*!< SAU CTRL: ENABLE Position */ #define SAU_CTRL_ENABLE_Msk (1UL /*<< SAU_CTRL_ENABLE_Pos*/) /*!< SAU CTRL: ENABLE Mask */ /* SAU Type Register Definitions */ #define SAU_TYPE_SREGION_Pos 0U /*!< SAU TYPE: SREGION Position */ #define SAU_TYPE_SREGION_Msk (0xFFUL /*<< SAU_TYPE_SREGION_Pos*/) /*!< SAU TYPE: SREGION Mask */ #if defined (__SAUREGION_PRESENT) && (__SAUREGION_PRESENT == 1U) /* SAU Region Number Register Definitions */ #define SAU_RNR_REGION_Pos 0U /*!< SAU RNR: REGION Position */ #define SAU_RNR_REGION_Msk (0xFFUL /*<< SAU_RNR_REGION_Pos*/) /*!< SAU RNR: REGION Mask */ /* SAU Region Base Address Register Definitions */ #define SAU_RBAR_BADDR_Pos 5U /*!< SAU RBAR: BADDR Position */ #define SAU_RBAR_BADDR_Msk (0x7FFFFFFUL << SAU_RBAR_BADDR_Pos) /*!< SAU RBAR: BADDR Mask */ /* SAU Region Limit Address Register Definitions */ #define SAU_RLAR_LADDR_Pos 5U /*!< SAU RLAR: LADDR Position */ #define SAU_RLAR_LADDR_Msk (0x7FFFFFFUL << SAU_RLAR_LADDR_Pos) /*!< SAU RLAR: LADDR Mask */ #define SAU_RLAR_NSC_Pos 1U /*!< SAU RLAR: NSC Position */ #define SAU_RLAR_NSC_Msk (1UL << SAU_RLAR_NSC_Pos) /*!< SAU RLAR: NSC Mask */ #define SAU_RLAR_ENABLE_Pos 0U /*!< SAU RLAR: ENABLE Position */ #define SAU_RLAR_ENABLE_Msk (1UL /*<< SAU_RLAR_ENABLE_Pos*/) /*!< SAU RLAR: ENABLE Mask */ #endif /* defined (__SAUREGION_PRESENT) && (__SAUREGION_PRESENT == 1U) */ /* Secure Fault Status Register Definitions */ #define SAU_SFSR_LSERR_Pos 7U /*!< SAU SFSR: LSERR Position */ #define SAU_SFSR_LSERR_Msk (1UL << SAU_SFSR_LSERR_Pos) /*!< SAU SFSR: LSERR Mask */ #define SAU_SFSR_SFARVALID_Pos 6U /*!< SAU SFSR: SFARVALID Position */ #define SAU_SFSR_SFARVALID_Msk (1UL << SAU_SFSR_SFARVALID_Pos) /*!< SAU SFSR: SFARVALID Mask */ #define SAU_SFSR_LSPERR_Pos 5U /*!< SAU SFSR: LSPERR Position */ #define SAU_SFSR_LSPERR_Msk (1UL << SAU_SFSR_LSPERR_Pos) /*!< SAU SFSR: LSPERR Mask */ #define SAU_SFSR_INVTRAN_Pos 4U /*!< SAU SFSR: INVTRAN Position */ #define SAU_SFSR_INVTRAN_Msk (1UL << SAU_SFSR_INVTRAN_Pos) /*!< SAU SFSR: INVTRAN Mask */ #define SAU_SFSR_AUVIOL_Pos 3U /*!< SAU SFSR: AUVIOL Position */ #define SAU_SFSR_AUVIOL_Msk (1UL << SAU_SFSR_AUVIOL_Pos) /*!< SAU SFSR: AUVIOL Mask */ #define SAU_SFSR_INVER_Pos 2U /*!< SAU SFSR: INVER Position */ #define SAU_SFSR_INVER_Msk (1UL << SAU_SFSR_INVER_Pos) /*!< SAU SFSR: INVER Mask */ #define SAU_SFSR_INVIS_Pos 1U /*!< SAU SFSR: INVIS Position */ #define SAU_SFSR_INVIS_Msk (1UL << SAU_SFSR_INVIS_Pos) /*!< SAU SFSR: INVIS Mask */ #define SAU_SFSR_INVEP_Pos 0U /*!< SAU SFSR: INVEP Position */ #define SAU_SFSR_INVEP_Msk (1UL /*<< SAU_SFSR_INVEP_Pos*/) /*!< SAU SFSR: INVEP Mask */ /*@} end of group CMSIS_SAU */ #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /** \ingroup CMSIS_core_register \defgroup CMSIS_FPU Floating Point Unit (FPU) \brief Type definitions for the Floating Point Unit (FPU) @{ */ /** \brief Structure type to access the Floating Point Unit (FPU). */ typedef struct { uint32_t RESERVED0[1U]; __IOM uint32_t FPCCR; /*!< Offset: 0x004 (R/W) Floating-Point Context Control Register */ __IOM uint32_t FPCAR; /*!< Offset: 0x008 (R/W) Floating-Point Context Address Register */ __IOM uint32_t FPDSCR; /*!< Offset: 0x00C (R/W) Floating-Point Default Status Control Register */ __IM uint32_t MVFR0; /*!< Offset: 0x010 (R/ ) Media and FP Feature Register 0 */ __IM uint32_t MVFR1; /*!< Offset: 0x014 (R/ ) Media and FP Feature Register 1 */ } FPU_Type; /* Floating-Point Context Control Register Definitions */ #define FPU_FPCCR_ASPEN_Pos 31U /*!< FPCCR: ASPEN bit Position */ #define FPU_FPCCR_ASPEN_Msk (1UL << FPU_FPCCR_ASPEN_Pos) /*!< FPCCR: ASPEN bit Mask */ #define FPU_FPCCR_LSPEN_Pos 30U /*!< FPCCR: LSPEN Position */ #define FPU_FPCCR_LSPEN_Msk (1UL << FPU_FPCCR_LSPEN_Pos) /*!< FPCCR: LSPEN bit Mask */ #define FPU_FPCCR_LSPENS_Pos 29U /*!< FPCCR: LSPENS Position */ #define FPU_FPCCR_LSPENS_Msk (1UL << FPU_FPCCR_LSPENS_Pos) /*!< FPCCR: LSPENS bit Mask */ #define FPU_FPCCR_CLRONRET_Pos 28U /*!< FPCCR: CLRONRET Position */ #define FPU_FPCCR_CLRONRET_Msk (1UL << FPU_FPCCR_CLRONRET_Pos) /*!< FPCCR: CLRONRET bit Mask */ #define FPU_FPCCR_CLRONRETS_Pos 27U /*!< FPCCR: CLRONRETS Position */ #define FPU_FPCCR_CLRONRETS_Msk (1UL << FPU_FPCCR_CLRONRETS_Pos) /*!< FPCCR: CLRONRETS bit Mask */ #define FPU_FPCCR_TS_Pos 26U /*!< FPCCR: TS Position */ #define FPU_FPCCR_TS_Msk (1UL << FPU_FPCCR_TS_Pos) /*!< FPCCR: TS bit Mask */ #define FPU_FPCCR_UFRDY_Pos 10U /*!< FPCCR: UFRDY Position */ #define FPU_FPCCR_UFRDY_Msk (1UL << FPU_FPCCR_UFRDY_Pos) /*!< FPCCR: UFRDY bit Mask */ #define FPU_FPCCR_SPLIMVIOL_Pos 9U /*!< FPCCR: SPLIMVIOL Position */ #define FPU_FPCCR_SPLIMVIOL_Msk (1UL << FPU_FPCCR_SPLIMVIOL_Pos) /*!< FPCCR: SPLIMVIOL bit Mask */ #define FPU_FPCCR_MONRDY_Pos 8U /*!< FPCCR: MONRDY Position */ #define FPU_FPCCR_MONRDY_Msk (1UL << FPU_FPCCR_MONRDY_Pos) /*!< FPCCR: MONRDY bit Mask */ #define FPU_FPCCR_SFRDY_Pos 7U /*!< FPCCR: SFRDY Position */ #define FPU_FPCCR_SFRDY_Msk (1UL << FPU_FPCCR_SFRDY_Pos) /*!< FPCCR: SFRDY bit Mask */ #define FPU_FPCCR_BFRDY_Pos 6U /*!< FPCCR: BFRDY Position */ #define FPU_FPCCR_BFRDY_Msk (1UL << FPU_FPCCR_BFRDY_Pos) /*!< FPCCR: BFRDY bit Mask */ #define FPU_FPCCR_MMRDY_Pos 5U /*!< FPCCR: MMRDY Position */ #define FPU_FPCCR_MMRDY_Msk (1UL << FPU_FPCCR_MMRDY_Pos) /*!< FPCCR: MMRDY bit Mask */ #define FPU_FPCCR_HFRDY_Pos 4U /*!< FPCCR: HFRDY Position */ #define FPU_FPCCR_HFRDY_Msk (1UL << FPU_FPCCR_HFRDY_Pos) /*!< FPCCR: HFRDY bit Mask */ #define FPU_FPCCR_THREAD_Pos 3U /*!< FPCCR: processor mode bit Position */ #define FPU_FPCCR_THREAD_Msk (1UL << FPU_FPCCR_THREAD_Pos) /*!< FPCCR: processor mode active bit Mask */ #define FPU_FPCCR_S_Pos 2U /*!< FPCCR: Security status of the FP context bit Position */ #define FPU_FPCCR_S_Msk (1UL << FPU_FPCCR_S_Pos) /*!< FPCCR: Security status of the FP context bit Mask */ #define FPU_FPCCR_USER_Pos 1U /*!< FPCCR: privilege level bit Position */ #define FPU_FPCCR_USER_Msk (1UL << FPU_FPCCR_USER_Pos) /*!< FPCCR: privilege level bit Mask */ #define FPU_FPCCR_LSPACT_Pos 0U /*!< FPCCR: Lazy state preservation active bit Position */ #define FPU_FPCCR_LSPACT_Msk (1UL /*<< FPU_FPCCR_LSPACT_Pos*/) /*!< FPCCR: Lazy state preservation active bit Mask */ /* Floating-Point Context Address Register Definitions */ #define FPU_FPCAR_ADDRESS_Pos 3U /*!< FPCAR: ADDRESS bit Position */ #define FPU_FPCAR_ADDRESS_Msk (0x1FFFFFFFUL << FPU_FPCAR_ADDRESS_Pos) /*!< FPCAR: ADDRESS bit Mask */ /* Floating-Point Default Status Control Register Definitions */ #define FPU_FPDSCR_AHP_Pos 26U /*!< FPDSCR: AHP bit Position */ #define FPU_FPDSCR_AHP_Msk (1UL << FPU_FPDSCR_AHP_Pos) /*!< FPDSCR: AHP bit Mask */ #define FPU_FPDSCR_DN_Pos 25U /*!< FPDSCR: DN bit Position */ #define FPU_FPDSCR_DN_Msk (1UL << FPU_FPDSCR_DN_Pos) /*!< FPDSCR: DN bit Mask */ #define FPU_FPDSCR_FZ_Pos 24U /*!< FPDSCR: FZ bit Position */ #define FPU_FPDSCR_FZ_Msk (1UL << FPU_FPDSCR_FZ_Pos) /*!< FPDSCR: FZ bit Mask */ #define FPU_FPDSCR_RMode_Pos 22U /*!< FPDSCR: RMode bit Position */ #define FPU_FPDSCR_RMode_Msk (3UL << FPU_FPDSCR_RMode_Pos) /*!< FPDSCR: RMode bit Mask */ /* Media and FP Feature Register 0 Definitions */ #define FPU_MVFR0_FP_rounding_modes_Pos 28U /*!< MVFR0: FP rounding modes bits Position */ #define FPU_MVFR0_FP_rounding_modes_Msk (0xFUL << FPU_MVFR0_FP_rounding_modes_Pos) /*!< MVFR0: FP rounding modes bits Mask */ #define FPU_MVFR0_Short_vectors_Pos 24U /*!< MVFR0: Short vectors bits Position */ #define FPU_MVFR0_Short_vectors_Msk (0xFUL << FPU_MVFR0_Short_vectors_Pos) /*!< MVFR0: Short vectors bits Mask */ #define FPU_MVFR0_Square_root_Pos 20U /*!< MVFR0: Square root bits Position */ #define FPU_MVFR0_Square_root_Msk (0xFUL << FPU_MVFR0_Square_root_Pos) /*!< MVFR0: Square root bits Mask */ #define FPU_MVFR0_Divide_Pos 16U /*!< MVFR0: Divide bits Position */ #define FPU_MVFR0_Divide_Msk (0xFUL << FPU_MVFR0_Divide_Pos) /*!< MVFR0: Divide bits Mask */ #define FPU_MVFR0_FP_excep_trapping_Pos 12U /*!< MVFR0: FP exception trapping bits Position */ #define FPU_MVFR0_FP_excep_trapping_Msk (0xFUL << FPU_MVFR0_FP_excep_trapping_Pos) /*!< MVFR0: FP exception trapping bits Mask */ #define FPU_MVFR0_Double_precision_Pos 8U /*!< MVFR0: Double-precision bits Position */ #define FPU_MVFR0_Double_precision_Msk (0xFUL << FPU_MVFR0_Double_precision_Pos) /*!< MVFR0: Double-precision bits Mask */ #define FPU_MVFR0_Single_precision_Pos 4U /*!< MVFR0: Single-precision bits Position */ #define FPU_MVFR0_Single_precision_Msk (0xFUL << FPU_MVFR0_Single_precision_Pos) /*!< MVFR0: Single-precision bits Mask */ #define FPU_MVFR0_A_SIMD_registers_Pos 0U /*!< MVFR0: A_SIMD registers bits Position */ #define FPU_MVFR0_A_SIMD_registers_Msk (0xFUL /*<< FPU_MVFR0_A_SIMD_registers_Pos*/) /*!< MVFR0: A_SIMD registers bits Mask */ /* Media and FP Feature Register 1 Definitions */ #define FPU_MVFR1_FP_fused_MAC_Pos 28U /*!< MVFR1: FP fused MAC bits Position */ #define FPU_MVFR1_FP_fused_MAC_Msk (0xFUL << FPU_MVFR1_FP_fused_MAC_Pos) /*!< MVFR1: FP fused MAC bits Mask */ #define FPU_MVFR1_FP_HPFP_Pos 24U /*!< MVFR1: FP HPFP bits Position */ #define FPU_MVFR1_FP_HPFP_Msk (0xFUL << FPU_MVFR1_FP_HPFP_Pos) /*!< MVFR1: FP HPFP bits Mask */ #define FPU_MVFR1_D_NaN_mode_Pos 4U /*!< MVFR1: D_NaN mode bits Position */ #define FPU_MVFR1_D_NaN_mode_Msk (0xFUL << FPU_MVFR1_D_NaN_mode_Pos) /*!< MVFR1: D_NaN mode bits Mask */ #define FPU_MVFR1_FtZ_mode_Pos 0U /*!< MVFR1: FtZ mode bits Position */ #define FPU_MVFR1_FtZ_mode_Msk (0xFUL /*<< FPU_MVFR1_FtZ_mode_Pos*/) /*!< MVFR1: FtZ mode bits Mask */ /*@} end of group CMSIS_FPU */ /** \ingroup CMSIS_core_register \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug) \brief Type definitions for the Core Debug Registers @{ */ /** \brief Structure type to access the Core Debug Register (CoreDebug). */ typedef struct { __IOM uint32_t DHCSR; /*!< Offset: 0x000 (R/W) Debug Halting Control and Status Register */ __OM uint32_t DCRSR; /*!< Offset: 0x004 ( /W) Debug Core Register Selector Register */ __IOM uint32_t DCRDR; /*!< Offset: 0x008 (R/W) Debug Core Register Data Register */ __IOM uint32_t DEMCR; /*!< Offset: 0x00C (R/W) Debug Exception and Monitor Control Register */ uint32_t RESERVED4[1U]; __IOM uint32_t DAUTHCTRL; /*!< Offset: 0x014 (R/W) Debug Authentication Control Register */ __IOM uint32_t DSCSR; /*!< Offset: 0x018 (R/W) Debug Security Control and Status Register */ } CoreDebug_Type; /* Debug Halting Control and Status Register Definitions */ #define CoreDebug_DHCSR_DBGKEY_Pos 16U /*!< CoreDebug DHCSR: DBGKEY Position */ #define CoreDebug_DHCSR_DBGKEY_Msk (0xFFFFUL << CoreDebug_DHCSR_DBGKEY_Pos) /*!< CoreDebug DHCSR: DBGKEY Mask */ #define CoreDebug_DHCSR_S_RESTART_ST_Pos 26U /*!< CoreDebug DHCSR: S_RESTART_ST Position */ #define CoreDebug_DHCSR_S_RESTART_ST_Msk (1UL << CoreDebug_DHCSR_S_RESTART_ST_Pos) /*!< CoreDebug DHCSR: S_RESTART_ST Mask */ #define CoreDebug_DHCSR_S_RESET_ST_Pos 25U /*!< CoreDebug DHCSR: S_RESET_ST Position */ #define CoreDebug_DHCSR_S_RESET_ST_Msk (1UL << CoreDebug_DHCSR_S_RESET_ST_Pos) /*!< CoreDebug DHCSR: S_RESET_ST Mask */ #define CoreDebug_DHCSR_S_RETIRE_ST_Pos 24U /*!< CoreDebug DHCSR: S_RETIRE_ST Position */ #define CoreDebug_DHCSR_S_RETIRE_ST_Msk (1UL << CoreDebug_DHCSR_S_RETIRE_ST_Pos) /*!< CoreDebug DHCSR: S_RETIRE_ST Mask */ #define CoreDebug_DHCSR_S_LOCKUP_Pos 19U /*!< CoreDebug DHCSR: S_LOCKUP Position */ #define CoreDebug_DHCSR_S_LOCKUP_Msk (1UL << CoreDebug_DHCSR_S_LOCKUP_Pos) /*!< CoreDebug DHCSR: S_LOCKUP Mask */ #define CoreDebug_DHCSR_S_SLEEP_Pos 18U /*!< CoreDebug DHCSR: S_SLEEP Position */ #define CoreDebug_DHCSR_S_SLEEP_Msk (1UL << CoreDebug_DHCSR_S_SLEEP_Pos) /*!< CoreDebug DHCSR: S_SLEEP Mask */ #define CoreDebug_DHCSR_S_HALT_Pos 17U /*!< CoreDebug DHCSR: S_HALT Position */ #define CoreDebug_DHCSR_S_HALT_Msk (1UL << CoreDebug_DHCSR_S_HALT_Pos) /*!< CoreDebug DHCSR: S_HALT Mask */ #define CoreDebug_DHCSR_S_REGRDY_Pos 16U /*!< CoreDebug DHCSR: S_REGRDY Position */ #define CoreDebug_DHCSR_S_REGRDY_Msk (1UL << CoreDebug_DHCSR_S_REGRDY_Pos) /*!< CoreDebug DHCSR: S_REGRDY Mask */ #define CoreDebug_DHCSR_C_SNAPSTALL_Pos 5U /*!< CoreDebug DHCSR: C_SNAPSTALL Position */ #define CoreDebug_DHCSR_C_SNAPSTALL_Msk (1UL << CoreDebug_DHCSR_C_SNAPSTALL_Pos) /*!< CoreDebug DHCSR: C_SNAPSTALL Mask */ #define CoreDebug_DHCSR_C_MASKINTS_Pos 3U /*!< CoreDebug DHCSR: C_MASKINTS Position */ #define CoreDebug_DHCSR_C_MASKINTS_Msk (1UL << CoreDebug_DHCSR_C_MASKINTS_Pos) /*!< CoreDebug DHCSR: C_MASKINTS Mask */ #define CoreDebug_DHCSR_C_STEP_Pos 2U /*!< CoreDebug DHCSR: C_STEP Position */ #define CoreDebug_DHCSR_C_STEP_Msk (1UL << CoreDebug_DHCSR_C_STEP_Pos) /*!< CoreDebug DHCSR: C_STEP Mask */ #define CoreDebug_DHCSR_C_HALT_Pos 1U /*!< CoreDebug DHCSR: C_HALT Position */ #define CoreDebug_DHCSR_C_HALT_Msk (1UL << CoreDebug_DHCSR_C_HALT_Pos) /*!< CoreDebug DHCSR: C_HALT Mask */ #define CoreDebug_DHCSR_C_DEBUGEN_Pos 0U /*!< CoreDebug DHCSR: C_DEBUGEN Position */ #define CoreDebug_DHCSR_C_DEBUGEN_Msk (1UL /*<< CoreDebug_DHCSR_C_DEBUGEN_Pos*/) /*!< CoreDebug DHCSR: C_DEBUGEN Mask */ /* Debug Core Register Selector Register Definitions */ #define CoreDebug_DCRSR_REGWnR_Pos 16U /*!< CoreDebug DCRSR: REGWnR Position */ #define CoreDebug_DCRSR_REGWnR_Msk (1UL << CoreDebug_DCRSR_REGWnR_Pos) /*!< CoreDebug DCRSR: REGWnR Mask */ #define CoreDebug_DCRSR_REGSEL_Pos 0U /*!< CoreDebug DCRSR: REGSEL Position */ #define CoreDebug_DCRSR_REGSEL_Msk (0x1FUL /*<< CoreDebug_DCRSR_REGSEL_Pos*/) /*!< CoreDebug DCRSR: REGSEL Mask */ /* Debug Exception and Monitor Control Register Definitions */ #define CoreDebug_DEMCR_TRCENA_Pos 24U /*!< CoreDebug DEMCR: TRCENA Position */ #define CoreDebug_DEMCR_TRCENA_Msk (1UL << CoreDebug_DEMCR_TRCENA_Pos) /*!< CoreDebug DEMCR: TRCENA Mask */ #define CoreDebug_DEMCR_MON_REQ_Pos 19U /*!< CoreDebug DEMCR: MON_REQ Position */ #define CoreDebug_DEMCR_MON_REQ_Msk (1UL << CoreDebug_DEMCR_MON_REQ_Pos) /*!< CoreDebug DEMCR: MON_REQ Mask */ #define CoreDebug_DEMCR_MON_STEP_Pos 18U /*!< CoreDebug DEMCR: MON_STEP Position */ #define CoreDebug_DEMCR_MON_STEP_Msk (1UL << CoreDebug_DEMCR_MON_STEP_Pos) /*!< CoreDebug DEMCR: MON_STEP Mask */ #define CoreDebug_DEMCR_MON_PEND_Pos 17U /*!< CoreDebug DEMCR: MON_PEND Position */ #define CoreDebug_DEMCR_MON_PEND_Msk (1UL << CoreDebug_DEMCR_MON_PEND_Pos) /*!< CoreDebug DEMCR: MON_PEND Mask */ #define CoreDebug_DEMCR_MON_EN_Pos 16U /*!< CoreDebug DEMCR: MON_EN Position */ #define CoreDebug_DEMCR_MON_EN_Msk (1UL << CoreDebug_DEMCR_MON_EN_Pos) /*!< CoreDebug DEMCR: MON_EN Mask */ #define CoreDebug_DEMCR_VC_HARDERR_Pos 10U /*!< CoreDebug DEMCR: VC_HARDERR Position */ #define CoreDebug_DEMCR_VC_HARDERR_Msk (1UL << CoreDebug_DEMCR_VC_HARDERR_Pos) /*!< CoreDebug DEMCR: VC_HARDERR Mask */ #define CoreDebug_DEMCR_VC_INTERR_Pos 9U /*!< CoreDebug DEMCR: VC_INTERR Position */ #define CoreDebug_DEMCR_VC_INTERR_Msk (1UL << CoreDebug_DEMCR_VC_INTERR_Pos) /*!< CoreDebug DEMCR: VC_INTERR Mask */ #define CoreDebug_DEMCR_VC_BUSERR_Pos 8U /*!< CoreDebug DEMCR: VC_BUSERR Position */ #define CoreDebug_DEMCR_VC_BUSERR_Msk (1UL << CoreDebug_DEMCR_VC_BUSERR_Pos) /*!< CoreDebug DEMCR: VC_BUSERR Mask */ #define CoreDebug_DEMCR_VC_STATERR_Pos 7U /*!< CoreDebug DEMCR: VC_STATERR Position */ #define CoreDebug_DEMCR_VC_STATERR_Msk (1UL << CoreDebug_DEMCR_VC_STATERR_Pos) /*!< CoreDebug DEMCR: VC_STATERR Mask */ #define CoreDebug_DEMCR_VC_CHKERR_Pos 6U /*!< CoreDebug DEMCR: VC_CHKERR Position */ #define CoreDebug_DEMCR_VC_CHKERR_Msk (1UL << CoreDebug_DEMCR_VC_CHKERR_Pos) /*!< CoreDebug DEMCR: VC_CHKERR Mask */ #define CoreDebug_DEMCR_VC_NOCPERR_Pos 5U /*!< CoreDebug DEMCR: VC_NOCPERR Position */ #define CoreDebug_DEMCR_VC_NOCPERR_Msk (1UL << CoreDebug_DEMCR_VC_NOCPERR_Pos) /*!< CoreDebug DEMCR: VC_NOCPERR Mask */ #define CoreDebug_DEMCR_VC_MMERR_Pos 4U /*!< CoreDebug DEMCR: VC_MMERR Position */ #define CoreDebug_DEMCR_VC_MMERR_Msk (1UL << CoreDebug_DEMCR_VC_MMERR_Pos) /*!< CoreDebug DEMCR: VC_MMERR Mask */ #define CoreDebug_DEMCR_VC_CORERESET_Pos 0U /*!< CoreDebug DEMCR: VC_CORERESET Position */ #define CoreDebug_DEMCR_VC_CORERESET_Msk (1UL /*<< CoreDebug_DEMCR_VC_CORERESET_Pos*/) /*!< CoreDebug DEMCR: VC_CORERESET Mask */ /* Debug Authentication Control Register Definitions */ #define CoreDebug_DAUTHCTRL_INTSPNIDEN_Pos 3U /*!< CoreDebug DAUTHCTRL: INTSPNIDEN, Position */ #define CoreDebug_DAUTHCTRL_INTSPNIDEN_Msk (1UL << CoreDebug_DAUTHCTRL_INTSPNIDEN_Pos) /*!< CoreDebug DAUTHCTRL: INTSPNIDEN, Mask */ #define CoreDebug_DAUTHCTRL_SPNIDENSEL_Pos 2U /*!< CoreDebug DAUTHCTRL: SPNIDENSEL Position */ #define CoreDebug_DAUTHCTRL_SPNIDENSEL_Msk (1UL << CoreDebug_DAUTHCTRL_SPNIDENSEL_Pos) /*!< CoreDebug DAUTHCTRL: SPNIDENSEL Mask */ #define CoreDebug_DAUTHCTRL_INTSPIDEN_Pos 1U /*!< CoreDebug DAUTHCTRL: INTSPIDEN Position */ #define CoreDebug_DAUTHCTRL_INTSPIDEN_Msk (1UL << CoreDebug_DAUTHCTRL_INTSPIDEN_Pos) /*!< CoreDebug DAUTHCTRL: INTSPIDEN Mask */ #define CoreDebug_DAUTHCTRL_SPIDENSEL_Pos 0U /*!< CoreDebug DAUTHCTRL: SPIDENSEL Position */ #define CoreDebug_DAUTHCTRL_SPIDENSEL_Msk (1UL /*<< CoreDebug_DAUTHCTRL_SPIDENSEL_Pos*/) /*!< CoreDebug DAUTHCTRL: SPIDENSEL Mask */ /* Debug Security Control and Status Register Definitions */ #define CoreDebug_DSCSR_CDS_Pos 16U /*!< CoreDebug DSCSR: CDS Position */ #define CoreDebug_DSCSR_CDS_Msk (1UL << CoreDebug_DSCSR_CDS_Pos) /*!< CoreDebug DSCSR: CDS Mask */ #define CoreDebug_DSCSR_SBRSEL_Pos 1U /*!< CoreDebug DSCSR: SBRSEL Position */ #define CoreDebug_DSCSR_SBRSEL_Msk (1UL << CoreDebug_DSCSR_SBRSEL_Pos) /*!< CoreDebug DSCSR: SBRSEL Mask */ #define CoreDebug_DSCSR_SBRSELEN_Pos 0U /*!< CoreDebug DSCSR: SBRSELEN Position */ #define CoreDebug_DSCSR_SBRSELEN_Msk (1UL /*<< CoreDebug_DSCSR_SBRSELEN_Pos*/) /*!< CoreDebug DSCSR: SBRSELEN Mask */ /*@} end of group CMSIS_CoreDebug */ /** \ingroup CMSIS_core_register \defgroup CMSIS_core_bitfield Core register bit field macros \brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk). @{ */ /** \brief Mask and shift a bit field value for use in a register bit range. \param[in] field Name of the register bit field. \param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type. \return Masked and shifted value. */ #define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk) /** \brief Mask and shift a register value to extract a bit filed value. \param[in] field Name of the register bit field. \param[in] value Value of register. This parameter is interpreted as an uint32_t type. \return Masked and shifted bit field value. */ #define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos) /*@} end of group CMSIS_core_bitfield */ /** \ingroup CMSIS_core_register \defgroup CMSIS_core_base Core Definitions \brief Definitions for base addresses, unions, and structures. @{ */ /* Memory mapping of Core Hardware */ #define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */ #define ITM_BASE (0xE0000000UL) /*!< ITM Base Address */ #define DWT_BASE (0xE0001000UL) /*!< DWT Base Address */ #define TPI_BASE (0xE0040000UL) /*!< TPI Base Address */ #define CoreDebug_BASE (0xE000EDF0UL) /*!< Core Debug Base Address */ #define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */ #define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */ #define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */ #define SCnSCB ((SCnSCB_Type *) SCS_BASE ) /*!< System control Register not in SCB */ #define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */ #define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */ #define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */ #define ITM ((ITM_Type *) ITM_BASE ) /*!< ITM configuration struct */ #define DWT ((DWT_Type *) DWT_BASE ) /*!< DWT configuration struct */ #define TPI ((TPI_Type *) TPI_BASE ) /*!< TPI configuration struct */ #define CoreDebug ((CoreDebug_Type *) CoreDebug_BASE ) /*!< Core Debug configuration struct */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) #define MPU_BASE (SCS_BASE + 0x0D90UL) /*!< Memory Protection Unit */ #define MPU ((MPU_Type *) MPU_BASE ) /*!< Memory Protection Unit */ #endif #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) #define SAU_BASE (SCS_BASE + 0x0DD0UL) /*!< Security Attribution Unit */ #define SAU ((SAU_Type *) SAU_BASE ) /*!< Security Attribution Unit */ #endif #define FPU_BASE (SCS_BASE + 0x0F30UL) /*!< Floating Point Unit */ #define FPU ((FPU_Type *) FPU_BASE ) /*!< Floating Point Unit */ #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) #define SCS_BASE_NS (0xE002E000UL) /*!< System Control Space Base Address (non-secure address space) */ #define CoreDebug_BASE_NS (0xE002EDF0UL) /*!< Core Debug Base Address (non-secure address space) */ #define SysTick_BASE_NS (SCS_BASE_NS + 0x0010UL) /*!< SysTick Base Address (non-secure address space) */ #define NVIC_BASE_NS (SCS_BASE_NS + 0x0100UL) /*!< NVIC Base Address (non-secure address space) */ #define SCB_BASE_NS (SCS_BASE_NS + 0x0D00UL) /*!< System Control Block Base Address (non-secure address space) */ #define SCnSCB_NS ((SCnSCB_Type *) SCS_BASE_NS ) /*!< System control Register not in SCB(non-secure address space) */ #define SCB_NS ((SCB_Type *) SCB_BASE_NS ) /*!< SCB configuration struct (non-secure address space) */ #define SysTick_NS ((SysTick_Type *) SysTick_BASE_NS ) /*!< SysTick configuration struct (non-secure address space) */ #define NVIC_NS ((NVIC_Type *) NVIC_BASE_NS ) /*!< NVIC configuration struct (non-secure address space) */ #define CoreDebug_NS ((CoreDebug_Type *) CoreDebug_BASE_NS) /*!< Core Debug configuration struct (non-secure address space) */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) #define MPU_BASE_NS (SCS_BASE_NS + 0x0D90UL) /*!< Memory Protection Unit (non-secure address space) */ #define MPU_NS ((MPU_Type *) MPU_BASE_NS ) /*!< Memory Protection Unit (non-secure address space) */ #endif #define FPU_BASE_NS (SCS_BASE_NS + 0x0F30UL) /*!< Floating Point Unit (non-secure address space) */ #define FPU_NS ((FPU_Type *) FPU_BASE_NS ) /*!< Floating Point Unit (non-secure address space) */ #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /*@} */ /******************************************************************************* * Hardware Abstraction Layer Core Function Interface contains: - Core NVIC Functions - Core SysTick Functions - Core Debug Functions - Core Register Access Functions ******************************************************************************/ /** \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference */ /* ########################## NVIC functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_NVICFunctions NVIC Functions \brief Functions that manage interrupts and exceptions via the NVIC. @{ */ #ifdef CMSIS_NVIC_VIRTUAL #ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE #define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h" #endif #include CMSIS_NVIC_VIRTUAL_HEADER_FILE #else #define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping #define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping #define NVIC_EnableIRQ __NVIC_EnableIRQ #define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ #define NVIC_DisableIRQ __NVIC_DisableIRQ #define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ #define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ #define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ #define NVIC_GetActive __NVIC_GetActive #define NVIC_SetPriority __NVIC_SetPriority #define NVIC_GetPriority __NVIC_GetPriority #define NVIC_SystemReset __NVIC_SystemReset #endif /* CMSIS_NVIC_VIRTUAL */ #ifdef CMSIS_VECTAB_VIRTUAL #ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE #define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h" #endif #include CMSIS_VECTAB_VIRTUAL_HEADER_FILE #else #define NVIC_SetVector __NVIC_SetVector #define NVIC_GetVector __NVIC_GetVector #endif /* (CMSIS_VECTAB_VIRTUAL) */ #define NVIC_USER_IRQ_OFFSET 16 /** \brief Set Priority Grouping \details Sets the priority grouping field using the required unlock sequence. The parameter PriorityGroup is assigned to the field SCB->AIRCR [10:8] PRIGROUP field. Only values from 0..7 are used. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set. \param [in] PriorityGroup Priority grouping field. */ __STATIC_INLINE void __NVIC_SetPriorityGrouping(uint32_t PriorityGroup) { uint32_t reg_value; uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ reg_value = SCB->AIRCR; /* read old register configuration */ reg_value &= ~((uint32_t)(SCB_AIRCR_VECTKEY_Msk | SCB_AIRCR_PRIGROUP_Msk)); /* clear bits to change */ reg_value = (reg_value | ((uint32_t)0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | (PriorityGroupTmp << 8U) ); /* Insert write key and priorty group */ SCB->AIRCR = reg_value; } /** \brief Get Priority Grouping \details Reads the priority grouping field from the NVIC Interrupt Controller. \return Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field). */ __STATIC_INLINE uint32_t __NVIC_GetPriorityGrouping(void) { return ((uint32_t)((SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) >> SCB_AIRCR_PRIGROUP_Pos)); } /** \brief Enable Interrupt \details Enables a device specific interrupt in the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ISER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Interrupt Enable status \details Returns a device specific interrupt enable status from the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt is not enabled. \return 1 Interrupt is enabled. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ISER[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Disable Interrupt \details Disables a device specific interrupt in the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ICER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); __DSB(); __ISB(); } } /** \brief Get Pending Interrupt \details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not pending. \return 1 Interrupt status is pending. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ISPR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Pending Interrupt \details Sets the pending bit of a device specific interrupt in the NVIC pending register. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ISPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Clear Pending Interrupt \details Clears the pending bit of a device specific interrupt in the NVIC pending register. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ICPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Active Interrupt \details Reads the active register in the NVIC and returns the active bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not active. \return 1 Interrupt status is active. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetActive(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->IABR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief Get Interrupt Target State \details Reads the interrupt target field in the NVIC and returns the interrupt target bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 if interrupt is assigned to Secure \return 1 if interrupt is assigned to Non Secure \note IRQn must not be negative. */ __STATIC_INLINE uint32_t NVIC_GetTargetState(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Interrupt Target State \details Sets the interrupt target field in the NVIC and returns the interrupt target bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 if interrupt is assigned to Secure 1 if interrupt is assigned to Non Secure \note IRQn must not be negative. */ __STATIC_INLINE uint32_t NVIC_SetTargetState(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] |= ((uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL))); return((uint32_t)(((NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Clear Interrupt Target State \details Clears the interrupt target field in the NVIC and returns the interrupt target bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 if interrupt is assigned to Secure 1 if interrupt is assigned to Non Secure \note IRQn must not be negative. */ __STATIC_INLINE uint32_t NVIC_ClearTargetState(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] &= ~((uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL))); return((uint32_t)(((NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /** \brief Set Interrupt Priority \details Sets the priority of a device specific interrupt or a processor exception. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \param [in] priority Priority to set. \note The priority cannot be set for every processor exception. */ __STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) { if ((int32_t)(IRQn) >= 0) { NVIC->IPR[((uint32_t)IRQn)] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL); } else { SCB->SHPR[(((uint32_t)IRQn) & 0xFUL)-4UL] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL); } } /** \brief Get Interrupt Priority \details Reads the priority of a device specific interrupt or a processor exception. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Interrupt Priority. Value is aligned automatically to the implemented priority bits of the microcontroller. */ __STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return(((uint32_t)NVIC->IPR[((uint32_t)IRQn)] >> (8U - __NVIC_PRIO_BITS))); } else { return(((uint32_t)SCB->SHPR[(((uint32_t)IRQn) & 0xFUL)-4UL] >> (8U - __NVIC_PRIO_BITS))); } } /** \brief Encode Priority \details Encodes the priority for an interrupt with the given priority group, preemptive priority value, and subpriority value. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set. \param [in] PriorityGroup Used priority group. \param [in] PreemptPriority Preemptive priority value (starting from 0). \param [in] SubPriority Subpriority value (starting from 0). \return Encoded priority. Value can be used in the function \ref NVIC_SetPriority(). */ __STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority) { uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ uint32_t PreemptPriorityBits; uint32_t SubPriorityBits; PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); return ( ((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) | ((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL))) ); } /** \brief Decode Priority \details Decodes an interrupt priority value with a given priority group to preemptive priority value and subpriority value. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set. \param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority(). \param [in] PriorityGroup Used priority group. \param [out] pPreemptPriority Preemptive priority value (starting from 0). \param [out] pSubPriority Subpriority value (starting from 0). */ __STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority) { uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ uint32_t PreemptPriorityBits; uint32_t SubPriorityBits; PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); *pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL); *pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL); } /** \brief Set Interrupt Vector \details Sets an interrupt vector in SRAM based interrupt vector table. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. VTOR must been relocated to SRAM before. \param [in] IRQn Interrupt number \param [in] vector Address of interrupt handler function */ __STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) { uint32_t *vectors = (uint32_t *)SCB->VTOR; vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector; __DSB(); } /** \brief Get Interrupt Vector \details Reads an interrupt vector from interrupt vector table. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Address of interrupt handler function */ __STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn) { uint32_t *vectors = (uint32_t *)SCB->VTOR; return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET]; } /** \brief System Reset \details Initiates a system reset request to reset the MCU. */ __NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void) { __DSB(); /* Ensure all outstanding memory accesses included buffered write are completed before reset */ SCB->AIRCR = (uint32_t)((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | (SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) | SCB_AIRCR_SYSRESETREQ_Msk ); /* Keep priority group unchanged */ __DSB(); /* Ensure completion of memory access */ for(;;) /* wait until reset */ { __NOP(); } } #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief Set Priority Grouping (non-secure) \details Sets the non-secure priority grouping field when in secure state using the required unlock sequence. The parameter PriorityGroup is assigned to the field SCB->AIRCR [10:8] PRIGROUP field. Only values from 0..7 are used. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set. \param [in] PriorityGroup Priority grouping field. */ __STATIC_INLINE void TZ_NVIC_SetPriorityGrouping_NS(uint32_t PriorityGroup) { uint32_t reg_value; uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ reg_value = SCB_NS->AIRCR; /* read old register configuration */ reg_value &= ~((uint32_t)(SCB_AIRCR_VECTKEY_Msk | SCB_AIRCR_PRIGROUP_Msk)); /* clear bits to change */ reg_value = (reg_value | ((uint32_t)0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | (PriorityGroupTmp << 8U) ); /* Insert write key and priorty group */ SCB_NS->AIRCR = reg_value; } /** \brief Get Priority Grouping (non-secure) \details Reads the priority grouping field from the non-secure NVIC when in secure state. \return Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field). */ __STATIC_INLINE uint32_t TZ_NVIC_GetPriorityGrouping_NS(void) { return ((uint32_t)((SCB_NS->AIRCR & SCB_AIRCR_PRIGROUP_Msk) >> SCB_AIRCR_PRIGROUP_Pos)); } /** \brief Enable Interrupt (non-secure) \details Enables a device specific interrupt in the non-secure NVIC interrupt controller when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_EnableIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ISER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Interrupt Enable status (non-secure) \details Returns a device specific interrupt enable status from the non-secure NVIC interrupt controller when in secure state. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt is not enabled. \return 1 Interrupt is enabled. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t TZ_NVIC_GetEnableIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC_NS->ISER[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Disable Interrupt (non-secure) \details Disables a device specific interrupt in the non-secure NVIC interrupt controller when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_DisableIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ICER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Pending Interrupt (non-secure) \details Reads the NVIC pending register in the non-secure NVIC when in secure state and returns the pending bit for the specified device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not pending. \return 1 Interrupt status is pending. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t TZ_NVIC_GetPendingIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC_NS->ISPR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Pending Interrupt (non-secure) \details Sets the pending bit of a device specific interrupt in the non-secure NVIC pending register when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_SetPendingIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ISPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Clear Pending Interrupt (non-secure) \details Clears the pending bit of a device specific interrupt in the non-secure NVIC pending register when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_ClearPendingIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ICPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Active Interrupt (non-secure) \details Reads the active register in non-secure NVIC when in secure state and returns the active bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not active. \return 1 Interrupt status is active. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t TZ_NVIC_GetActive_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC_NS->IABR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Interrupt Priority (non-secure) \details Sets the priority of a non-secure device specific interrupt or a non-secure processor exception when in secure state. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \param [in] priority Priority to set. \note The priority cannot be set for every non-secure processor exception. */ __STATIC_INLINE void TZ_NVIC_SetPriority_NS(IRQn_Type IRQn, uint32_t priority) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->IPR[((uint32_t)IRQn)] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL); } else { SCB_NS->SHPR[(((uint32_t)IRQn) & 0xFUL)-4UL] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL); } } /** \brief Get Interrupt Priority (non-secure) \details Reads the priority of a non-secure device specific interrupt or a non-secure processor exception when in secure state. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Interrupt Priority. Value is aligned automatically to the implemented priority bits of the microcontroller. */ __STATIC_INLINE uint32_t TZ_NVIC_GetPriority_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return(((uint32_t)NVIC_NS->IPR[((uint32_t)IRQn)] >> (8U - __NVIC_PRIO_BITS))); } else { return(((uint32_t)SCB_NS->SHPR[(((uint32_t)IRQn) & 0xFUL)-4UL] >> (8U - __NVIC_PRIO_BITS))); } } #endif /* defined (__ARM_FEATURE_CMSE) &&(__ARM_FEATURE_CMSE == 3U) */ /*@} end of CMSIS_Core_NVICFunctions */ /* ########################## MPU functions #################################### */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) #include "mpu_armv8.h" #endif /* ########################## FPU functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_FpuFunctions FPU Functions \brief Function that provides FPU type. @{ */ /** \brief get FPU type \details returns the FPU type \returns - \b 0: No FPU - \b 1: Single precision FPU - \b 2: Double + Single precision FPU */ __STATIC_INLINE uint32_t SCB_GetFPUType(void) { uint32_t mvfr0; mvfr0 = FPU->MVFR0; if ((mvfr0 & (FPU_MVFR0_Single_precision_Msk | FPU_MVFR0_Double_precision_Msk)) == 0x220U) { return 2U; /* Double + Single precision FPU */ } else if ((mvfr0 & (FPU_MVFR0_Single_precision_Msk | FPU_MVFR0_Double_precision_Msk)) == 0x020U) { return 1U; /* Single precision FPU */ } else { return 0U; /* No FPU */ } } /*@} end of CMSIS_Core_FpuFunctions */ /* ########################## SAU functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_SAUFunctions SAU Functions \brief Functions that configure the SAU. @{ */ #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief Enable SAU \details Enables the Security Attribution Unit (SAU). */ __STATIC_INLINE void TZ_SAU_Enable(void) { SAU->CTRL |= (SAU_CTRL_ENABLE_Msk); } /** \brief Disable SAU \details Disables the Security Attribution Unit (SAU). */ __STATIC_INLINE void TZ_SAU_Disable(void) { SAU->CTRL &= ~(SAU_CTRL_ENABLE_Msk); } #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /*@} end of CMSIS_Core_SAUFunctions */ /* ################################## SysTick function ############################################ */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_SysTickFunctions SysTick Functions \brief Functions that configure the System. @{ */ #if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U) /** \brief System Tick Configuration \details Initializes the System Timer and its interrupt, and starts the System Tick Timer. Counter is in free running mode to generate periodic interrupts. \param [in] ticks Number of ticks between two interrupts. \return 0 Function succeeded. \return 1 Function failed. \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b> must contain a vendor-specific implementation of this function. */ __STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks) { if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) { return (1UL); /* Reload value impossible */ } SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */ NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */ SysTick->VAL = 0UL; /* Load the SysTick Counter Value */ SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ return (0UL); /* Function successful */ } #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief System Tick Configuration (non-secure) \details Initializes the non-secure System Timer and its interrupt when in secure state, and starts the System Tick Timer. Counter is in free running mode to generate periodic interrupts. \param [in] ticks Number of ticks between two interrupts. \return 0 Function succeeded. \return 1 Function failed. \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the function <b>TZ_SysTick_Config_NS</b> is not included. In this case, the file <b><i>device</i>.h</b> must contain a vendor-specific implementation of this function. */ __STATIC_INLINE uint32_t TZ_SysTick_Config_NS(uint32_t ticks) { if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) { return (1UL); /* Reload value impossible */ } SysTick_NS->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */ TZ_NVIC_SetPriority_NS (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */ SysTick_NS->VAL = 0UL; /* Load the SysTick Counter Value */ SysTick_NS->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ return (0UL); /* Function successful */ } #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ #endif /*@} end of CMSIS_Core_SysTickFunctions */ /* ##################################### Debug In/Output function ########################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_core_DebugFunctions ITM Functions \brief Functions that access the ITM debug interface. @{ */ extern volatile int32_t ITM_RxBuffer; /*!< External variable to receive characters. */ #define ITM_RXBUFFER_EMPTY ((int32_t)0x5AA55AA5U) /*!< Value identifying \ref ITM_RxBuffer is ready for next character. */ /** \brief ITM Send Character \details Transmits a character via the ITM channel 0, and \li Just returns when no debugger is connected that has booked the output. \li Is blocking when a debugger is connected, but the previous character sent has not been transmitted. \param [in] ch Character to transmit. \returns Character to transmit. */ __STATIC_INLINE uint32_t ITM_SendChar (uint32_t ch) { if (((ITM->TCR & ITM_TCR_ITMENA_Msk) != 0UL) && /* ITM enabled */ ((ITM->TER & 1UL ) != 0UL) ) /* ITM Port #0 enabled */ { while (ITM->PORT[0U].u32 == 0UL) { __NOP(); } ITM->PORT[0U].u8 = (uint8_t)ch; } return (ch); } /** \brief ITM Receive Character \details Inputs a character via the external variable \ref ITM_RxBuffer. \return Received character. \return -1 No character pending. */ __STATIC_INLINE int32_t ITM_ReceiveChar (void) { int32_t ch = -1; /* no character available */ if (ITM_RxBuffer != ITM_RXBUFFER_EMPTY) { ch = ITM_RxBuffer; ITM_RxBuffer = ITM_RXBUFFER_EMPTY; /* ready for next character */ } return (ch); } /** \brief ITM Check Character \details Checks whether a character is pending for reading in the variable \ref ITM_RxBuffer. \return 0 No character available. \return 1 Character available. */ __STATIC_INLINE int32_t ITM_CheckChar (void) { if (ITM_RxBuffer == ITM_RXBUFFER_EMPTY) { return (0); /* no character available */ } else { return (1); /* character available */ } } /*@} end of CMSIS_core_DebugFunctions */ #ifdef __cplusplus } #endif #endif /* __CORE_ARMV81MML_H_DEPENDANT */ #endif /* __CMSIS_GENERIC */ Drivers/CMSIS/Include/core_armv8mbl.h
New file @@ -0,0 +1,1921 @@ /**************************************************************************//** * @file core_armv8mbl.h * @brief CMSIS Armv8-M Baseline Core Peripheral Access Layer Header File * @version V5.0.8 * @date 12. November 2018 ******************************************************************************/ /* * Copyright (c) 2009-2018 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined ( __ICCARM__ ) #pragma system_include /* treat file as system include file for MISRA check */ #elif defined (__clang__) #pragma clang system_header /* treat file as system include file */ #endif #ifndef __CORE_ARMV8MBL_H_GENERIC #define __CORE_ARMV8MBL_H_GENERIC #include <stdint.h> #ifdef __cplusplus extern "C" { #endif /** \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions CMSIS violates the following MISRA-C:2004 rules: \li Required Rule 8.5, object/function definition in header file.<br> Function definitions in header files are used to allow 'inlining'. \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br> Unions are used for effective representation of core registers. \li Advisory Rule 19.7, Function-like macro defined.<br> Function-like macros are used to allow more efficient code. */ /******************************************************************************* * CMSIS definitions ******************************************************************************/ /** \ingroup Cortex_ARMv8MBL @{ */ #include "cmsis_version.h" /* CMSIS definitions */ #define __ARMv8MBL_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */ #define __ARMv8MBL_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */ #define __ARMv8MBL_CMSIS_VERSION ((__ARMv8MBL_CMSIS_VERSION_MAIN << 16U) | \ __ARMv8MBL_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */ #define __CORTEX_M ( 2U) /*!< Cortex-M Core */ /** __FPU_USED indicates whether an FPU is used or not. This core does not support an FPU at all */ #define __FPU_USED 0U #if defined ( __CC_ARM ) #if defined __TARGET_FPU_VFP #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) #if defined __ARM_FP #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __GNUC__ ) #if defined (__VFP_FP__) && !defined(__SOFTFP__) #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __ICCARM__ ) #if defined __ARMVFP__ #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __TI_ARM__ ) #if defined __TI_VFP_SUPPORT__ #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __TASKING__ ) #if defined __FPU_VFP__ #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __CSMC__ ) #if ( __CSMC__ & 0x400U) #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #endif #include "cmsis_compiler.h" /* CMSIS compiler specific defines */ #ifdef __cplusplus } #endif #endif /* __CORE_ARMV8MBL_H_GENERIC */ #ifndef __CMSIS_GENERIC #ifndef __CORE_ARMV8MBL_H_DEPENDANT #define __CORE_ARMV8MBL_H_DEPENDANT #ifdef __cplusplus extern "C" { #endif /* check device defines and use defaults */ #if defined __CHECK_DEVICE_DEFINES #ifndef __ARMv8MBL_REV #define __ARMv8MBL_REV 0x0000U #warning "__ARMv8MBL_REV not defined in device header file; using default!" #endif #ifndef __FPU_PRESENT #define __FPU_PRESENT 0U #warning "__FPU_PRESENT not defined in device header file; using default!" #endif #ifndef __MPU_PRESENT #define __MPU_PRESENT 0U #warning "__MPU_PRESENT not defined in device header file; using default!" #endif #ifndef __SAUREGION_PRESENT #define __SAUREGION_PRESENT 0U #warning "__SAUREGION_PRESENT not defined in device header file; using default!" #endif #ifndef __VTOR_PRESENT #define __VTOR_PRESENT 0U #warning "__VTOR_PRESENT not defined in device header file; using default!" #endif #ifndef __NVIC_PRIO_BITS #define __NVIC_PRIO_BITS 2U #warning "__NVIC_PRIO_BITS not defined in device header file; using default!" #endif #ifndef __Vendor_SysTickConfig #define __Vendor_SysTickConfig 0U #warning "__Vendor_SysTickConfig not defined in device header file; using default!" #endif #ifndef __ETM_PRESENT #define __ETM_PRESENT 0U #warning "__ETM_PRESENT not defined in device header file; using default!" #endif #ifndef __MTB_PRESENT #define __MTB_PRESENT 0U #warning "__MTB_PRESENT not defined in device header file; using default!" #endif #endif /* IO definitions (access restrictions to peripheral registers) */ /** \defgroup CMSIS_glob_defs CMSIS Global Defines <strong>IO Type Qualifiers</strong> are used \li to specify the access to peripheral variables. \li for automatic generation of peripheral register debug information. */ #ifdef __cplusplus #define __I volatile /*!< Defines 'read only' permissions */ #else #define __I volatile const /*!< Defines 'read only' permissions */ #endif #define __O volatile /*!< Defines 'write only' permissions */ #define __IO volatile /*!< Defines 'read / write' permissions */ /* following defines should be used for structure members */ #define __IM volatile const /*! Defines 'read only' structure member permissions */ #define __OM volatile /*! Defines 'write only' structure member permissions */ #define __IOM volatile /*! Defines 'read / write' structure member permissions */ /*@} end of group ARMv8MBL */ /******************************************************************************* * Register Abstraction Core Register contain: - Core Register - Core NVIC Register - Core SCB Register - Core SysTick Register - Core Debug Register - Core MPU Register - Core SAU Register ******************************************************************************/ /** \defgroup CMSIS_core_register Defines and Type Definitions \brief Type definitions and defines for Cortex-M processor based devices. */ /** \ingroup CMSIS_core_register \defgroup CMSIS_CORE Status and Control Registers \brief Core Register type definitions. @{ */ /** \brief Union type to access the Application Program Status Register (APSR). */ typedef union { struct { uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ uint32_t C:1; /*!< bit: 29 Carry condition code flag */ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ uint32_t N:1; /*!< bit: 31 Negative condition code flag */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } APSR_Type; /* APSR Register Definitions */ #define APSR_N_Pos 31U /*!< APSR: N Position */ #define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */ #define APSR_Z_Pos 30U /*!< APSR: Z Position */ #define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */ #define APSR_C_Pos 29U /*!< APSR: C Position */ #define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */ #define APSR_V_Pos 28U /*!< APSR: V Position */ #define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */ /** \brief Union type to access the Interrupt Program Status Register (IPSR). */ typedef union { struct { uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } IPSR_Type; /* IPSR Register Definitions */ #define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */ #define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */ /** \brief Union type to access the Special-Purpose Program Status Registers (xPSR). */ typedef union { struct { uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */ uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */ uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ uint32_t C:1; /*!< bit: 29 Carry condition code flag */ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ uint32_t N:1; /*!< bit: 31 Negative condition code flag */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } xPSR_Type; /* xPSR Register Definitions */ #define xPSR_N_Pos 31U /*!< xPSR: N Position */ #define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */ #define xPSR_Z_Pos 30U /*!< xPSR: Z Position */ #define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */ #define xPSR_C_Pos 29U /*!< xPSR: C Position */ #define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */ #define xPSR_V_Pos 28U /*!< xPSR: V Position */ #define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */ #define xPSR_T_Pos 24U /*!< xPSR: T Position */ #define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */ #define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */ #define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */ /** \brief Union type to access the Control Registers (CONTROL). */ typedef union { struct { uint32_t nPRIV:1; /*!< bit: 0 Execution privilege in Thread mode */ uint32_t SPSEL:1; /*!< bit: 1 Stack-pointer select */ uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } CONTROL_Type; /* CONTROL Register Definitions */ #define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */ #define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */ #define CONTROL_nPRIV_Pos 0U /*!< CONTROL: nPRIV Position */ #define CONTROL_nPRIV_Msk (1UL /*<< CONTROL_nPRIV_Pos*/) /*!< CONTROL: nPRIV Mask */ /*@} end of group CMSIS_CORE */ /** \ingroup CMSIS_core_register \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC) \brief Type definitions for the NVIC Registers @{ */ /** \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC). */ typedef struct { __IOM uint32_t ISER[16U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */ uint32_t RESERVED0[16U]; __IOM uint32_t ICER[16U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */ uint32_t RSERVED1[16U]; __IOM uint32_t ISPR[16U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */ uint32_t RESERVED2[16U]; __IOM uint32_t ICPR[16U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */ uint32_t RESERVED3[16U]; __IOM uint32_t IABR[16U]; /*!< Offset: 0x200 (R/W) Interrupt Active bit Register */ uint32_t RESERVED4[16U]; __IOM uint32_t ITNS[16U]; /*!< Offset: 0x280 (R/W) Interrupt Non-Secure State Register */ uint32_t RESERVED5[16U]; __IOM uint32_t IPR[124U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */ } NVIC_Type; /*@} end of group CMSIS_NVIC */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SCB System Control Block (SCB) \brief Type definitions for the System Control Block Registers @{ */ /** \brief Structure type to access the System Control Block (SCB). */ typedef struct { __IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */ __IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */ #if defined (__VTOR_PRESENT) && (__VTOR_PRESENT == 1U) __IOM uint32_t VTOR; /*!< Offset: 0x008 (R/W) Vector Table Offset Register */ #else uint32_t RESERVED0; #endif __IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */ __IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */ __IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */ uint32_t RESERVED1; __IOM uint32_t SHPR[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */ __IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */ } SCB_Type; /* SCB CPUID Register Definitions */ #define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */ #define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */ #define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */ #define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */ #define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */ #define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */ #define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */ #define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */ #define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */ #define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */ /* SCB Interrupt Control State Register Definitions */ #define SCB_ICSR_PENDNMISET_Pos 31U /*!< SCB ICSR: PENDNMISET Position */ #define SCB_ICSR_PENDNMISET_Msk (1UL << SCB_ICSR_PENDNMISET_Pos) /*!< SCB ICSR: PENDNMISET Mask */ #define SCB_ICSR_NMIPENDSET_Pos SCB_ICSR_PENDNMISET_Pos /*!< SCB ICSR: NMIPENDSET Position, backward compatibility */ #define SCB_ICSR_NMIPENDSET_Msk SCB_ICSR_PENDNMISET_Msk /*!< SCB ICSR: NMIPENDSET Mask, backward compatibility */ #define SCB_ICSR_PENDNMICLR_Pos 30U /*!< SCB ICSR: PENDNMICLR Position */ #define SCB_ICSR_PENDNMICLR_Msk (1UL << SCB_ICSR_PENDNMICLR_Pos) /*!< SCB ICSR: PENDNMICLR Mask */ #define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */ #define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */ #define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */ #define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */ #define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */ #define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */ #define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */ #define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */ #define SCB_ICSR_STTNS_Pos 24U /*!< SCB ICSR: STTNS Position (Security Extension) */ #define SCB_ICSR_STTNS_Msk (1UL << SCB_ICSR_STTNS_Pos) /*!< SCB ICSR: STTNS Mask (Security Extension) */ #define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */ #define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */ #define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */ #define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */ #define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */ #define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */ #define SCB_ICSR_RETTOBASE_Pos 11U /*!< SCB ICSR: RETTOBASE Position */ #define SCB_ICSR_RETTOBASE_Msk (1UL << SCB_ICSR_RETTOBASE_Pos) /*!< SCB ICSR: RETTOBASE Mask */ #define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */ #define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */ #if defined (__VTOR_PRESENT) && (__VTOR_PRESENT == 1U) /* SCB Vector Table Offset Register Definitions */ #define SCB_VTOR_TBLOFF_Pos 7U /*!< SCB VTOR: TBLOFF Position */ #define SCB_VTOR_TBLOFF_Msk (0x1FFFFFFUL << SCB_VTOR_TBLOFF_Pos) /*!< SCB VTOR: TBLOFF Mask */ #endif /* SCB Application Interrupt and Reset Control Register Definitions */ #define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */ #define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */ #define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */ #define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */ #define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */ #define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */ #define SCB_AIRCR_PRIS_Pos 14U /*!< SCB AIRCR: PRIS Position */ #define SCB_AIRCR_PRIS_Msk (1UL << SCB_AIRCR_PRIS_Pos) /*!< SCB AIRCR: PRIS Mask */ #define SCB_AIRCR_BFHFNMINS_Pos 13U /*!< SCB AIRCR: BFHFNMINS Position */ #define SCB_AIRCR_BFHFNMINS_Msk (1UL << SCB_AIRCR_BFHFNMINS_Pos) /*!< SCB AIRCR: BFHFNMINS Mask */ #define SCB_AIRCR_SYSRESETREQS_Pos 3U /*!< SCB AIRCR: SYSRESETREQS Position */ #define SCB_AIRCR_SYSRESETREQS_Msk (1UL << SCB_AIRCR_SYSRESETREQS_Pos) /*!< SCB AIRCR: SYSRESETREQS Mask */ #define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */ #define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */ #define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */ #define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */ /* SCB System Control Register Definitions */ #define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */ #define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */ #define SCB_SCR_SLEEPDEEPS_Pos 3U /*!< SCB SCR: SLEEPDEEPS Position */ #define SCB_SCR_SLEEPDEEPS_Msk (1UL << SCB_SCR_SLEEPDEEPS_Pos) /*!< SCB SCR: SLEEPDEEPS Mask */ #define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */ #define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */ #define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */ #define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */ /* SCB Configuration Control Register Definitions */ #define SCB_CCR_BP_Pos 18U /*!< SCB CCR: BP Position */ #define SCB_CCR_BP_Msk (1UL << SCB_CCR_BP_Pos) /*!< SCB CCR: BP Mask */ #define SCB_CCR_IC_Pos 17U /*!< SCB CCR: IC Position */ #define SCB_CCR_IC_Msk (1UL << SCB_CCR_IC_Pos) /*!< SCB CCR: IC Mask */ #define SCB_CCR_DC_Pos 16U /*!< SCB CCR: DC Position */ #define SCB_CCR_DC_Msk (1UL << SCB_CCR_DC_Pos) /*!< SCB CCR: DC Mask */ #define SCB_CCR_STKOFHFNMIGN_Pos 10U /*!< SCB CCR: STKOFHFNMIGN Position */ #define SCB_CCR_STKOFHFNMIGN_Msk (1UL << SCB_CCR_STKOFHFNMIGN_Pos) /*!< SCB CCR: STKOFHFNMIGN Mask */ #define SCB_CCR_BFHFNMIGN_Pos 8U /*!< SCB CCR: BFHFNMIGN Position */ #define SCB_CCR_BFHFNMIGN_Msk (1UL << SCB_CCR_BFHFNMIGN_Pos) /*!< SCB CCR: BFHFNMIGN Mask */ #define SCB_CCR_DIV_0_TRP_Pos 4U /*!< SCB CCR: DIV_0_TRP Position */ #define SCB_CCR_DIV_0_TRP_Msk (1UL << SCB_CCR_DIV_0_TRP_Pos) /*!< SCB CCR: DIV_0_TRP Mask */ #define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */ #define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */ #define SCB_CCR_USERSETMPEND_Pos 1U /*!< SCB CCR: USERSETMPEND Position */ #define SCB_CCR_USERSETMPEND_Msk (1UL << SCB_CCR_USERSETMPEND_Pos) /*!< SCB CCR: USERSETMPEND Mask */ /* SCB System Handler Control and State Register Definitions */ #define SCB_SHCSR_HARDFAULTPENDED_Pos 21U /*!< SCB SHCSR: HARDFAULTPENDED Position */ #define SCB_SHCSR_HARDFAULTPENDED_Msk (1UL << SCB_SHCSR_HARDFAULTPENDED_Pos) /*!< SCB SHCSR: HARDFAULTPENDED Mask */ #define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */ #define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */ #define SCB_SHCSR_SYSTICKACT_Pos 11U /*!< SCB SHCSR: SYSTICKACT Position */ #define SCB_SHCSR_SYSTICKACT_Msk (1UL << SCB_SHCSR_SYSTICKACT_Pos) /*!< SCB SHCSR: SYSTICKACT Mask */ #define SCB_SHCSR_PENDSVACT_Pos 10U /*!< SCB SHCSR: PENDSVACT Position */ #define SCB_SHCSR_PENDSVACT_Msk (1UL << SCB_SHCSR_PENDSVACT_Pos) /*!< SCB SHCSR: PENDSVACT Mask */ #define SCB_SHCSR_SVCALLACT_Pos 7U /*!< SCB SHCSR: SVCALLACT Position */ #define SCB_SHCSR_SVCALLACT_Msk (1UL << SCB_SHCSR_SVCALLACT_Pos) /*!< SCB SHCSR: SVCALLACT Mask */ #define SCB_SHCSR_NMIACT_Pos 5U /*!< SCB SHCSR: NMIACT Position */ #define SCB_SHCSR_NMIACT_Msk (1UL << SCB_SHCSR_NMIACT_Pos) /*!< SCB SHCSR: NMIACT Mask */ #define SCB_SHCSR_HARDFAULTACT_Pos 2U /*!< SCB SHCSR: HARDFAULTACT Position */ #define SCB_SHCSR_HARDFAULTACT_Msk (1UL << SCB_SHCSR_HARDFAULTACT_Pos) /*!< SCB SHCSR: HARDFAULTACT Mask */ /*@} end of group CMSIS_SCB */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SysTick System Tick Timer (SysTick) \brief Type definitions for the System Timer Registers. @{ */ /** \brief Structure type to access the System Timer (SysTick). */ typedef struct { __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */ __IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */ __IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */ __IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */ } SysTick_Type; /* SysTick Control / Status Register Definitions */ #define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */ #define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */ #define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */ #define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */ #define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */ #define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */ #define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */ #define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */ /* SysTick Reload Register Definitions */ #define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */ #define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */ /* SysTick Current Register Definitions */ #define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */ #define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */ /* SysTick Calibration Register Definitions */ #define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */ #define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */ #define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */ #define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */ #define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */ #define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */ /*@} end of group CMSIS_SysTick */ /** \ingroup CMSIS_core_register \defgroup CMSIS_DWT Data Watchpoint and Trace (DWT) \brief Type definitions for the Data Watchpoint and Trace (DWT) @{ */ /** \brief Structure type to access the Data Watchpoint and Trace Register (DWT). */ typedef struct { __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) Control Register */ uint32_t RESERVED0[6U]; __IM uint32_t PCSR; /*!< Offset: 0x01C (R/ ) Program Counter Sample Register */ __IOM uint32_t COMP0; /*!< Offset: 0x020 (R/W) Comparator Register 0 */ uint32_t RESERVED1[1U]; __IOM uint32_t FUNCTION0; /*!< Offset: 0x028 (R/W) Function Register 0 */ uint32_t RESERVED2[1U]; __IOM uint32_t COMP1; /*!< Offset: 0x030 (R/W) Comparator Register 1 */ uint32_t RESERVED3[1U]; __IOM uint32_t FUNCTION1; /*!< Offset: 0x038 (R/W) Function Register 1 */ uint32_t RESERVED4[1U]; __IOM uint32_t COMP2; /*!< Offset: 0x040 (R/W) Comparator Register 2 */ uint32_t RESERVED5[1U]; __IOM uint32_t FUNCTION2; /*!< Offset: 0x048 (R/W) Function Register 2 */ uint32_t RESERVED6[1U]; __IOM uint32_t COMP3; /*!< Offset: 0x050 (R/W) Comparator Register 3 */ uint32_t RESERVED7[1U]; __IOM uint32_t FUNCTION3; /*!< Offset: 0x058 (R/W) Function Register 3 */ uint32_t RESERVED8[1U]; __IOM uint32_t COMP4; /*!< Offset: 0x060 (R/W) Comparator Register 4 */ uint32_t RESERVED9[1U]; __IOM uint32_t FUNCTION4; /*!< Offset: 0x068 (R/W) Function Register 4 */ uint32_t RESERVED10[1U]; __IOM uint32_t COMP5; /*!< Offset: 0x070 (R/W) Comparator Register 5 */ uint32_t RESERVED11[1U]; __IOM uint32_t FUNCTION5; /*!< Offset: 0x078 (R/W) Function Register 5 */ uint32_t RESERVED12[1U]; __IOM uint32_t COMP6; /*!< Offset: 0x080 (R/W) Comparator Register 6 */ uint32_t RESERVED13[1U]; __IOM uint32_t FUNCTION6; /*!< Offset: 0x088 (R/W) Function Register 6 */ uint32_t RESERVED14[1U]; __IOM uint32_t COMP7; /*!< Offset: 0x090 (R/W) Comparator Register 7 */ uint32_t RESERVED15[1U]; __IOM uint32_t FUNCTION7; /*!< Offset: 0x098 (R/W) Function Register 7 */ uint32_t RESERVED16[1U]; __IOM uint32_t COMP8; /*!< Offset: 0x0A0 (R/W) Comparator Register 8 */ uint32_t RESERVED17[1U]; __IOM uint32_t FUNCTION8; /*!< Offset: 0x0A8 (R/W) Function Register 8 */ uint32_t RESERVED18[1U]; __IOM uint32_t COMP9; /*!< Offset: 0x0B0 (R/W) Comparator Register 9 */ uint32_t RESERVED19[1U]; __IOM uint32_t FUNCTION9; /*!< Offset: 0x0B8 (R/W) Function Register 9 */ uint32_t RESERVED20[1U]; __IOM uint32_t COMP10; /*!< Offset: 0x0C0 (R/W) Comparator Register 10 */ uint32_t RESERVED21[1U]; __IOM uint32_t FUNCTION10; /*!< Offset: 0x0C8 (R/W) Function Register 10 */ uint32_t RESERVED22[1U]; __IOM uint32_t COMP11; /*!< Offset: 0x0D0 (R/W) Comparator Register 11 */ uint32_t RESERVED23[1U]; __IOM uint32_t FUNCTION11; /*!< Offset: 0x0D8 (R/W) Function Register 11 */ uint32_t RESERVED24[1U]; __IOM uint32_t COMP12; /*!< Offset: 0x0E0 (R/W) Comparator Register 12 */ uint32_t RESERVED25[1U]; __IOM uint32_t FUNCTION12; /*!< Offset: 0x0E8 (R/W) Function Register 12 */ uint32_t RESERVED26[1U]; __IOM uint32_t COMP13; /*!< Offset: 0x0F0 (R/W) Comparator Register 13 */ uint32_t RESERVED27[1U]; __IOM uint32_t FUNCTION13; /*!< Offset: 0x0F8 (R/W) Function Register 13 */ uint32_t RESERVED28[1U]; __IOM uint32_t COMP14; /*!< Offset: 0x100 (R/W) Comparator Register 14 */ uint32_t RESERVED29[1U]; __IOM uint32_t FUNCTION14; /*!< Offset: 0x108 (R/W) Function Register 14 */ uint32_t RESERVED30[1U]; __IOM uint32_t COMP15; /*!< Offset: 0x110 (R/W) Comparator Register 15 */ uint32_t RESERVED31[1U]; __IOM uint32_t FUNCTION15; /*!< Offset: 0x118 (R/W) Function Register 15 */ } DWT_Type; /* DWT Control Register Definitions */ #define DWT_CTRL_NUMCOMP_Pos 28U /*!< DWT CTRL: NUMCOMP Position */ #define DWT_CTRL_NUMCOMP_Msk (0xFUL << DWT_CTRL_NUMCOMP_Pos) /*!< DWT CTRL: NUMCOMP Mask */ #define DWT_CTRL_NOTRCPKT_Pos 27U /*!< DWT CTRL: NOTRCPKT Position */ #define DWT_CTRL_NOTRCPKT_Msk (0x1UL << DWT_CTRL_NOTRCPKT_Pos) /*!< DWT CTRL: NOTRCPKT Mask */ #define DWT_CTRL_NOEXTTRIG_Pos 26U /*!< DWT CTRL: NOEXTTRIG Position */ #define DWT_CTRL_NOEXTTRIG_Msk (0x1UL << DWT_CTRL_NOEXTTRIG_Pos) /*!< DWT CTRL: NOEXTTRIG Mask */ #define DWT_CTRL_NOCYCCNT_Pos 25U /*!< DWT CTRL: NOCYCCNT Position */ #define DWT_CTRL_NOCYCCNT_Msk (0x1UL << DWT_CTRL_NOCYCCNT_Pos) /*!< DWT CTRL: NOCYCCNT Mask */ #define DWT_CTRL_NOPRFCNT_Pos 24U /*!< DWT CTRL: NOPRFCNT Position */ #define DWT_CTRL_NOPRFCNT_Msk (0x1UL << DWT_CTRL_NOPRFCNT_Pos) /*!< DWT CTRL: NOPRFCNT Mask */ /* DWT Comparator Function Register Definitions */ #define DWT_FUNCTION_ID_Pos 27U /*!< DWT FUNCTION: ID Position */ #define DWT_FUNCTION_ID_Msk (0x1FUL << DWT_FUNCTION_ID_Pos) /*!< DWT FUNCTION: ID Mask */ #define DWT_FUNCTION_MATCHED_Pos 24U /*!< DWT FUNCTION: MATCHED Position */ #define DWT_FUNCTION_MATCHED_Msk (0x1UL << DWT_FUNCTION_MATCHED_Pos) /*!< DWT FUNCTION: MATCHED Mask */ #define DWT_FUNCTION_DATAVSIZE_Pos 10U /*!< DWT FUNCTION: DATAVSIZE Position */ #define DWT_FUNCTION_DATAVSIZE_Msk (0x3UL << DWT_FUNCTION_DATAVSIZE_Pos) /*!< DWT FUNCTION: DATAVSIZE Mask */ #define DWT_FUNCTION_ACTION_Pos 4U /*!< DWT FUNCTION: ACTION Position */ #define DWT_FUNCTION_ACTION_Msk (0x3UL << DWT_FUNCTION_ACTION_Pos) /*!< DWT FUNCTION: ACTION Mask */ #define DWT_FUNCTION_MATCH_Pos 0U /*!< DWT FUNCTION: MATCH Position */ #define DWT_FUNCTION_MATCH_Msk (0xFUL /*<< DWT_FUNCTION_MATCH_Pos*/) /*!< DWT FUNCTION: MATCH Mask */ /*@}*/ /* end of group CMSIS_DWT */ /** \ingroup CMSIS_core_register \defgroup CMSIS_TPI Trace Port Interface (TPI) \brief Type definitions for the Trace Port Interface (TPI) @{ */ /** \brief Structure type to access the Trace Port Interface Register (TPI). */ typedef struct { __IM uint32_t SSPSR; /*!< Offset: 0x000 (R/ ) Supported Parallel Port Sizes Register */ __IOM uint32_t CSPSR; /*!< Offset: 0x004 (R/W) Current Parallel Port Sizes Register */ uint32_t RESERVED0[2U]; __IOM uint32_t ACPR; /*!< Offset: 0x010 (R/W) Asynchronous Clock Prescaler Register */ uint32_t RESERVED1[55U]; __IOM uint32_t SPPR; /*!< Offset: 0x0F0 (R/W) Selected Pin Protocol Register */ uint32_t RESERVED2[131U]; __IM uint32_t FFSR; /*!< Offset: 0x300 (R/ ) Formatter and Flush Status Register */ __IOM uint32_t FFCR; /*!< Offset: 0x304 (R/W) Formatter and Flush Control Register */ __IOM uint32_t PSCR; /*!< Offset: 0x308 (R/W) Periodic Synchronization Control Register */ uint32_t RESERVED3[809U]; __OM uint32_t LAR; /*!< Offset: 0xFB0 ( /W) Software Lock Access Register */ __IM uint32_t LSR; /*!< Offset: 0xFB4 (R/ ) Software Lock Status Register */ uint32_t RESERVED4[4U]; __IM uint32_t TYPE; /*!< Offset: 0xFC8 (R/ ) Device Identifier Register */ __IM uint32_t DEVTYPE; /*!< Offset: 0xFCC (R/ ) Device Type Register */ } TPI_Type; /* TPI Asynchronous Clock Prescaler Register Definitions */ #define TPI_ACPR_SWOSCALER_Pos 0U /*!< TPI ACPR: SWOSCALER Position */ #define TPI_ACPR_SWOSCALER_Msk (0xFFFFUL /*<< TPI_ACPR_SWOSCALER_Pos*/) /*!< TPI ACPR: SWOSCALER Mask */ /* TPI Selected Pin Protocol Register Definitions */ #define TPI_SPPR_TXMODE_Pos 0U /*!< TPI SPPR: TXMODE Position */ #define TPI_SPPR_TXMODE_Msk (0x3UL /*<< TPI_SPPR_TXMODE_Pos*/) /*!< TPI SPPR: TXMODE Mask */ /* TPI Formatter and Flush Status Register Definitions */ #define TPI_FFSR_FtNonStop_Pos 3U /*!< TPI FFSR: FtNonStop Position */ #define TPI_FFSR_FtNonStop_Msk (0x1UL << TPI_FFSR_FtNonStop_Pos) /*!< TPI FFSR: FtNonStop Mask */ #define TPI_FFSR_TCPresent_Pos 2U /*!< TPI FFSR: TCPresent Position */ #define TPI_FFSR_TCPresent_Msk (0x1UL << TPI_FFSR_TCPresent_Pos) /*!< TPI FFSR: TCPresent Mask */ #define TPI_FFSR_FtStopped_Pos 1U /*!< TPI FFSR: FtStopped Position */ #define TPI_FFSR_FtStopped_Msk (0x1UL << TPI_FFSR_FtStopped_Pos) /*!< TPI FFSR: FtStopped Mask */ #define TPI_FFSR_FlInProg_Pos 0U /*!< TPI FFSR: FlInProg Position */ #define TPI_FFSR_FlInProg_Msk (0x1UL /*<< TPI_FFSR_FlInProg_Pos*/) /*!< TPI FFSR: FlInProg Mask */ /* TPI Formatter and Flush Control Register Definitions */ #define TPI_FFCR_TrigIn_Pos 8U /*!< TPI FFCR: TrigIn Position */ #define TPI_FFCR_TrigIn_Msk (0x1UL << TPI_FFCR_TrigIn_Pos) /*!< TPI FFCR: TrigIn Mask */ #define TPI_FFCR_FOnMan_Pos 6U /*!< TPI FFCR: FOnMan Position */ #define TPI_FFCR_FOnMan_Msk (0x1UL << TPI_FFCR_FOnMan_Pos) /*!< TPI FFCR: FOnMan Mask */ #define TPI_FFCR_EnFCont_Pos 1U /*!< TPI FFCR: EnFCont Position */ #define TPI_FFCR_EnFCont_Msk (0x1UL << TPI_FFCR_EnFCont_Pos) /*!< TPI FFCR: EnFCont Mask */ /* TPI Periodic Synchronization Control Register Definitions */ #define TPI_PSCR_PSCount_Pos 0U /*!< TPI PSCR: PSCount Position */ #define TPI_PSCR_PSCount_Msk (0x1FUL /*<< TPI_PSCR_PSCount_Pos*/) /*!< TPI PSCR: TPSCount Mask */ /* TPI Software Lock Status Register Definitions */ #define TPI_LSR_nTT_Pos 1U /*!< TPI LSR: Not thirty-two bit. Position */ #define TPI_LSR_nTT_Msk (0x1UL << TPI_LSR_nTT_Pos) /*!< TPI LSR: Not thirty-two bit. Mask */ #define TPI_LSR_SLK_Pos 1U /*!< TPI LSR: Software Lock status Position */ #define TPI_LSR_SLK_Msk (0x1UL << TPI_LSR_SLK_Pos) /*!< TPI LSR: Software Lock status Mask */ #define TPI_LSR_SLI_Pos 0U /*!< TPI LSR: Software Lock implemented Position */ #define TPI_LSR_SLI_Msk (0x1UL /*<< TPI_LSR_SLI_Pos*/) /*!< TPI LSR: Software Lock implemented Mask */ /* TPI DEVID Register Definitions */ #define TPI_DEVID_NRZVALID_Pos 11U /*!< TPI DEVID: NRZVALID Position */ #define TPI_DEVID_NRZVALID_Msk (0x1UL << TPI_DEVID_NRZVALID_Pos) /*!< TPI DEVID: NRZVALID Mask */ #define TPI_DEVID_MANCVALID_Pos 10U /*!< TPI DEVID: MANCVALID Position */ #define TPI_DEVID_MANCVALID_Msk (0x1UL << TPI_DEVID_MANCVALID_Pos) /*!< TPI DEVID: MANCVALID Mask */ #define TPI_DEVID_PTINVALID_Pos 9U /*!< TPI DEVID: PTINVALID Position */ #define TPI_DEVID_PTINVALID_Msk (0x1UL << TPI_DEVID_PTINVALID_Pos) /*!< TPI DEVID: PTINVALID Mask */ #define TPI_DEVID_FIFOSZ_Pos 6U /*!< TPI DEVID: FIFO depth Position */ #define TPI_DEVID_FIFOSZ_Msk (0x7UL << TPI_DEVID_FIFOSZ_Pos) /*!< TPI DEVID: FIFO depth Mask */ /* TPI DEVTYPE Register Definitions */ #define TPI_DEVTYPE_SubType_Pos 4U /*!< TPI DEVTYPE: SubType Position */ #define TPI_DEVTYPE_SubType_Msk (0xFUL /*<< TPI_DEVTYPE_SubType_Pos*/) /*!< TPI DEVTYPE: SubType Mask */ #define TPI_DEVTYPE_MajorType_Pos 0U /*!< TPI DEVTYPE: MajorType Position */ #define TPI_DEVTYPE_MajorType_Msk (0xFUL << TPI_DEVTYPE_MajorType_Pos) /*!< TPI DEVTYPE: MajorType Mask */ /*@}*/ /* end of group CMSIS_TPI */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) /** \ingroup CMSIS_core_register \defgroup CMSIS_MPU Memory Protection Unit (MPU) \brief Type definitions for the Memory Protection Unit (MPU) @{ */ /** \brief Structure type to access the Memory Protection Unit (MPU). */ typedef struct { __IM uint32_t TYPE; /*!< Offset: 0x000 (R/ ) MPU Type Register */ __IOM uint32_t CTRL; /*!< Offset: 0x004 (R/W) MPU Control Register */ __IOM uint32_t RNR; /*!< Offset: 0x008 (R/W) MPU Region Number Register */ __IOM uint32_t RBAR; /*!< Offset: 0x00C (R/W) MPU Region Base Address Register */ __IOM uint32_t RLAR; /*!< Offset: 0x010 (R/W) MPU Region Limit Address Register */ uint32_t RESERVED0[7U]; union { __IOM uint32_t MAIR[2]; struct { __IOM uint32_t MAIR0; /*!< Offset: 0x030 (R/W) MPU Memory Attribute Indirection Register 0 */ __IOM uint32_t MAIR1; /*!< Offset: 0x034 (R/W) MPU Memory Attribute Indirection Register 1 */ }; }; } MPU_Type; #define MPU_TYPE_RALIASES 1U /* MPU Type Register Definitions */ #define MPU_TYPE_IREGION_Pos 16U /*!< MPU TYPE: IREGION Position */ #define MPU_TYPE_IREGION_Msk (0xFFUL << MPU_TYPE_IREGION_Pos) /*!< MPU TYPE: IREGION Mask */ #define MPU_TYPE_DREGION_Pos 8U /*!< MPU TYPE: DREGION Position */ #define MPU_TYPE_DREGION_Msk (0xFFUL << MPU_TYPE_DREGION_Pos) /*!< MPU TYPE: DREGION Mask */ #define MPU_TYPE_SEPARATE_Pos 0U /*!< MPU TYPE: SEPARATE Position */ #define MPU_TYPE_SEPARATE_Msk (1UL /*<< MPU_TYPE_SEPARATE_Pos*/) /*!< MPU TYPE: SEPARATE Mask */ /* MPU Control Register Definitions */ #define MPU_CTRL_PRIVDEFENA_Pos 2U /*!< MPU CTRL: PRIVDEFENA Position */ #define MPU_CTRL_PRIVDEFENA_Msk (1UL << MPU_CTRL_PRIVDEFENA_Pos) /*!< MPU CTRL: PRIVDEFENA Mask */ #define MPU_CTRL_HFNMIENA_Pos 1U /*!< MPU CTRL: HFNMIENA Position */ #define MPU_CTRL_HFNMIENA_Msk (1UL << MPU_CTRL_HFNMIENA_Pos) /*!< MPU CTRL: HFNMIENA Mask */ #define MPU_CTRL_ENABLE_Pos 0U /*!< MPU CTRL: ENABLE Position */ #define MPU_CTRL_ENABLE_Msk (1UL /*<< MPU_CTRL_ENABLE_Pos*/) /*!< MPU CTRL: ENABLE Mask */ /* MPU Region Number Register Definitions */ #define MPU_RNR_REGION_Pos 0U /*!< MPU RNR: REGION Position */ #define MPU_RNR_REGION_Msk (0xFFUL /*<< MPU_RNR_REGION_Pos*/) /*!< MPU RNR: REGION Mask */ /* MPU Region Base Address Register Definitions */ #define MPU_RBAR_BASE_Pos 5U /*!< MPU RBAR: BASE Position */ #define MPU_RBAR_BASE_Msk (0x7FFFFFFUL << MPU_RBAR_BASE_Pos) /*!< MPU RBAR: BASE Mask */ #define MPU_RBAR_SH_Pos 3U /*!< MPU RBAR: SH Position */ #define MPU_RBAR_SH_Msk (0x3UL << MPU_RBAR_SH_Pos) /*!< MPU RBAR: SH Mask */ #define MPU_RBAR_AP_Pos 1U /*!< MPU RBAR: AP Position */ #define MPU_RBAR_AP_Msk (0x3UL << MPU_RBAR_AP_Pos) /*!< MPU RBAR: AP Mask */ #define MPU_RBAR_XN_Pos 0U /*!< MPU RBAR: XN Position */ #define MPU_RBAR_XN_Msk (01UL /*<< MPU_RBAR_XN_Pos*/) /*!< MPU RBAR: XN Mask */ /* MPU Region Limit Address Register Definitions */ #define MPU_RLAR_LIMIT_Pos 5U /*!< MPU RLAR: LIMIT Position */ #define MPU_RLAR_LIMIT_Msk (0x7FFFFFFUL << MPU_RLAR_LIMIT_Pos) /*!< MPU RLAR: LIMIT Mask */ #define MPU_RLAR_AttrIndx_Pos 1U /*!< MPU RLAR: AttrIndx Position */ #define MPU_RLAR_AttrIndx_Msk (0x7UL << MPU_RLAR_AttrIndx_Pos) /*!< MPU RLAR: AttrIndx Mask */ #define MPU_RLAR_EN_Pos 0U /*!< MPU RLAR: EN Position */ #define MPU_RLAR_EN_Msk (1UL /*<< MPU_RLAR_EN_Pos*/) /*!< MPU RLAR: EN Mask */ /* MPU Memory Attribute Indirection Register 0 Definitions */ #define MPU_MAIR0_Attr3_Pos 24U /*!< MPU MAIR0: Attr3 Position */ #define MPU_MAIR0_Attr3_Msk (0xFFUL << MPU_MAIR0_Attr3_Pos) /*!< MPU MAIR0: Attr3 Mask */ #define MPU_MAIR0_Attr2_Pos 16U /*!< MPU MAIR0: Attr2 Position */ #define MPU_MAIR0_Attr2_Msk (0xFFUL << MPU_MAIR0_Attr2_Pos) /*!< MPU MAIR0: Attr2 Mask */ #define MPU_MAIR0_Attr1_Pos 8U /*!< MPU MAIR0: Attr1 Position */ #define MPU_MAIR0_Attr1_Msk (0xFFUL << MPU_MAIR0_Attr1_Pos) /*!< MPU MAIR0: Attr1 Mask */ #define MPU_MAIR0_Attr0_Pos 0U /*!< MPU MAIR0: Attr0 Position */ #define MPU_MAIR0_Attr0_Msk (0xFFUL /*<< MPU_MAIR0_Attr0_Pos*/) /*!< MPU MAIR0: Attr0 Mask */ /* MPU Memory Attribute Indirection Register 1 Definitions */ #define MPU_MAIR1_Attr7_Pos 24U /*!< MPU MAIR1: Attr7 Position */ #define MPU_MAIR1_Attr7_Msk (0xFFUL << MPU_MAIR1_Attr7_Pos) /*!< MPU MAIR1: Attr7 Mask */ #define MPU_MAIR1_Attr6_Pos 16U /*!< MPU MAIR1: Attr6 Position */ #define MPU_MAIR1_Attr6_Msk (0xFFUL << MPU_MAIR1_Attr6_Pos) /*!< MPU MAIR1: Attr6 Mask */ #define MPU_MAIR1_Attr5_Pos 8U /*!< MPU MAIR1: Attr5 Position */ #define MPU_MAIR1_Attr5_Msk (0xFFUL << MPU_MAIR1_Attr5_Pos) /*!< MPU MAIR1: Attr5 Mask */ #define MPU_MAIR1_Attr4_Pos 0U /*!< MPU MAIR1: Attr4 Position */ #define MPU_MAIR1_Attr4_Msk (0xFFUL /*<< MPU_MAIR1_Attr4_Pos*/) /*!< MPU MAIR1: Attr4 Mask */ /*@} end of group CMSIS_MPU */ #endif #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \ingroup CMSIS_core_register \defgroup CMSIS_SAU Security Attribution Unit (SAU) \brief Type definitions for the Security Attribution Unit (SAU) @{ */ /** \brief Structure type to access the Security Attribution Unit (SAU). */ typedef struct { __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SAU Control Register */ __IM uint32_t TYPE; /*!< Offset: 0x004 (R/ ) SAU Type Register */ #if defined (__SAUREGION_PRESENT) && (__SAUREGION_PRESENT == 1U) __IOM uint32_t RNR; /*!< Offset: 0x008 (R/W) SAU Region Number Register */ __IOM uint32_t RBAR; /*!< Offset: 0x00C (R/W) SAU Region Base Address Register */ __IOM uint32_t RLAR; /*!< Offset: 0x010 (R/W) SAU Region Limit Address Register */ #endif } SAU_Type; /* SAU Control Register Definitions */ #define SAU_CTRL_ALLNS_Pos 1U /*!< SAU CTRL: ALLNS Position */ #define SAU_CTRL_ALLNS_Msk (1UL << SAU_CTRL_ALLNS_Pos) /*!< SAU CTRL: ALLNS Mask */ #define SAU_CTRL_ENABLE_Pos 0U /*!< SAU CTRL: ENABLE Position */ #define SAU_CTRL_ENABLE_Msk (1UL /*<< SAU_CTRL_ENABLE_Pos*/) /*!< SAU CTRL: ENABLE Mask */ /* SAU Type Register Definitions */ #define SAU_TYPE_SREGION_Pos 0U /*!< SAU TYPE: SREGION Position */ #define SAU_TYPE_SREGION_Msk (0xFFUL /*<< SAU_TYPE_SREGION_Pos*/) /*!< SAU TYPE: SREGION Mask */ #if defined (__SAUREGION_PRESENT) && (__SAUREGION_PRESENT == 1U) /* SAU Region Number Register Definitions */ #define SAU_RNR_REGION_Pos 0U /*!< SAU RNR: REGION Position */ #define SAU_RNR_REGION_Msk (0xFFUL /*<< SAU_RNR_REGION_Pos*/) /*!< SAU RNR: REGION Mask */ /* SAU Region Base Address Register Definitions */ #define SAU_RBAR_BADDR_Pos 5U /*!< SAU RBAR: BADDR Position */ #define SAU_RBAR_BADDR_Msk (0x7FFFFFFUL << SAU_RBAR_BADDR_Pos) /*!< SAU RBAR: BADDR Mask */ /* SAU Region Limit Address Register Definitions */ #define SAU_RLAR_LADDR_Pos 5U /*!< SAU RLAR: LADDR Position */ #define SAU_RLAR_LADDR_Msk (0x7FFFFFFUL << SAU_RLAR_LADDR_Pos) /*!< SAU RLAR: LADDR Mask */ #define SAU_RLAR_NSC_Pos 1U /*!< SAU RLAR: NSC Position */ #define SAU_RLAR_NSC_Msk (1UL << SAU_RLAR_NSC_Pos) /*!< SAU RLAR: NSC Mask */ #define SAU_RLAR_ENABLE_Pos 0U /*!< SAU RLAR: ENABLE Position */ #define SAU_RLAR_ENABLE_Msk (1UL /*<< SAU_RLAR_ENABLE_Pos*/) /*!< SAU RLAR: ENABLE Mask */ #endif /* defined (__SAUREGION_PRESENT) && (__SAUREGION_PRESENT == 1U) */ /*@} end of group CMSIS_SAU */ #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /** \ingroup CMSIS_core_register \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug) \brief Type definitions for the Core Debug Registers @{ */ /** \brief Structure type to access the Core Debug Register (CoreDebug). */ typedef struct { __IOM uint32_t DHCSR; /*!< Offset: 0x000 (R/W) Debug Halting Control and Status Register */ __OM uint32_t DCRSR; /*!< Offset: 0x004 ( /W) Debug Core Register Selector Register */ __IOM uint32_t DCRDR; /*!< Offset: 0x008 (R/W) Debug Core Register Data Register */ __IOM uint32_t DEMCR; /*!< Offset: 0x00C (R/W) Debug Exception and Monitor Control Register */ uint32_t RESERVED4[1U]; __IOM uint32_t DAUTHCTRL; /*!< Offset: 0x014 (R/W) Debug Authentication Control Register */ __IOM uint32_t DSCSR; /*!< Offset: 0x018 (R/W) Debug Security Control and Status Register */ } CoreDebug_Type; /* Debug Halting Control and Status Register Definitions */ #define CoreDebug_DHCSR_DBGKEY_Pos 16U /*!< CoreDebug DHCSR: DBGKEY Position */ #define CoreDebug_DHCSR_DBGKEY_Msk (0xFFFFUL << CoreDebug_DHCSR_DBGKEY_Pos) /*!< CoreDebug DHCSR: DBGKEY Mask */ #define CoreDebug_DHCSR_S_RESTART_ST_Pos 26U /*!< CoreDebug DHCSR: S_RESTART_ST Position */ #define CoreDebug_DHCSR_S_RESTART_ST_Msk (1UL << CoreDebug_DHCSR_S_RESTART_ST_Pos) /*!< CoreDebug DHCSR: S_RESTART_ST Mask */ #define CoreDebug_DHCSR_S_RESET_ST_Pos 25U /*!< CoreDebug DHCSR: S_RESET_ST Position */ #define CoreDebug_DHCSR_S_RESET_ST_Msk (1UL << CoreDebug_DHCSR_S_RESET_ST_Pos) /*!< CoreDebug DHCSR: S_RESET_ST Mask */ #define CoreDebug_DHCSR_S_RETIRE_ST_Pos 24U /*!< CoreDebug DHCSR: S_RETIRE_ST Position */ #define CoreDebug_DHCSR_S_RETIRE_ST_Msk (1UL << CoreDebug_DHCSR_S_RETIRE_ST_Pos) /*!< CoreDebug DHCSR: S_RETIRE_ST Mask */ #define CoreDebug_DHCSR_S_LOCKUP_Pos 19U /*!< CoreDebug DHCSR: S_LOCKUP Position */ #define CoreDebug_DHCSR_S_LOCKUP_Msk (1UL << CoreDebug_DHCSR_S_LOCKUP_Pos) /*!< CoreDebug DHCSR: S_LOCKUP Mask */ #define CoreDebug_DHCSR_S_SLEEP_Pos 18U /*!< CoreDebug DHCSR: S_SLEEP Position */ #define CoreDebug_DHCSR_S_SLEEP_Msk (1UL << CoreDebug_DHCSR_S_SLEEP_Pos) /*!< CoreDebug DHCSR: S_SLEEP Mask */ #define CoreDebug_DHCSR_S_HALT_Pos 17U /*!< CoreDebug DHCSR: S_HALT Position */ #define CoreDebug_DHCSR_S_HALT_Msk (1UL << CoreDebug_DHCSR_S_HALT_Pos) /*!< CoreDebug DHCSR: S_HALT Mask */ #define CoreDebug_DHCSR_S_REGRDY_Pos 16U /*!< CoreDebug DHCSR: S_REGRDY Position */ #define CoreDebug_DHCSR_S_REGRDY_Msk (1UL << CoreDebug_DHCSR_S_REGRDY_Pos) /*!< CoreDebug DHCSR: S_REGRDY Mask */ #define CoreDebug_DHCSR_C_MASKINTS_Pos 3U /*!< CoreDebug DHCSR: C_MASKINTS Position */ #define CoreDebug_DHCSR_C_MASKINTS_Msk (1UL << CoreDebug_DHCSR_C_MASKINTS_Pos) /*!< CoreDebug DHCSR: C_MASKINTS Mask */ #define CoreDebug_DHCSR_C_STEP_Pos 2U /*!< CoreDebug DHCSR: C_STEP Position */ #define CoreDebug_DHCSR_C_STEP_Msk (1UL << CoreDebug_DHCSR_C_STEP_Pos) /*!< CoreDebug DHCSR: C_STEP Mask */ #define CoreDebug_DHCSR_C_HALT_Pos 1U /*!< CoreDebug DHCSR: C_HALT Position */ #define CoreDebug_DHCSR_C_HALT_Msk (1UL << CoreDebug_DHCSR_C_HALT_Pos) /*!< CoreDebug DHCSR: C_HALT Mask */ #define CoreDebug_DHCSR_C_DEBUGEN_Pos 0U /*!< CoreDebug DHCSR: C_DEBUGEN Position */ #define CoreDebug_DHCSR_C_DEBUGEN_Msk (1UL /*<< CoreDebug_DHCSR_C_DEBUGEN_Pos*/) /*!< CoreDebug DHCSR: C_DEBUGEN Mask */ /* Debug Core Register Selector Register Definitions */ #define CoreDebug_DCRSR_REGWnR_Pos 16U /*!< CoreDebug DCRSR: REGWnR Position */ #define CoreDebug_DCRSR_REGWnR_Msk (1UL << CoreDebug_DCRSR_REGWnR_Pos) /*!< CoreDebug DCRSR: REGWnR Mask */ #define CoreDebug_DCRSR_REGSEL_Pos 0U /*!< CoreDebug DCRSR: REGSEL Position */ #define CoreDebug_DCRSR_REGSEL_Msk (0x1FUL /*<< CoreDebug_DCRSR_REGSEL_Pos*/) /*!< CoreDebug DCRSR: REGSEL Mask */ /* Debug Exception and Monitor Control Register */ #define CoreDebug_DEMCR_DWTENA_Pos 24U /*!< CoreDebug DEMCR: DWTENA Position */ #define CoreDebug_DEMCR_DWTENA_Msk (1UL << CoreDebug_DEMCR_DWTENA_Pos) /*!< CoreDebug DEMCR: DWTENA Mask */ #define CoreDebug_DEMCR_VC_HARDERR_Pos 10U /*!< CoreDebug DEMCR: VC_HARDERR Position */ #define CoreDebug_DEMCR_VC_HARDERR_Msk (1UL << CoreDebug_DEMCR_VC_HARDERR_Pos) /*!< CoreDebug DEMCR: VC_HARDERR Mask */ #define CoreDebug_DEMCR_VC_CORERESET_Pos 0U /*!< CoreDebug DEMCR: VC_CORERESET Position */ #define CoreDebug_DEMCR_VC_CORERESET_Msk (1UL /*<< CoreDebug_DEMCR_VC_CORERESET_Pos*/) /*!< CoreDebug DEMCR: VC_CORERESET Mask */ /* Debug Authentication Control Register Definitions */ #define CoreDebug_DAUTHCTRL_INTSPNIDEN_Pos 3U /*!< CoreDebug DAUTHCTRL: INTSPNIDEN, Position */ #define CoreDebug_DAUTHCTRL_INTSPNIDEN_Msk (1UL << CoreDebug_DAUTHCTRL_INTSPNIDEN_Pos) /*!< CoreDebug DAUTHCTRL: INTSPNIDEN, Mask */ #define CoreDebug_DAUTHCTRL_SPNIDENSEL_Pos 2U /*!< CoreDebug DAUTHCTRL: SPNIDENSEL Position */ #define CoreDebug_DAUTHCTRL_SPNIDENSEL_Msk (1UL << CoreDebug_DAUTHCTRL_SPNIDENSEL_Pos) /*!< CoreDebug DAUTHCTRL: SPNIDENSEL Mask */ #define CoreDebug_DAUTHCTRL_INTSPIDEN_Pos 1U /*!< CoreDebug DAUTHCTRL: INTSPIDEN Position */ #define CoreDebug_DAUTHCTRL_INTSPIDEN_Msk (1UL << CoreDebug_DAUTHCTRL_INTSPIDEN_Pos) /*!< CoreDebug DAUTHCTRL: INTSPIDEN Mask */ #define CoreDebug_DAUTHCTRL_SPIDENSEL_Pos 0U /*!< CoreDebug DAUTHCTRL: SPIDENSEL Position */ #define CoreDebug_DAUTHCTRL_SPIDENSEL_Msk (1UL /*<< CoreDebug_DAUTHCTRL_SPIDENSEL_Pos*/) /*!< CoreDebug DAUTHCTRL: SPIDENSEL Mask */ /* Debug Security Control and Status Register Definitions */ #define CoreDebug_DSCSR_CDS_Pos 16U /*!< CoreDebug DSCSR: CDS Position */ #define CoreDebug_DSCSR_CDS_Msk (1UL << CoreDebug_DSCSR_CDS_Pos) /*!< CoreDebug DSCSR: CDS Mask */ #define CoreDebug_DSCSR_SBRSEL_Pos 1U /*!< CoreDebug DSCSR: SBRSEL Position */ #define CoreDebug_DSCSR_SBRSEL_Msk (1UL << CoreDebug_DSCSR_SBRSEL_Pos) /*!< CoreDebug DSCSR: SBRSEL Mask */ #define CoreDebug_DSCSR_SBRSELEN_Pos 0U /*!< CoreDebug DSCSR: SBRSELEN Position */ #define CoreDebug_DSCSR_SBRSELEN_Msk (1UL /*<< CoreDebug_DSCSR_SBRSELEN_Pos*/) /*!< CoreDebug DSCSR: SBRSELEN Mask */ /*@} end of group CMSIS_CoreDebug */ /** \ingroup CMSIS_core_register \defgroup CMSIS_core_bitfield Core register bit field macros \brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk). @{ */ /** \brief Mask and shift a bit field value for use in a register bit range. \param[in] field Name of the register bit field. \param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type. \return Masked and shifted value. */ #define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk) /** \brief Mask and shift a register value to extract a bit filed value. \param[in] field Name of the register bit field. \param[in] value Value of register. This parameter is interpreted as an uint32_t type. \return Masked and shifted bit field value. */ #define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos) /*@} end of group CMSIS_core_bitfield */ /** \ingroup CMSIS_core_register \defgroup CMSIS_core_base Core Definitions \brief Definitions for base addresses, unions, and structures. @{ */ /* Memory mapping of Core Hardware */ #define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */ #define DWT_BASE (0xE0001000UL) /*!< DWT Base Address */ #define TPI_BASE (0xE0040000UL) /*!< TPI Base Address */ #define CoreDebug_BASE (0xE000EDF0UL) /*!< Core Debug Base Address */ #define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */ #define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */ #define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */ #define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */ #define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */ #define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */ #define DWT ((DWT_Type *) DWT_BASE ) /*!< DWT configuration struct */ #define TPI ((TPI_Type *) TPI_BASE ) /*!< TPI configuration struct */ #define CoreDebug ((CoreDebug_Type *) CoreDebug_BASE ) /*!< Core Debug configuration struct */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) #define MPU_BASE (SCS_BASE + 0x0D90UL) /*!< Memory Protection Unit */ #define MPU ((MPU_Type *) MPU_BASE ) /*!< Memory Protection Unit */ #endif #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) #define SAU_BASE (SCS_BASE + 0x0DD0UL) /*!< Security Attribution Unit */ #define SAU ((SAU_Type *) SAU_BASE ) /*!< Security Attribution Unit */ #endif #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) #define SCS_BASE_NS (0xE002E000UL) /*!< System Control Space Base Address (non-secure address space) */ #define CoreDebug_BASE_NS (0xE002EDF0UL) /*!< Core Debug Base Address (non-secure address space) */ #define SysTick_BASE_NS (SCS_BASE_NS + 0x0010UL) /*!< SysTick Base Address (non-secure address space) */ #define NVIC_BASE_NS (SCS_BASE_NS + 0x0100UL) /*!< NVIC Base Address (non-secure address space) */ #define SCB_BASE_NS (SCS_BASE_NS + 0x0D00UL) /*!< System Control Block Base Address (non-secure address space) */ #define SCB_NS ((SCB_Type *) SCB_BASE_NS ) /*!< SCB configuration struct (non-secure address space) */ #define SysTick_NS ((SysTick_Type *) SysTick_BASE_NS ) /*!< SysTick configuration struct (non-secure address space) */ #define NVIC_NS ((NVIC_Type *) NVIC_BASE_NS ) /*!< NVIC configuration struct (non-secure address space) */ #define CoreDebug_NS ((CoreDebug_Type *) CoreDebug_BASE_NS) /*!< Core Debug configuration struct (non-secure address space) */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) #define MPU_BASE_NS (SCS_BASE_NS + 0x0D90UL) /*!< Memory Protection Unit (non-secure address space) */ #define MPU_NS ((MPU_Type *) MPU_BASE_NS ) /*!< Memory Protection Unit (non-secure address space) */ #endif #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /*@} */ /******************************************************************************* * Hardware Abstraction Layer Core Function Interface contains: - Core NVIC Functions - Core SysTick Functions - Core Register Access Functions ******************************************************************************/ /** \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference */ /* ########################## NVIC functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_NVICFunctions NVIC Functions \brief Functions that manage interrupts and exceptions via the NVIC. @{ */ #ifdef CMSIS_NVIC_VIRTUAL #ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE #define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h" #endif #include CMSIS_NVIC_VIRTUAL_HEADER_FILE #else #define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping #define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping #define NVIC_EnableIRQ __NVIC_EnableIRQ #define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ #define NVIC_DisableIRQ __NVIC_DisableIRQ #define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ #define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ #define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ #define NVIC_GetActive __NVIC_GetActive #define NVIC_SetPriority __NVIC_SetPriority #define NVIC_GetPriority __NVIC_GetPriority #define NVIC_SystemReset __NVIC_SystemReset #endif /* CMSIS_NVIC_VIRTUAL */ #ifdef CMSIS_VECTAB_VIRTUAL #ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE #define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h" #endif #include CMSIS_VECTAB_VIRTUAL_HEADER_FILE #else #define NVIC_SetVector __NVIC_SetVector #define NVIC_GetVector __NVIC_GetVector #endif /* (CMSIS_VECTAB_VIRTUAL) */ #define NVIC_USER_IRQ_OFFSET 16 /* Special LR values for Secure/Non-Secure call handling and exception handling */ /* Function Return Payload (from ARMv8-M Architecture Reference Manual) LR value on entry from Secure BLXNS */ #define FNC_RETURN (0xFEFFFFFFUL) /* bit [0] ignored when processing a branch */ /* The following EXC_RETURN mask values are used to evaluate the LR on exception entry */ #define EXC_RETURN_PREFIX (0xFF000000UL) /* bits [31:24] set to indicate an EXC_RETURN value */ #define EXC_RETURN_S (0x00000040UL) /* bit [6] stack used to push registers: 0=Non-secure 1=Secure */ #define EXC_RETURN_DCRS (0x00000020UL) /* bit [5] stacking rules for called registers: 0=skipped 1=saved */ #define EXC_RETURN_FTYPE (0x00000010UL) /* bit [4] allocate stack for floating-point context: 0=done 1=skipped */ #define EXC_RETURN_MODE (0x00000008UL) /* bit [3] processor mode for return: 0=Handler mode 1=Thread mode */ #define EXC_RETURN_SPSEL (0x00000004UL) /* bit [2] stack pointer used to restore context: 0=MSP 1=PSP */ #define EXC_RETURN_ES (0x00000001UL) /* bit [0] security state exception was taken to: 0=Non-secure 1=Secure */ /* Integrity Signature (from ARMv8-M Architecture Reference Manual) for exception context stacking */ #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) /* Value for processors with floating-point extension: */ #define EXC_INTEGRITY_SIGNATURE (0xFEFA125AUL) /* bit [0] SFTC must match LR bit[4] EXC_RETURN_FTYPE */ #else #define EXC_INTEGRITY_SIGNATURE (0xFEFA125BUL) /* Value for processors without floating-point extension */ #endif /* Interrupt Priorities are WORD accessible only under Armv6-M */ /* The following MACROS handle generation of the register offset and byte masks */ #define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL) #define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) ) #define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) ) #define __NVIC_SetPriorityGrouping(X) (void)(X) #define __NVIC_GetPriorityGrouping() (0U) /** \brief Enable Interrupt \details Enables a device specific interrupt in the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { __COMPILER_BARRIER(); NVIC->ISER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); __COMPILER_BARRIER(); } } /** \brief Get Interrupt Enable status \details Returns a device specific interrupt enable status from the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt is not enabled. \return 1 Interrupt is enabled. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ISER[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Disable Interrupt \details Disables a device specific interrupt in the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ICER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); __DSB(); __ISB(); } } /** \brief Get Pending Interrupt \details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not pending. \return 1 Interrupt status is pending. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ISPR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Pending Interrupt \details Sets the pending bit of a device specific interrupt in the NVIC pending register. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ISPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Clear Pending Interrupt \details Clears the pending bit of a device specific interrupt in the NVIC pending register. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ICPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Active Interrupt \details Reads the active register in the NVIC and returns the active bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not active. \return 1 Interrupt status is active. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetActive(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->IABR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief Get Interrupt Target State \details Reads the interrupt target field in the NVIC and returns the interrupt target bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 if interrupt is assigned to Secure \return 1 if interrupt is assigned to Non Secure \note IRQn must not be negative. */ __STATIC_INLINE uint32_t NVIC_GetTargetState(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Interrupt Target State \details Sets the interrupt target field in the NVIC and returns the interrupt target bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 if interrupt is assigned to Secure 1 if interrupt is assigned to Non Secure \note IRQn must not be negative. */ __STATIC_INLINE uint32_t NVIC_SetTargetState(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] |= ((uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL))); return((uint32_t)(((NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Clear Interrupt Target State \details Clears the interrupt target field in the NVIC and returns the interrupt target bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 if interrupt is assigned to Secure 1 if interrupt is assigned to Non Secure \note IRQn must not be negative. */ __STATIC_INLINE uint32_t NVIC_ClearTargetState(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] &= ~((uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL))); return((uint32_t)(((NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /** \brief Set Interrupt Priority \details Sets the priority of a device specific interrupt or a processor exception. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \param [in] priority Priority to set. \note The priority cannot be set for every processor exception. */ __STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) { if ((int32_t)(IRQn) >= 0) { NVIC->IPR[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IPR[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) | (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn))); } else { SCB->SHPR[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHPR[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) | (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn))); } } /** \brief Get Interrupt Priority \details Reads the priority of a device specific interrupt or a processor exception. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Interrupt Priority. Value is aligned automatically to the implemented priority bits of the microcontroller. */ __STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->IPR[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS))); } else { return((uint32_t)(((SCB->SHPR[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS))); } } /** \brief Encode Priority \details Encodes the priority for an interrupt with the given priority group, preemptive priority value, and subpriority value. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set. \param [in] PriorityGroup Used priority group. \param [in] PreemptPriority Preemptive priority value (starting from 0). \param [in] SubPriority Subpriority value (starting from 0). \return Encoded priority. Value can be used in the function \ref NVIC_SetPriority(). */ __STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority) { uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ uint32_t PreemptPriorityBits; uint32_t SubPriorityBits; PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); return ( ((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) | ((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL))) ); } /** \brief Decode Priority \details Decodes an interrupt priority value with a given priority group to preemptive priority value and subpriority value. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set. \param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority(). \param [in] PriorityGroup Used priority group. \param [out] pPreemptPriority Preemptive priority value (starting from 0). \param [out] pSubPriority Subpriority value (starting from 0). */ __STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority) { uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ uint32_t PreemptPriorityBits; uint32_t SubPriorityBits; PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); *pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL); *pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL); } /** \brief Set Interrupt Vector \details Sets an interrupt vector in SRAM based interrupt vector table. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. VTOR must been relocated to SRAM before. If VTOR is not present address 0 must be mapped to SRAM. \param [in] IRQn Interrupt number \param [in] vector Address of interrupt handler function */ __STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) { #if defined (__VTOR_PRESENT) && (__VTOR_PRESENT == 1U) uint32_t *vectors = (uint32_t *)SCB->VTOR; #else uint32_t *vectors = (uint32_t *)0x0U; #endif vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector; __DSB(); } /** \brief Get Interrupt Vector \details Reads an interrupt vector from interrupt vector table. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Address of interrupt handler function */ __STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn) { #if defined (__VTOR_PRESENT) && (__VTOR_PRESENT == 1U) uint32_t *vectors = (uint32_t *)SCB->VTOR; #else uint32_t *vectors = (uint32_t *)0x0U; #endif return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET]; } /** \brief System Reset \details Initiates a system reset request to reset the MCU. */ __NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void) { __DSB(); /* Ensure all outstanding memory accesses included buffered write are completed before reset */ SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | SCB_AIRCR_SYSRESETREQ_Msk); __DSB(); /* Ensure completion of memory access */ for(;;) /* wait until reset */ { __NOP(); } } #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief Enable Interrupt (non-secure) \details Enables a device specific interrupt in the non-secure NVIC interrupt controller when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_EnableIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ISER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Interrupt Enable status (non-secure) \details Returns a device specific interrupt enable status from the non-secure NVIC interrupt controller when in secure state. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt is not enabled. \return 1 Interrupt is enabled. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t TZ_NVIC_GetEnableIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC_NS->ISER[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Disable Interrupt (non-secure) \details Disables a device specific interrupt in the non-secure NVIC interrupt controller when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_DisableIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ICER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Pending Interrupt (non-secure) \details Reads the NVIC pending register in the non-secure NVIC when in secure state and returns the pending bit for the specified device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not pending. \return 1 Interrupt status is pending. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t TZ_NVIC_GetPendingIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC_NS->ISPR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Pending Interrupt (non-secure) \details Sets the pending bit of a device specific interrupt in the non-secure NVIC pending register when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_SetPendingIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ISPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Clear Pending Interrupt (non-secure) \details Clears the pending bit of a device specific interrupt in the non-secure NVIC pending register when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_ClearPendingIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ICPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Active Interrupt (non-secure) \details Reads the active register in non-secure NVIC when in secure state and returns the active bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not active. \return 1 Interrupt status is active. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t TZ_NVIC_GetActive_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC_NS->IABR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Interrupt Priority (non-secure) \details Sets the priority of a non-secure device specific interrupt or a non-secure processor exception when in secure state. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \param [in] priority Priority to set. \note The priority cannot be set for every non-secure processor exception. */ __STATIC_INLINE void TZ_NVIC_SetPriority_NS(IRQn_Type IRQn, uint32_t priority) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->IPR[_IP_IDX(IRQn)] = ((uint32_t)(NVIC_NS->IPR[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) | (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn))); } else { SCB_NS->SHPR[_SHP_IDX(IRQn)] = ((uint32_t)(SCB_NS->SHPR[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) | (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn))); } } /** \brief Get Interrupt Priority (non-secure) \details Reads the priority of a non-secure device specific interrupt or a non-secure processor exception when in secure state. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Interrupt Priority. Value is aligned automatically to the implemented priority bits of the microcontroller. */ __STATIC_INLINE uint32_t TZ_NVIC_GetPriority_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC_NS->IPR[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS))); } else { return((uint32_t)(((SCB_NS->SHPR[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS))); } } #endif /* defined (__ARM_FEATURE_CMSE) &&(__ARM_FEATURE_CMSE == 3U) */ /*@} end of CMSIS_Core_NVICFunctions */ /* ########################## MPU functions #################################### */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) #include "mpu_armv8.h" #endif /* ########################## FPU functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_FpuFunctions FPU Functions \brief Function that provides FPU type. @{ */ /** \brief get FPU type \details returns the FPU type \returns - \b 0: No FPU - \b 1: Single precision FPU - \b 2: Double + Single precision FPU */ __STATIC_INLINE uint32_t SCB_GetFPUType(void) { return 0U; /* No FPU */ } /*@} end of CMSIS_Core_FpuFunctions */ /* ########################## SAU functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_SAUFunctions SAU Functions \brief Functions that configure the SAU. @{ */ #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief Enable SAU \details Enables the Security Attribution Unit (SAU). */ __STATIC_INLINE void TZ_SAU_Enable(void) { SAU->CTRL |= (SAU_CTRL_ENABLE_Msk); } /** \brief Disable SAU \details Disables the Security Attribution Unit (SAU). */ __STATIC_INLINE void TZ_SAU_Disable(void) { SAU->CTRL &= ~(SAU_CTRL_ENABLE_Msk); } #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /*@} end of CMSIS_Core_SAUFunctions */ /* ################################## SysTick function ############################################ */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_SysTickFunctions SysTick Functions \brief Functions that configure the System. @{ */ #if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U) /** \brief System Tick Configuration \details Initializes the System Timer and its interrupt, and starts the System Tick Timer. Counter is in free running mode to generate periodic interrupts. \param [in] ticks Number of ticks between two interrupts. \return 0 Function succeeded. \return 1 Function failed. \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b> must contain a vendor-specific implementation of this function. */ __STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks) { if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) { return (1UL); /* Reload value impossible */ } SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */ NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */ SysTick->VAL = 0UL; /* Load the SysTick Counter Value */ SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ return (0UL); /* Function successful */ } #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief System Tick Configuration (non-secure) \details Initializes the non-secure System Timer and its interrupt when in secure state, and starts the System Tick Timer. Counter is in free running mode to generate periodic interrupts. \param [in] ticks Number of ticks between two interrupts. \return 0 Function succeeded. \return 1 Function failed. \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the function <b>TZ_SysTick_Config_NS</b> is not included. In this case, the file <b><i>device</i>.h</b> must contain a vendor-specific implementation of this function. */ __STATIC_INLINE uint32_t TZ_SysTick_Config_NS(uint32_t ticks) { if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) { return (1UL); /* Reload value impossible */ } SysTick_NS->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */ TZ_NVIC_SetPriority_NS (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */ SysTick_NS->VAL = 0UL; /* Load the SysTick Counter Value */ SysTick_NS->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ return (0UL); /* Function successful */ } #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ #endif /*@} end of CMSIS_Core_SysTickFunctions */ #ifdef __cplusplus } #endif #endif /* __CORE_ARMV8MBL_H_DEPENDANT */ #endif /* __CMSIS_GENERIC */ Drivers/CMSIS/Include/core_armv8mml.h
New file @@ -0,0 +1,2835 @@ /**************************************************************************//** * @file core_armv8mml.h * @brief CMSIS Armv8-M Mainline Core Peripheral Access Layer Header File * @version V5.1.0 * @date 12. September 2018 ******************************************************************************/ /* * Copyright (c) 2009-2018 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined ( __ICCARM__ ) #pragma system_include /* treat file as system include file for MISRA check */ #elif defined (__clang__) #pragma clang system_header /* treat file as system include file */ #endif #ifndef __CORE_ARMV8MML_H_GENERIC #define __CORE_ARMV8MML_H_GENERIC #include <stdint.h> #ifdef __cplusplus extern "C" { #endif /** \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions CMSIS violates the following MISRA-C:2004 rules: \li Required Rule 8.5, object/function definition in header file.<br> Function definitions in header files are used to allow 'inlining'. \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br> Unions are used for effective representation of core registers. \li Advisory Rule 19.7, Function-like macro defined.<br> Function-like macros are used to allow more efficient code. */ /******************************************************************************* * CMSIS definitions ******************************************************************************/ /** \ingroup Cortex_ARMv8MML @{ */ #include "cmsis_version.h" /* CMSIS Armv8MML definitions */ #define __ARMv8MML_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */ #define __ARMv8MML_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */ #define __ARMv8MML_CMSIS_VERSION ((__ARMv8MML_CMSIS_VERSION_MAIN << 16U) | \ __ARMv8MML_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */ #define __CORTEX_M (81U) /*!< Cortex-M Core */ /** __FPU_USED indicates whether an FPU is used or not. For this, __FPU_PRESENT has to be checked prior to making use of FPU specific registers and functions. */ #if defined ( __CC_ARM ) #if defined __TARGET_FPU_VFP #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #if defined(__ARM_FEATURE_DSP) #if defined(__DSP_PRESENT) && (__DSP_PRESENT == 1U) #define __DSP_USED 1U #else #error "Compiler generates DSP (SIMD) instructions for a devices without DSP extensions (check __DSP_PRESENT)" #define __DSP_USED 0U #endif #else #define __DSP_USED 0U #endif #elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) #if defined __ARM_FP #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #warning "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #if defined(__ARM_FEATURE_DSP) #if defined(__DSP_PRESENT) && (__DSP_PRESENT == 1U) #define __DSP_USED 1U #else #error "Compiler generates DSP (SIMD) instructions for a devices without DSP extensions (check __DSP_PRESENT)" #define __DSP_USED 0U #endif #else #define __DSP_USED 0U #endif #elif defined ( __GNUC__ ) #if defined (__VFP_FP__) && !defined(__SOFTFP__) #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #if defined(__ARM_FEATURE_DSP) #if defined(__DSP_PRESENT) && (__DSP_PRESENT == 1U) #define __DSP_USED 1U #else #error "Compiler generates DSP (SIMD) instructions for a devices without DSP extensions (check __DSP_PRESENT)" #define __DSP_USED 0U #endif #else #define __DSP_USED 0U #endif #elif defined ( __ICCARM__ ) #if defined __ARMVFP__ #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #if defined(__ARM_FEATURE_DSP) #if defined(__DSP_PRESENT) && (__DSP_PRESENT == 1U) #define __DSP_USED 1U #else #error "Compiler generates DSP (SIMD) instructions for a devices without DSP extensions (check __DSP_PRESENT)" #define __DSP_USED 0U #endif #else #define __DSP_USED 0U #endif #elif defined ( __TI_ARM__ ) #if defined __TI_VFP_SUPPORT__ #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #elif defined ( __TASKING__ ) #if defined __FPU_VFP__ #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #elif defined ( __CSMC__ ) #if ( __CSMC__ & 0x400U) #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) #define __FPU_USED 1U #else #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #define __FPU_USED 0U #endif #else #define __FPU_USED 0U #endif #endif #include "cmsis_compiler.h" /* CMSIS compiler specific defines */ #ifdef __cplusplus } #endif #endif /* __CORE_ARMV8MML_H_GENERIC */ #ifndef __CMSIS_GENERIC #ifndef __CORE_ARMV8MML_H_DEPENDANT #define __CORE_ARMV8MML_H_DEPENDANT #ifdef __cplusplus extern "C" { #endif /* check device defines and use defaults */ #if defined __CHECK_DEVICE_DEFINES #ifndef __ARMv8MML_REV #define __ARMv8MML_REV 0x0000U #warning "__ARMv8MML_REV not defined in device header file; using default!" #endif #ifndef __FPU_PRESENT #define __FPU_PRESENT 0U #warning "__FPU_PRESENT not defined in device header file; using default!" #endif #ifndef __MPU_PRESENT #define __MPU_PRESENT 0U #warning "__MPU_PRESENT not defined in device header file; using default!" #endif #ifndef __SAUREGION_PRESENT #define __SAUREGION_PRESENT 0U #warning "__SAUREGION_PRESENT not defined in device header file; using default!" #endif #ifndef __DSP_PRESENT #define __DSP_PRESENT 0U #warning "__DSP_PRESENT not defined in device header file; using default!" #endif #ifndef __NVIC_PRIO_BITS #define __NVIC_PRIO_BITS 3U #warning "__NVIC_PRIO_BITS not defined in device header file; using default!" #endif #ifndef __Vendor_SysTickConfig #define __Vendor_SysTickConfig 0U #warning "__Vendor_SysTickConfig not defined in device header file; using default!" #endif #endif /* IO definitions (access restrictions to peripheral registers) */ /** \defgroup CMSIS_glob_defs CMSIS Global Defines <strong>IO Type Qualifiers</strong> are used \li to specify the access to peripheral variables. \li for automatic generation of peripheral register debug information. */ #ifdef __cplusplus #define __I volatile /*!< Defines 'read only' permissions */ #else #define __I volatile const /*!< Defines 'read only' permissions */ #endif #define __O volatile /*!< Defines 'write only' permissions */ #define __IO volatile /*!< Defines 'read / write' permissions */ /* following defines should be used for structure members */ #define __IM volatile const /*! Defines 'read only' structure member permissions */ #define __OM volatile /*! Defines 'write only' structure member permissions */ #define __IOM volatile /*! Defines 'read / write' structure member permissions */ /*@} end of group ARMv8MML */ /******************************************************************************* * Register Abstraction Core Register contain: - Core Register - Core NVIC Register - Core SCB Register - Core SysTick Register - Core Debug Register - Core MPU Register - Core SAU Register - Core FPU Register ******************************************************************************/ /** \defgroup CMSIS_core_register Defines and Type Definitions \brief Type definitions and defines for Cortex-M processor based devices. */ /** \ingroup CMSIS_core_register \defgroup CMSIS_CORE Status and Control Registers \brief Core Register type definitions. @{ */ /** \brief Union type to access the Application Program Status Register (APSR). */ typedef union { struct { uint32_t _reserved0:16; /*!< bit: 0..15 Reserved */ uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */ uint32_t _reserved1:7; /*!< bit: 20..26 Reserved */ uint32_t Q:1; /*!< bit: 27 Saturation condition flag */ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ uint32_t C:1; /*!< bit: 29 Carry condition code flag */ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ uint32_t N:1; /*!< bit: 31 Negative condition code flag */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } APSR_Type; /* APSR Register Definitions */ #define APSR_N_Pos 31U /*!< APSR: N Position */ #define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */ #define APSR_Z_Pos 30U /*!< APSR: Z Position */ #define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */ #define APSR_C_Pos 29U /*!< APSR: C Position */ #define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */ #define APSR_V_Pos 28U /*!< APSR: V Position */ #define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */ #define APSR_Q_Pos 27U /*!< APSR: Q Position */ #define APSR_Q_Msk (1UL << APSR_Q_Pos) /*!< APSR: Q Mask */ #define APSR_GE_Pos 16U /*!< APSR: GE Position */ #define APSR_GE_Msk (0xFUL << APSR_GE_Pos) /*!< APSR: GE Mask */ /** \brief Union type to access the Interrupt Program Status Register (IPSR). */ typedef union { struct { uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } IPSR_Type; /* IPSR Register Definitions */ #define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */ #define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */ /** \brief Union type to access the Special-Purpose Program Status Registers (xPSR). */ typedef union { struct { uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ uint32_t _reserved0:7; /*!< bit: 9..15 Reserved */ uint32_t GE:4; /*!< bit: 16..19 Greater than or Equal flags */ uint32_t _reserved1:4; /*!< bit: 20..23 Reserved */ uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */ uint32_t IT:2; /*!< bit: 25..26 saved IT state (read 0) */ uint32_t Q:1; /*!< bit: 27 Saturation condition flag */ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ uint32_t C:1; /*!< bit: 29 Carry condition code flag */ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ uint32_t N:1; /*!< bit: 31 Negative condition code flag */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } xPSR_Type; /* xPSR Register Definitions */ #define xPSR_N_Pos 31U /*!< xPSR: N Position */ #define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */ #define xPSR_Z_Pos 30U /*!< xPSR: Z Position */ #define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */ #define xPSR_C_Pos 29U /*!< xPSR: C Position */ #define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */ #define xPSR_V_Pos 28U /*!< xPSR: V Position */ #define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */ #define xPSR_Q_Pos 27U /*!< xPSR: Q Position */ #define xPSR_Q_Msk (1UL << xPSR_Q_Pos) /*!< xPSR: Q Mask */ #define xPSR_IT_Pos 25U /*!< xPSR: IT Position */ #define xPSR_IT_Msk (3UL << xPSR_IT_Pos) /*!< xPSR: IT Mask */ #define xPSR_T_Pos 24U /*!< xPSR: T Position */ #define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */ #define xPSR_GE_Pos 16U /*!< xPSR: GE Position */ #define xPSR_GE_Msk (0xFUL << xPSR_GE_Pos) /*!< xPSR: GE Mask */ #define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */ #define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */ /** \brief Union type to access the Control Registers (CONTROL). */ typedef union { struct { uint32_t nPRIV:1; /*!< bit: 0 Execution privilege in Thread mode */ uint32_t SPSEL:1; /*!< bit: 1 Stack-pointer select */ uint32_t FPCA:1; /*!< bit: 2 Floating-point context active */ uint32_t SFPA:1; /*!< bit: 3 Secure floating-point active */ uint32_t _reserved1:28; /*!< bit: 4..31 Reserved */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } CONTROL_Type; /* CONTROL Register Definitions */ #define CONTROL_SFPA_Pos 3U /*!< CONTROL: SFPA Position */ #define CONTROL_SFPA_Msk (1UL << CONTROL_SFPA_Pos) /*!< CONTROL: SFPA Mask */ #define CONTROL_FPCA_Pos 2U /*!< CONTROL: FPCA Position */ #define CONTROL_FPCA_Msk (1UL << CONTROL_FPCA_Pos) /*!< CONTROL: FPCA Mask */ #define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */ #define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */ #define CONTROL_nPRIV_Pos 0U /*!< CONTROL: nPRIV Position */ #define CONTROL_nPRIV_Msk (1UL /*<< CONTROL_nPRIV_Pos*/) /*!< CONTROL: nPRIV Mask */ /*@} end of group CMSIS_CORE */ /** \ingroup CMSIS_core_register \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC) \brief Type definitions for the NVIC Registers @{ */ /** \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC). */ typedef struct { __IOM uint32_t ISER[16U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */ uint32_t RESERVED0[16U]; __IOM uint32_t ICER[16U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */ uint32_t RSERVED1[16U]; __IOM uint32_t ISPR[16U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */ uint32_t RESERVED2[16U]; __IOM uint32_t ICPR[16U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */ uint32_t RESERVED3[16U]; __IOM uint32_t IABR[16U]; /*!< Offset: 0x200 (R/W) Interrupt Active bit Register */ uint32_t RESERVED4[16U]; __IOM uint32_t ITNS[16U]; /*!< Offset: 0x280 (R/W) Interrupt Non-Secure State Register */ uint32_t RESERVED5[16U]; __IOM uint8_t IPR[496U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register (8Bit wide) */ uint32_t RESERVED6[580U]; __OM uint32_t STIR; /*!< Offset: 0xE00 ( /W) Software Trigger Interrupt Register */ } NVIC_Type; /* Software Triggered Interrupt Register Definitions */ #define NVIC_STIR_INTID_Pos 0U /*!< STIR: INTLINESNUM Position */ #define NVIC_STIR_INTID_Msk (0x1FFUL /*<< NVIC_STIR_INTID_Pos*/) /*!< STIR: INTLINESNUM Mask */ /*@} end of group CMSIS_NVIC */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SCB System Control Block (SCB) \brief Type definitions for the System Control Block Registers @{ */ /** \brief Structure type to access the System Control Block (SCB). */ typedef struct { __IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */ __IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */ __IOM uint32_t VTOR; /*!< Offset: 0x008 (R/W) Vector Table Offset Register */ __IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */ __IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */ __IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */ __IOM uint8_t SHPR[12U]; /*!< Offset: 0x018 (R/W) System Handlers Priority Registers (4-7, 8-11, 12-15) */ __IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */ __IOM uint32_t CFSR; /*!< Offset: 0x028 (R/W) Configurable Fault Status Register */ __IOM uint32_t HFSR; /*!< Offset: 0x02C (R/W) HardFault Status Register */ __IOM uint32_t DFSR; /*!< Offset: 0x030 (R/W) Debug Fault Status Register */ __IOM uint32_t MMFAR; /*!< Offset: 0x034 (R/W) MemManage Fault Address Register */ __IOM uint32_t BFAR; /*!< Offset: 0x038 (R/W) BusFault Address Register */ __IOM uint32_t AFSR; /*!< Offset: 0x03C (R/W) Auxiliary Fault Status Register */ __IM uint32_t ID_PFR[2U]; /*!< Offset: 0x040 (R/ ) Processor Feature Register */ __IM uint32_t ID_DFR; /*!< Offset: 0x048 (R/ ) Debug Feature Register */ __IM uint32_t ID_ADR; /*!< Offset: 0x04C (R/ ) Auxiliary Feature Register */ __IM uint32_t ID_MMFR[4U]; /*!< Offset: 0x050 (R/ ) Memory Model Feature Register */ __IM uint32_t ID_ISAR[6U]; /*!< Offset: 0x060 (R/ ) Instruction Set Attributes Register */ __IM uint32_t CLIDR; /*!< Offset: 0x078 (R/ ) Cache Level ID register */ __IM uint32_t CTR; /*!< Offset: 0x07C (R/ ) Cache Type register */ __IM uint32_t CCSIDR; /*!< Offset: 0x080 (R/ ) Cache Size ID Register */ __IOM uint32_t CSSELR; /*!< Offset: 0x084 (R/W) Cache Size Selection Register */ __IOM uint32_t CPACR; /*!< Offset: 0x088 (R/W) Coprocessor Access Control Register */ __IOM uint32_t NSACR; /*!< Offset: 0x08C (R/W) Non-Secure Access Control Register */ uint32_t RESERVED3[92U]; __OM uint32_t STIR; /*!< Offset: 0x200 ( /W) Software Triggered Interrupt Register */ uint32_t RESERVED4[15U]; __IM uint32_t MVFR0; /*!< Offset: 0x240 (R/ ) Media and VFP Feature Register 0 */ __IM uint32_t MVFR1; /*!< Offset: 0x244 (R/ ) Media and VFP Feature Register 1 */ __IM uint32_t MVFR2; /*!< Offset: 0x248 (R/ ) Media and VFP Feature Register 2 */ uint32_t RESERVED5[1U]; __OM uint32_t ICIALLU; /*!< Offset: 0x250 ( /W) I-Cache Invalidate All to PoU */ uint32_t RESERVED6[1U]; __OM uint32_t ICIMVAU; /*!< Offset: 0x258 ( /W) I-Cache Invalidate by MVA to PoU */ __OM uint32_t DCIMVAC; /*!< Offset: 0x25C ( /W) D-Cache Invalidate by MVA to PoC */ __OM uint32_t DCISW; /*!< Offset: 0x260 ( /W) D-Cache Invalidate by Set-way */ __OM uint32_t DCCMVAU; /*!< Offset: 0x264 ( /W) D-Cache Clean by MVA to PoU */ __OM uint32_t DCCMVAC; /*!< Offset: 0x268 ( /W) D-Cache Clean by MVA to PoC */ __OM uint32_t DCCSW; /*!< Offset: 0x26C ( /W) D-Cache Clean by Set-way */ __OM uint32_t DCCIMVAC; /*!< Offset: 0x270 ( /W) D-Cache Clean and Invalidate by MVA to PoC */ __OM uint32_t DCCISW; /*!< Offset: 0x274 ( /W) D-Cache Clean and Invalidate by Set-way */ } SCB_Type; /* SCB CPUID Register Definitions */ #define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */ #define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */ #define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */ #define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */ #define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */ #define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */ #define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */ #define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */ #define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */ #define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */ /* SCB Interrupt Control State Register Definitions */ #define SCB_ICSR_PENDNMISET_Pos 31U /*!< SCB ICSR: PENDNMISET Position */ #define SCB_ICSR_PENDNMISET_Msk (1UL << SCB_ICSR_PENDNMISET_Pos) /*!< SCB ICSR: PENDNMISET Mask */ #define SCB_ICSR_NMIPENDSET_Pos SCB_ICSR_PENDNMISET_Pos /*!< SCB ICSR: NMIPENDSET Position, backward compatibility */ #define SCB_ICSR_NMIPENDSET_Msk SCB_ICSR_PENDNMISET_Msk /*!< SCB ICSR: NMIPENDSET Mask, backward compatibility */ #define SCB_ICSR_PENDNMICLR_Pos 30U /*!< SCB ICSR: PENDNMICLR Position */ #define SCB_ICSR_PENDNMICLR_Msk (1UL << SCB_ICSR_PENDNMICLR_Pos) /*!< SCB ICSR: PENDNMICLR Mask */ #define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */ #define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */ #define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */ #define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */ #define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */ #define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */ #define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */ #define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */ #define SCB_ICSR_STTNS_Pos 24U /*!< SCB ICSR: STTNS Position (Security Extension) */ #define SCB_ICSR_STTNS_Msk (1UL << SCB_ICSR_STTNS_Pos) /*!< SCB ICSR: STTNS Mask (Security Extension) */ #define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */ #define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */ #define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */ #define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */ #define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */ #define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */ #define SCB_ICSR_RETTOBASE_Pos 11U /*!< SCB ICSR: RETTOBASE Position */ #define SCB_ICSR_RETTOBASE_Msk (1UL << SCB_ICSR_RETTOBASE_Pos) /*!< SCB ICSR: RETTOBASE Mask */ #define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */ #define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */ /* SCB Vector Table Offset Register Definitions */ #define SCB_VTOR_TBLOFF_Pos 7U /*!< SCB VTOR: TBLOFF Position */ #define SCB_VTOR_TBLOFF_Msk (0x1FFFFFFUL << SCB_VTOR_TBLOFF_Pos) /*!< SCB VTOR: TBLOFF Mask */ /* SCB Application Interrupt and Reset Control Register Definitions */ #define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */ #define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */ #define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */ #define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */ #define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */ #define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */ #define SCB_AIRCR_PRIS_Pos 14U /*!< SCB AIRCR: PRIS Position */ #define SCB_AIRCR_PRIS_Msk (1UL << SCB_AIRCR_PRIS_Pos) /*!< SCB AIRCR: PRIS Mask */ #define SCB_AIRCR_BFHFNMINS_Pos 13U /*!< SCB AIRCR: BFHFNMINS Position */ #define SCB_AIRCR_BFHFNMINS_Msk (1UL << SCB_AIRCR_BFHFNMINS_Pos) /*!< SCB AIRCR: BFHFNMINS Mask */ #define SCB_AIRCR_PRIGROUP_Pos 8U /*!< SCB AIRCR: PRIGROUP Position */ #define SCB_AIRCR_PRIGROUP_Msk (7UL << SCB_AIRCR_PRIGROUP_Pos) /*!< SCB AIRCR: PRIGROUP Mask */ #define SCB_AIRCR_SYSRESETREQS_Pos 3U /*!< SCB AIRCR: SYSRESETREQS Position */ #define SCB_AIRCR_SYSRESETREQS_Msk (1UL << SCB_AIRCR_SYSRESETREQS_Pos) /*!< SCB AIRCR: SYSRESETREQS Mask */ #define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */ #define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */ #define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */ #define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */ /* SCB System Control Register Definitions */ #define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */ #define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */ #define SCB_SCR_SLEEPDEEPS_Pos 3U /*!< SCB SCR: SLEEPDEEPS Position */ #define SCB_SCR_SLEEPDEEPS_Msk (1UL << SCB_SCR_SLEEPDEEPS_Pos) /*!< SCB SCR: SLEEPDEEPS Mask */ #define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */ #define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */ #define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */ #define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */ /* SCB Configuration Control Register Definitions */ #define SCB_CCR_BP_Pos 18U /*!< SCB CCR: BP Position */ #define SCB_CCR_BP_Msk (1UL << SCB_CCR_BP_Pos) /*!< SCB CCR: BP Mask */ #define SCB_CCR_IC_Pos 17U /*!< SCB CCR: IC Position */ #define SCB_CCR_IC_Msk (1UL << SCB_CCR_IC_Pos) /*!< SCB CCR: IC Mask */ #define SCB_CCR_DC_Pos 16U /*!< SCB CCR: DC Position */ #define SCB_CCR_DC_Msk (1UL << SCB_CCR_DC_Pos) /*!< SCB CCR: DC Mask */ #define SCB_CCR_STKOFHFNMIGN_Pos 10U /*!< SCB CCR: STKOFHFNMIGN Position */ #define SCB_CCR_STKOFHFNMIGN_Msk (1UL << SCB_CCR_STKOFHFNMIGN_Pos) /*!< SCB CCR: STKOFHFNMIGN Mask */ #define SCB_CCR_BFHFNMIGN_Pos 8U /*!< SCB CCR: BFHFNMIGN Position */ #define SCB_CCR_BFHFNMIGN_Msk (1UL << SCB_CCR_BFHFNMIGN_Pos) /*!< SCB CCR: BFHFNMIGN Mask */ #define SCB_CCR_DIV_0_TRP_Pos 4U /*!< SCB CCR: DIV_0_TRP Position */ #define SCB_CCR_DIV_0_TRP_Msk (1UL << SCB_CCR_DIV_0_TRP_Pos) /*!< SCB CCR: DIV_0_TRP Mask */ #define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */ #define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */ #define SCB_CCR_USERSETMPEND_Pos 1U /*!< SCB CCR: USERSETMPEND Position */ #define SCB_CCR_USERSETMPEND_Msk (1UL << SCB_CCR_USERSETMPEND_Pos) /*!< SCB CCR: USERSETMPEND Mask */ /* SCB System Handler Control and State Register Definitions */ #define SCB_SHCSR_HARDFAULTPENDED_Pos 21U /*!< SCB SHCSR: HARDFAULTPENDED Position */ #define SCB_SHCSR_HARDFAULTPENDED_Msk (1UL << SCB_SHCSR_HARDFAULTPENDED_Pos) /*!< SCB SHCSR: HARDFAULTPENDED Mask */ #define SCB_SHCSR_SECUREFAULTPENDED_Pos 20U /*!< SCB SHCSR: SECUREFAULTPENDED Position */ #define SCB_SHCSR_SECUREFAULTPENDED_Msk (1UL << SCB_SHCSR_SECUREFAULTPENDED_Pos) /*!< SCB SHCSR: SECUREFAULTPENDED Mask */ #define SCB_SHCSR_SECUREFAULTENA_Pos 19U /*!< SCB SHCSR: SECUREFAULTENA Position */ #define SCB_SHCSR_SECUREFAULTENA_Msk (1UL << SCB_SHCSR_SECUREFAULTENA_Pos) /*!< SCB SHCSR: SECUREFAULTENA Mask */ #define SCB_SHCSR_USGFAULTENA_Pos 18U /*!< SCB SHCSR: USGFAULTENA Position */ #define SCB_SHCSR_USGFAULTENA_Msk (1UL << SCB_SHCSR_USGFAULTENA_Pos) /*!< SCB SHCSR: USGFAULTENA Mask */ #define SCB_SHCSR_BUSFAULTENA_Pos 17U /*!< SCB SHCSR: BUSFAULTENA Position */ #define SCB_SHCSR_BUSFAULTENA_Msk (1UL << SCB_SHCSR_BUSFAULTENA_Pos) /*!< SCB SHCSR: BUSFAULTENA Mask */ #define SCB_SHCSR_MEMFAULTENA_Pos 16U /*!< SCB SHCSR: MEMFAULTENA Position */ #define SCB_SHCSR_MEMFAULTENA_Msk (1UL << SCB_SHCSR_MEMFAULTENA_Pos) /*!< SCB SHCSR: MEMFAULTENA Mask */ #define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */ #define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */ #define SCB_SHCSR_BUSFAULTPENDED_Pos 14U /*!< SCB SHCSR: BUSFAULTPENDED Position */ #define SCB_SHCSR_BUSFAULTPENDED_Msk (1UL << SCB_SHCSR_BUSFAULTPENDED_Pos) /*!< SCB SHCSR: BUSFAULTPENDED Mask */ #define SCB_SHCSR_MEMFAULTPENDED_Pos 13U /*!< SCB SHCSR: MEMFAULTPENDED Position */ #define SCB_SHCSR_MEMFAULTPENDED_Msk (1UL << SCB_SHCSR_MEMFAULTPENDED_Pos) /*!< SCB SHCSR: MEMFAULTPENDED Mask */ #define SCB_SHCSR_USGFAULTPENDED_Pos 12U /*!< SCB SHCSR: USGFAULTPENDED Position */ #define SCB_SHCSR_USGFAULTPENDED_Msk (1UL << SCB_SHCSR_USGFAULTPENDED_Pos) /*!< SCB SHCSR: USGFAULTPENDED Mask */ #define SCB_SHCSR_SYSTICKACT_Pos 11U /*!< SCB SHCSR: SYSTICKACT Position */ #define SCB_SHCSR_SYSTICKACT_Msk (1UL << SCB_SHCSR_SYSTICKACT_Pos) /*!< SCB SHCSR: SYSTICKACT Mask */ #define SCB_SHCSR_PENDSVACT_Pos 10U /*!< SCB SHCSR: PENDSVACT Position */ #define SCB_SHCSR_PENDSVACT_Msk (1UL << SCB_SHCSR_PENDSVACT_Pos) /*!< SCB SHCSR: PENDSVACT Mask */ #define SCB_SHCSR_MONITORACT_Pos 8U /*!< SCB SHCSR: MONITORACT Position */ #define SCB_SHCSR_MONITORACT_Msk (1UL << SCB_SHCSR_MONITORACT_Pos) /*!< SCB SHCSR: MONITORACT Mask */ #define SCB_SHCSR_SVCALLACT_Pos 7U /*!< SCB SHCSR: SVCALLACT Position */ #define SCB_SHCSR_SVCALLACT_Msk (1UL << SCB_SHCSR_SVCALLACT_Pos) /*!< SCB SHCSR: SVCALLACT Mask */ #define SCB_SHCSR_NMIACT_Pos 5U /*!< SCB SHCSR: NMIACT Position */ #define SCB_SHCSR_NMIACT_Msk (1UL << SCB_SHCSR_NMIACT_Pos) /*!< SCB SHCSR: NMIACT Mask */ #define SCB_SHCSR_SECUREFAULTACT_Pos 4U /*!< SCB SHCSR: SECUREFAULTACT Position */ #define SCB_SHCSR_SECUREFAULTACT_Msk (1UL << SCB_SHCSR_SECUREFAULTACT_Pos) /*!< SCB SHCSR: SECUREFAULTACT Mask */ #define SCB_SHCSR_USGFAULTACT_Pos 3U /*!< SCB SHCSR: USGFAULTACT Position */ #define SCB_SHCSR_USGFAULTACT_Msk (1UL << SCB_SHCSR_USGFAULTACT_Pos) /*!< SCB SHCSR: USGFAULTACT Mask */ #define SCB_SHCSR_HARDFAULTACT_Pos 2U /*!< SCB SHCSR: HARDFAULTACT Position */ #define SCB_SHCSR_HARDFAULTACT_Msk (1UL << SCB_SHCSR_HARDFAULTACT_Pos) /*!< SCB SHCSR: HARDFAULTACT Mask */ #define SCB_SHCSR_BUSFAULTACT_Pos 1U /*!< SCB SHCSR: BUSFAULTACT Position */ #define SCB_SHCSR_BUSFAULTACT_Msk (1UL << SCB_SHCSR_BUSFAULTACT_Pos) /*!< SCB SHCSR: BUSFAULTACT Mask */ #define SCB_SHCSR_MEMFAULTACT_Pos 0U /*!< SCB SHCSR: MEMFAULTACT Position */ #define SCB_SHCSR_MEMFAULTACT_Msk (1UL /*<< SCB_SHCSR_MEMFAULTACT_Pos*/) /*!< SCB SHCSR: MEMFAULTACT Mask */ /* SCB Configurable Fault Status Register Definitions */ #define SCB_CFSR_USGFAULTSR_Pos 16U /*!< SCB CFSR: Usage Fault Status Register Position */ #define SCB_CFSR_USGFAULTSR_Msk (0xFFFFUL << SCB_CFSR_USGFAULTSR_Pos) /*!< SCB CFSR: Usage Fault Status Register Mask */ #define SCB_CFSR_BUSFAULTSR_Pos 8U /*!< SCB CFSR: Bus Fault Status Register Position */ #define SCB_CFSR_BUSFAULTSR_Msk (0xFFUL << SCB_CFSR_BUSFAULTSR_Pos) /*!< SCB CFSR: Bus Fault Status Register Mask */ #define SCB_CFSR_MEMFAULTSR_Pos 0U /*!< SCB CFSR: Memory Manage Fault Status Register Position */ #define SCB_CFSR_MEMFAULTSR_Msk (0xFFUL /*<< SCB_CFSR_MEMFAULTSR_Pos*/) /*!< SCB CFSR: Memory Manage Fault Status Register Mask */ /* MemManage Fault Status Register (part of SCB Configurable Fault Status Register) */ #define SCB_CFSR_MMARVALID_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 7U) /*!< SCB CFSR (MMFSR): MMARVALID Position */ #define SCB_CFSR_MMARVALID_Msk (1UL << SCB_CFSR_MMARVALID_Pos) /*!< SCB CFSR (MMFSR): MMARVALID Mask */ #define SCB_CFSR_MLSPERR_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 5U) /*!< SCB CFSR (MMFSR): MLSPERR Position */ #define SCB_CFSR_MLSPERR_Msk (1UL << SCB_CFSR_MLSPERR_Pos) /*!< SCB CFSR (MMFSR): MLSPERR Mask */ #define SCB_CFSR_MSTKERR_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 4U) /*!< SCB CFSR (MMFSR): MSTKERR Position */ #define SCB_CFSR_MSTKERR_Msk (1UL << SCB_CFSR_MSTKERR_Pos) /*!< SCB CFSR (MMFSR): MSTKERR Mask */ #define SCB_CFSR_MUNSTKERR_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 3U) /*!< SCB CFSR (MMFSR): MUNSTKERR Position */ #define SCB_CFSR_MUNSTKERR_Msk (1UL << SCB_CFSR_MUNSTKERR_Pos) /*!< SCB CFSR (MMFSR): MUNSTKERR Mask */ #define SCB_CFSR_DACCVIOL_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 1U) /*!< SCB CFSR (MMFSR): DACCVIOL Position */ #define SCB_CFSR_DACCVIOL_Msk (1UL << SCB_CFSR_DACCVIOL_Pos) /*!< SCB CFSR (MMFSR): DACCVIOL Mask */ #define SCB_CFSR_IACCVIOL_Pos (SCB_SHCSR_MEMFAULTACT_Pos + 0U) /*!< SCB CFSR (MMFSR): IACCVIOL Position */ #define SCB_CFSR_IACCVIOL_Msk (1UL /*<< SCB_CFSR_IACCVIOL_Pos*/) /*!< SCB CFSR (MMFSR): IACCVIOL Mask */ /* BusFault Status Register (part of SCB Configurable Fault Status Register) */ #define SCB_CFSR_BFARVALID_Pos (SCB_CFSR_BUSFAULTSR_Pos + 7U) /*!< SCB CFSR (BFSR): BFARVALID Position */ #define SCB_CFSR_BFARVALID_Msk (1UL << SCB_CFSR_BFARVALID_Pos) /*!< SCB CFSR (BFSR): BFARVALID Mask */ #define SCB_CFSR_LSPERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 5U) /*!< SCB CFSR (BFSR): LSPERR Position */ #define SCB_CFSR_LSPERR_Msk (1UL << SCB_CFSR_LSPERR_Pos) /*!< SCB CFSR (BFSR): LSPERR Mask */ #define SCB_CFSR_STKERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 4U) /*!< SCB CFSR (BFSR): STKERR Position */ #define SCB_CFSR_STKERR_Msk (1UL << SCB_CFSR_STKERR_Pos) /*!< SCB CFSR (BFSR): STKERR Mask */ #define SCB_CFSR_UNSTKERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 3U) /*!< SCB CFSR (BFSR): UNSTKERR Position */ #define SCB_CFSR_UNSTKERR_Msk (1UL << SCB_CFSR_UNSTKERR_Pos) /*!< SCB CFSR (BFSR): UNSTKERR Mask */ #define SCB_CFSR_IMPRECISERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 2U) /*!< SCB CFSR (BFSR): IMPRECISERR Position */ #define SCB_CFSR_IMPRECISERR_Msk (1UL << SCB_CFSR_IMPRECISERR_Pos) /*!< SCB CFSR (BFSR): IMPRECISERR Mask */ #define SCB_CFSR_PRECISERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 1U) /*!< SCB CFSR (BFSR): PRECISERR Position */ #define SCB_CFSR_PRECISERR_Msk (1UL << SCB_CFSR_PRECISERR_Pos) /*!< SCB CFSR (BFSR): PRECISERR Mask */ #define SCB_CFSR_IBUSERR_Pos (SCB_CFSR_BUSFAULTSR_Pos + 0U) /*!< SCB CFSR (BFSR): IBUSERR Position */ #define SCB_CFSR_IBUSERR_Msk (1UL << SCB_CFSR_IBUSERR_Pos) /*!< SCB CFSR (BFSR): IBUSERR Mask */ /* UsageFault Status Register (part of SCB Configurable Fault Status Register) */ #define SCB_CFSR_DIVBYZERO_Pos (SCB_CFSR_USGFAULTSR_Pos + 9U) /*!< SCB CFSR (UFSR): DIVBYZERO Position */ #define SCB_CFSR_DIVBYZERO_Msk (1UL << SCB_CFSR_DIVBYZERO_Pos) /*!< SCB CFSR (UFSR): DIVBYZERO Mask */ #define SCB_CFSR_UNALIGNED_Pos (SCB_CFSR_USGFAULTSR_Pos + 8U) /*!< SCB CFSR (UFSR): UNALIGNED Position */ #define SCB_CFSR_UNALIGNED_Msk (1UL << SCB_CFSR_UNALIGNED_Pos) /*!< SCB CFSR (UFSR): UNALIGNED Mask */ #define SCB_CFSR_STKOF_Pos (SCB_CFSR_USGFAULTSR_Pos + 4U) /*!< SCB CFSR (UFSR): STKOF Position */ #define SCB_CFSR_STKOF_Msk (1UL << SCB_CFSR_STKOF_Pos) /*!< SCB CFSR (UFSR): STKOF Mask */ #define SCB_CFSR_NOCP_Pos (SCB_CFSR_USGFAULTSR_Pos + 3U) /*!< SCB CFSR (UFSR): NOCP Position */ #define SCB_CFSR_NOCP_Msk (1UL << SCB_CFSR_NOCP_Pos) /*!< SCB CFSR (UFSR): NOCP Mask */ #define SCB_CFSR_INVPC_Pos (SCB_CFSR_USGFAULTSR_Pos + 2U) /*!< SCB CFSR (UFSR): INVPC Position */ #define SCB_CFSR_INVPC_Msk (1UL << SCB_CFSR_INVPC_Pos) /*!< SCB CFSR (UFSR): INVPC Mask */ #define SCB_CFSR_INVSTATE_Pos (SCB_CFSR_USGFAULTSR_Pos + 1U) /*!< SCB CFSR (UFSR): INVSTATE Position */ #define SCB_CFSR_INVSTATE_Msk (1UL << SCB_CFSR_INVSTATE_Pos) /*!< SCB CFSR (UFSR): INVSTATE Mask */ #define SCB_CFSR_UNDEFINSTR_Pos (SCB_CFSR_USGFAULTSR_Pos + 0U) /*!< SCB CFSR (UFSR): UNDEFINSTR Position */ #define SCB_CFSR_UNDEFINSTR_Msk (1UL << SCB_CFSR_UNDEFINSTR_Pos) /*!< SCB CFSR (UFSR): UNDEFINSTR Mask */ /* SCB Hard Fault Status Register Definitions */ #define SCB_HFSR_DEBUGEVT_Pos 31U /*!< SCB HFSR: DEBUGEVT Position */ #define SCB_HFSR_DEBUGEVT_Msk (1UL << SCB_HFSR_DEBUGEVT_Pos) /*!< SCB HFSR: DEBUGEVT Mask */ #define SCB_HFSR_FORCED_Pos 30U /*!< SCB HFSR: FORCED Position */ #define SCB_HFSR_FORCED_Msk (1UL << SCB_HFSR_FORCED_Pos) /*!< SCB HFSR: FORCED Mask */ #define SCB_HFSR_VECTTBL_Pos 1U /*!< SCB HFSR: VECTTBL Position */ #define SCB_HFSR_VECTTBL_Msk (1UL << SCB_HFSR_VECTTBL_Pos) /*!< SCB HFSR: VECTTBL Mask */ /* SCB Debug Fault Status Register Definitions */ #define SCB_DFSR_EXTERNAL_Pos 4U /*!< SCB DFSR: EXTERNAL Position */ #define SCB_DFSR_EXTERNAL_Msk (1UL << SCB_DFSR_EXTERNAL_Pos) /*!< SCB DFSR: EXTERNAL Mask */ #define SCB_DFSR_VCATCH_Pos 3U /*!< SCB DFSR: VCATCH Position */ #define SCB_DFSR_VCATCH_Msk (1UL << SCB_DFSR_VCATCH_Pos) /*!< SCB DFSR: VCATCH Mask */ #define SCB_DFSR_DWTTRAP_Pos 2U /*!< SCB DFSR: DWTTRAP Position */ #define SCB_DFSR_DWTTRAP_Msk (1UL << SCB_DFSR_DWTTRAP_Pos) /*!< SCB DFSR: DWTTRAP Mask */ #define SCB_DFSR_BKPT_Pos 1U /*!< SCB DFSR: BKPT Position */ #define SCB_DFSR_BKPT_Msk (1UL << SCB_DFSR_BKPT_Pos) /*!< SCB DFSR: BKPT Mask */ #define SCB_DFSR_HALTED_Pos 0U /*!< SCB DFSR: HALTED Position */ #define SCB_DFSR_HALTED_Msk (1UL /*<< SCB_DFSR_HALTED_Pos*/) /*!< SCB DFSR: HALTED Mask */ /* SCB Non-Secure Access Control Register Definitions */ #define SCB_NSACR_CP11_Pos 11U /*!< SCB NSACR: CP11 Position */ #define SCB_NSACR_CP11_Msk (1UL << SCB_NSACR_CP11_Pos) /*!< SCB NSACR: CP11 Mask */ #define SCB_NSACR_CP10_Pos 10U /*!< SCB NSACR: CP10 Position */ #define SCB_NSACR_CP10_Msk (1UL << SCB_NSACR_CP10_Pos) /*!< SCB NSACR: CP10 Mask */ #define SCB_NSACR_CPn_Pos 0U /*!< SCB NSACR: CPn Position */ #define SCB_NSACR_CPn_Msk (1UL /*<< SCB_NSACR_CPn_Pos*/) /*!< SCB NSACR: CPn Mask */ /* SCB Cache Level ID Register Definitions */ #define SCB_CLIDR_LOUU_Pos 27U /*!< SCB CLIDR: LoUU Position */ #define SCB_CLIDR_LOUU_Msk (7UL << SCB_CLIDR_LOUU_Pos) /*!< SCB CLIDR: LoUU Mask */ #define SCB_CLIDR_LOC_Pos 24U /*!< SCB CLIDR: LoC Position */ #define SCB_CLIDR_LOC_Msk (7UL << SCB_CLIDR_LOC_Pos) /*!< SCB CLIDR: LoC Mask */ /* SCB Cache Type Register Definitions */ #define SCB_CTR_FORMAT_Pos 29U /*!< SCB CTR: Format Position */ #define SCB_CTR_FORMAT_Msk (7UL << SCB_CTR_FORMAT_Pos) /*!< SCB CTR: Format Mask */ #define SCB_CTR_CWG_Pos 24U /*!< SCB CTR: CWG Position */ #define SCB_CTR_CWG_Msk (0xFUL << SCB_CTR_CWG_Pos) /*!< SCB CTR: CWG Mask */ #define SCB_CTR_ERG_Pos 20U /*!< SCB CTR: ERG Position */ #define SCB_CTR_ERG_Msk (0xFUL << SCB_CTR_ERG_Pos) /*!< SCB CTR: ERG Mask */ #define SCB_CTR_DMINLINE_Pos 16U /*!< SCB CTR: DminLine Position */ #define SCB_CTR_DMINLINE_Msk (0xFUL << SCB_CTR_DMINLINE_Pos) /*!< SCB CTR: DminLine Mask */ #define SCB_CTR_IMINLINE_Pos 0U /*!< SCB CTR: ImInLine Position */ #define SCB_CTR_IMINLINE_Msk (0xFUL /*<< SCB_CTR_IMINLINE_Pos*/) /*!< SCB CTR: ImInLine Mask */ /* SCB Cache Size ID Register Definitions */ #define SCB_CCSIDR_WT_Pos 31U /*!< SCB CCSIDR: WT Position */ #define SCB_CCSIDR_WT_Msk (1UL << SCB_CCSIDR_WT_Pos) /*!< SCB CCSIDR: WT Mask */ #define SCB_CCSIDR_WB_Pos 30U /*!< SCB CCSIDR: WB Position */ #define SCB_CCSIDR_WB_Msk (1UL << SCB_CCSIDR_WB_Pos) /*!< SCB CCSIDR: WB Mask */ #define SCB_CCSIDR_RA_Pos 29U /*!< SCB CCSIDR: RA Position */ #define SCB_CCSIDR_RA_Msk (1UL << SCB_CCSIDR_RA_Pos) /*!< SCB CCSIDR: RA Mask */ #define SCB_CCSIDR_WA_Pos 28U /*!< SCB CCSIDR: WA Position */ #define SCB_CCSIDR_WA_Msk (1UL << SCB_CCSIDR_WA_Pos) /*!< SCB CCSIDR: WA Mask */ #define SCB_CCSIDR_NUMSETS_Pos 13U /*!< SCB CCSIDR: NumSets Position */ #define SCB_CCSIDR_NUMSETS_Msk (0x7FFFUL << SCB_CCSIDR_NUMSETS_Pos) /*!< SCB CCSIDR: NumSets Mask */ #define SCB_CCSIDR_ASSOCIATIVITY_Pos 3U /*!< SCB CCSIDR: Associativity Position */ #define SCB_CCSIDR_ASSOCIATIVITY_Msk (0x3FFUL << SCB_CCSIDR_ASSOCIATIVITY_Pos) /*!< SCB CCSIDR: Associativity Mask */ #define SCB_CCSIDR_LINESIZE_Pos 0U /*!< SCB CCSIDR: LineSize Position */ #define SCB_CCSIDR_LINESIZE_Msk (7UL /*<< SCB_CCSIDR_LINESIZE_Pos*/) /*!< SCB CCSIDR: LineSize Mask */ /* SCB Cache Size Selection Register Definitions */ #define SCB_CSSELR_LEVEL_Pos 1U /*!< SCB CSSELR: Level Position */ #define SCB_CSSELR_LEVEL_Msk (7UL << SCB_CSSELR_LEVEL_Pos) /*!< SCB CSSELR: Level Mask */ #define SCB_CSSELR_IND_Pos 0U /*!< SCB CSSELR: InD Position */ #define SCB_CSSELR_IND_Msk (1UL /*<< SCB_CSSELR_IND_Pos*/) /*!< SCB CSSELR: InD Mask */ /* SCB Software Triggered Interrupt Register Definitions */ #define SCB_STIR_INTID_Pos 0U /*!< SCB STIR: INTID Position */ #define SCB_STIR_INTID_Msk (0x1FFUL /*<< SCB_STIR_INTID_Pos*/) /*!< SCB STIR: INTID Mask */ /* SCB D-Cache Invalidate by Set-way Register Definitions */ #define SCB_DCISW_WAY_Pos 30U /*!< SCB DCISW: Way Position */ #define SCB_DCISW_WAY_Msk (3UL << SCB_DCISW_WAY_Pos) /*!< SCB DCISW: Way Mask */ #define SCB_DCISW_SET_Pos 5U /*!< SCB DCISW: Set Position */ #define SCB_DCISW_SET_Msk (0x1FFUL << SCB_DCISW_SET_Pos) /*!< SCB DCISW: Set Mask */ /* SCB D-Cache Clean by Set-way Register Definitions */ #define SCB_DCCSW_WAY_Pos 30U /*!< SCB DCCSW: Way Position */ #define SCB_DCCSW_WAY_Msk (3UL << SCB_DCCSW_WAY_Pos) /*!< SCB DCCSW: Way Mask */ #define SCB_DCCSW_SET_Pos 5U /*!< SCB DCCSW: Set Position */ #define SCB_DCCSW_SET_Msk (0x1FFUL << SCB_DCCSW_SET_Pos) /*!< SCB DCCSW: Set Mask */ /* SCB D-Cache Clean and Invalidate by Set-way Register Definitions */ #define SCB_DCCISW_WAY_Pos 30U /*!< SCB DCCISW: Way Position */ #define SCB_DCCISW_WAY_Msk (3UL << SCB_DCCISW_WAY_Pos) /*!< SCB DCCISW: Way Mask */ #define SCB_DCCISW_SET_Pos 5U /*!< SCB DCCISW: Set Position */ #define SCB_DCCISW_SET_Msk (0x1FFUL << SCB_DCCISW_SET_Pos) /*!< SCB DCCISW: Set Mask */ /*@} end of group CMSIS_SCB */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SCnSCB System Controls not in SCB (SCnSCB) \brief Type definitions for the System Control and ID Register not in the SCB @{ */ /** \brief Structure type to access the System Control and ID Register not in the SCB. */ typedef struct { uint32_t RESERVED0[1U]; __IM uint32_t ICTR; /*!< Offset: 0x004 (R/ ) Interrupt Controller Type Register */ __IOM uint32_t ACTLR; /*!< Offset: 0x008 (R/W) Auxiliary Control Register */ __IOM uint32_t CPPWR; /*!< Offset: 0x00C (R/W) Coprocessor Power Control Register */ } SCnSCB_Type; /* Interrupt Controller Type Register Definitions */ #define SCnSCB_ICTR_INTLINESNUM_Pos 0U /*!< ICTR: INTLINESNUM Position */ #define SCnSCB_ICTR_INTLINESNUM_Msk (0xFUL /*<< SCnSCB_ICTR_INTLINESNUM_Pos*/) /*!< ICTR: INTLINESNUM Mask */ /*@} end of group CMSIS_SCnotSCB */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SysTick System Tick Timer (SysTick) \brief Type definitions for the System Timer Registers. @{ */ /** \brief Structure type to access the System Timer (SysTick). */ typedef struct { __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */ __IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */ __IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */ __IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */ } SysTick_Type; /* SysTick Control / Status Register Definitions */ #define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */ #define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */ #define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */ #define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */ #define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */ #define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */ #define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */ #define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */ /* SysTick Reload Register Definitions */ #define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */ #define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */ /* SysTick Current Register Definitions */ #define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */ #define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */ /* SysTick Calibration Register Definitions */ #define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */ #define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */ #define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */ #define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */ #define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */ #define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */ /*@} end of group CMSIS_SysTick */ /** \ingroup CMSIS_core_register \defgroup CMSIS_ITM Instrumentation Trace Macrocell (ITM) \brief Type definitions for the Instrumentation Trace Macrocell (ITM) @{ */ /** \brief Structure type to access the Instrumentation Trace Macrocell Register (ITM). */ typedef struct { __OM union { __OM uint8_t u8; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 8-bit */ __OM uint16_t u16; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 16-bit */ __OM uint32_t u32; /*!< Offset: 0x000 ( /W) ITM Stimulus Port 32-bit */ } PORT [32U]; /*!< Offset: 0x000 ( /W) ITM Stimulus Port Registers */ uint32_t RESERVED0[864U]; __IOM uint32_t TER; /*!< Offset: 0xE00 (R/W) ITM Trace Enable Register */ uint32_t RESERVED1[15U]; __IOM uint32_t TPR; /*!< Offset: 0xE40 (R/W) ITM Trace Privilege Register */ uint32_t RESERVED2[15U]; __IOM uint32_t TCR; /*!< Offset: 0xE80 (R/W) ITM Trace Control Register */ uint32_t RESERVED3[32U]; uint32_t RESERVED4[43U]; __OM uint32_t LAR; /*!< Offset: 0xFB0 ( /W) ITM Lock Access Register */ __IM uint32_t LSR; /*!< Offset: 0xFB4 (R/ ) ITM Lock Status Register */ uint32_t RESERVED5[1U]; __IM uint32_t DEVARCH; /*!< Offset: 0xFBC (R/ ) ITM Device Architecture Register */ uint32_t RESERVED6[4U]; __IM uint32_t PID4; /*!< Offset: 0xFD0 (R/ ) ITM Peripheral Identification Register #4 */ __IM uint32_t PID5; /*!< Offset: 0xFD4 (R/ ) ITM Peripheral Identification Register #5 */ __IM uint32_t PID6; /*!< Offset: 0xFD8 (R/ ) ITM Peripheral Identification Register #6 */ __IM uint32_t PID7; /*!< Offset: 0xFDC (R/ ) ITM Peripheral Identification Register #7 */ __IM uint32_t PID0; /*!< Offset: 0xFE0 (R/ ) ITM Peripheral Identification Register #0 */ __IM uint32_t PID1; /*!< Offset: 0xFE4 (R/ ) ITM Peripheral Identification Register #1 */ __IM uint32_t PID2; /*!< Offset: 0xFE8 (R/ ) ITM Peripheral Identification Register #2 */ __IM uint32_t PID3; /*!< Offset: 0xFEC (R/ ) ITM Peripheral Identification Register #3 */ __IM uint32_t CID0; /*!< Offset: 0xFF0 (R/ ) ITM Component Identification Register #0 */ __IM uint32_t CID1; /*!< Offset: 0xFF4 (R/ ) ITM Component Identification Register #1 */ __IM uint32_t CID2; /*!< Offset: 0xFF8 (R/ ) ITM Component Identification Register #2 */ __IM uint32_t CID3; /*!< Offset: 0xFFC (R/ ) ITM Component Identification Register #3 */ } ITM_Type; /* ITM Stimulus Port Register Definitions */ #define ITM_STIM_DISABLED_Pos 1U /*!< ITM STIM: DISABLED Position */ #define ITM_STIM_DISABLED_Msk (0x1UL << ITM_STIM_DISABLED_Pos) /*!< ITM STIM: DISABLED Mask */ #define ITM_STIM_FIFOREADY_Pos 0U /*!< ITM STIM: FIFOREADY Position */ #define ITM_STIM_FIFOREADY_Msk (0x1UL /*<< ITM_STIM_FIFOREADY_Pos*/) /*!< ITM STIM: FIFOREADY Mask */ /* ITM Trace Privilege Register Definitions */ #define ITM_TPR_PRIVMASK_Pos 0U /*!< ITM TPR: PRIVMASK Position */ #define ITM_TPR_PRIVMASK_Msk (0xFUL /*<< ITM_TPR_PRIVMASK_Pos*/) /*!< ITM TPR: PRIVMASK Mask */ /* ITM Trace Control Register Definitions */ #define ITM_TCR_BUSY_Pos 23U /*!< ITM TCR: BUSY Position */ #define ITM_TCR_BUSY_Msk (1UL << ITM_TCR_BUSY_Pos) /*!< ITM TCR: BUSY Mask */ #define ITM_TCR_TRACEBUSID_Pos 16U /*!< ITM TCR: ATBID Position */ #define ITM_TCR_TRACEBUSID_Msk (0x7FUL << ITM_TCR_TRACEBUSID_Pos) /*!< ITM TCR: ATBID Mask */ #define ITM_TCR_GTSFREQ_Pos 10U /*!< ITM TCR: Global timestamp frequency Position */ #define ITM_TCR_GTSFREQ_Msk (3UL << ITM_TCR_GTSFREQ_Pos) /*!< ITM TCR: Global timestamp frequency Mask */ #define ITM_TCR_TSPRESCALE_Pos 8U /*!< ITM TCR: TSPRESCALE Position */ #define ITM_TCR_TSPRESCALE_Msk (3UL << ITM_TCR_TSPRESCALE_Pos) /*!< ITM TCR: TSPRESCALE Mask */ #define ITM_TCR_STALLENA_Pos 5U /*!< ITM TCR: STALLENA Position */ #define ITM_TCR_STALLENA_Msk (1UL << ITM_TCR_STALLENA_Pos) /*!< ITM TCR: STALLENA Mask */ #define ITM_TCR_SWOENA_Pos 4U /*!< ITM TCR: SWOENA Position */ #define ITM_TCR_SWOENA_Msk (1UL << ITM_TCR_SWOENA_Pos) /*!< ITM TCR: SWOENA Mask */ #define ITM_TCR_DWTENA_Pos 3U /*!< ITM TCR: DWTENA Position */ #define ITM_TCR_DWTENA_Msk (1UL << ITM_TCR_DWTENA_Pos) /*!< ITM TCR: DWTENA Mask */ #define ITM_TCR_SYNCENA_Pos 2U /*!< ITM TCR: SYNCENA Position */ #define ITM_TCR_SYNCENA_Msk (1UL << ITM_TCR_SYNCENA_Pos) /*!< ITM TCR: SYNCENA Mask */ #define ITM_TCR_TSENA_Pos 1U /*!< ITM TCR: TSENA Position */ #define ITM_TCR_TSENA_Msk (1UL << ITM_TCR_TSENA_Pos) /*!< ITM TCR: TSENA Mask */ #define ITM_TCR_ITMENA_Pos 0U /*!< ITM TCR: ITM Enable bit Position */ #define ITM_TCR_ITMENA_Msk (1UL /*<< ITM_TCR_ITMENA_Pos*/) /*!< ITM TCR: ITM Enable bit Mask */ /* ITM Lock Status Register Definitions */ #define ITM_LSR_ByteAcc_Pos 2U /*!< ITM LSR: ByteAcc Position */ #define ITM_LSR_ByteAcc_Msk (1UL << ITM_LSR_ByteAcc_Pos) /*!< ITM LSR: ByteAcc Mask */ #define ITM_LSR_Access_Pos 1U /*!< ITM LSR: Access Position */ #define ITM_LSR_Access_Msk (1UL << ITM_LSR_Access_Pos) /*!< ITM LSR: Access Mask */ #define ITM_LSR_Present_Pos 0U /*!< ITM LSR: Present Position */ #define ITM_LSR_Present_Msk (1UL /*<< ITM_LSR_Present_Pos*/) /*!< ITM LSR: Present Mask */ /*@}*/ /* end of group CMSIS_ITM */ /** \ingroup CMSIS_core_register \defgroup CMSIS_DWT Data Watchpoint and Trace (DWT) \brief Type definitions for the Data Watchpoint and Trace (DWT) @{ */ /** \brief Structure type to access the Data Watchpoint and Trace Register (DWT). */ typedef struct { __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) Control Register */ __IOM uint32_t CYCCNT; /*!< Offset: 0x004 (R/W) Cycle Count Register */ __IOM uint32_t CPICNT; /*!< Offset: 0x008 (R/W) CPI Count Register */ __IOM uint32_t EXCCNT; /*!< Offset: 0x00C (R/W) Exception Overhead Count Register */ __IOM uint32_t SLEEPCNT; /*!< Offset: 0x010 (R/W) Sleep Count Register */ __IOM uint32_t LSUCNT; /*!< Offset: 0x014 (R/W) LSU Count Register */ __IOM uint32_t FOLDCNT; /*!< Offset: 0x018 (R/W) Folded-instruction Count Register */ __IM uint32_t PCSR; /*!< Offset: 0x01C (R/ ) Program Counter Sample Register */ __IOM uint32_t COMP0; /*!< Offset: 0x020 (R/W) Comparator Register 0 */ uint32_t RESERVED1[1U]; __IOM uint32_t FUNCTION0; /*!< Offset: 0x028 (R/W) Function Register 0 */ uint32_t RESERVED2[1U]; __IOM uint32_t COMP1; /*!< Offset: 0x030 (R/W) Comparator Register 1 */ uint32_t RESERVED3[1U]; __IOM uint32_t FUNCTION1; /*!< Offset: 0x038 (R/W) Function Register 1 */ uint32_t RESERVED4[1U]; __IOM uint32_t COMP2; /*!< Offset: 0x040 (R/W) Comparator Register 2 */ uint32_t RESERVED5[1U]; __IOM uint32_t FUNCTION2; /*!< Offset: 0x048 (R/W) Function Register 2 */ uint32_t RESERVED6[1U]; __IOM uint32_t COMP3; /*!< Offset: 0x050 (R/W) Comparator Register 3 */ uint32_t RESERVED7[1U]; __IOM uint32_t FUNCTION3; /*!< Offset: 0x058 (R/W) Function Register 3 */ uint32_t RESERVED8[1U]; __IOM uint32_t COMP4; /*!< Offset: 0x060 (R/W) Comparator Register 4 */ uint32_t RESERVED9[1U]; __IOM uint32_t FUNCTION4; /*!< Offset: 0x068 (R/W) Function Register 4 */ uint32_t RESERVED10[1U]; __IOM uint32_t COMP5; /*!< Offset: 0x070 (R/W) Comparator Register 5 */ uint32_t RESERVED11[1U]; __IOM uint32_t FUNCTION5; /*!< Offset: 0x078 (R/W) Function Register 5 */ uint32_t RESERVED12[1U]; __IOM uint32_t COMP6; /*!< Offset: 0x080 (R/W) Comparator Register 6 */ uint32_t RESERVED13[1U]; __IOM uint32_t FUNCTION6; /*!< Offset: 0x088 (R/W) Function Register 6 */ uint32_t RESERVED14[1U]; __IOM uint32_t COMP7; /*!< Offset: 0x090 (R/W) Comparator Register 7 */ uint32_t RESERVED15[1U]; __IOM uint32_t FUNCTION7; /*!< Offset: 0x098 (R/W) Function Register 7 */ uint32_t RESERVED16[1U]; __IOM uint32_t COMP8; /*!< Offset: 0x0A0 (R/W) Comparator Register 8 */ uint32_t RESERVED17[1U]; __IOM uint32_t FUNCTION8; /*!< Offset: 0x0A8 (R/W) Function Register 8 */ uint32_t RESERVED18[1U]; __IOM uint32_t COMP9; /*!< Offset: 0x0B0 (R/W) Comparator Register 9 */ uint32_t RESERVED19[1U]; __IOM uint32_t FUNCTION9; /*!< Offset: 0x0B8 (R/W) Function Register 9 */ uint32_t RESERVED20[1U]; __IOM uint32_t COMP10; /*!< Offset: 0x0C0 (R/W) Comparator Register 10 */ uint32_t RESERVED21[1U]; __IOM uint32_t FUNCTION10; /*!< Offset: 0x0C8 (R/W) Function Register 10 */ uint32_t RESERVED22[1U]; __IOM uint32_t COMP11; /*!< Offset: 0x0D0 (R/W) Comparator Register 11 */ uint32_t RESERVED23[1U]; __IOM uint32_t FUNCTION11; /*!< Offset: 0x0D8 (R/W) Function Register 11 */ uint32_t RESERVED24[1U]; __IOM uint32_t COMP12; /*!< Offset: 0x0E0 (R/W) Comparator Register 12 */ uint32_t RESERVED25[1U]; __IOM uint32_t FUNCTION12; /*!< Offset: 0x0E8 (R/W) Function Register 12 */ uint32_t RESERVED26[1U]; __IOM uint32_t COMP13; /*!< Offset: 0x0F0 (R/W) Comparator Register 13 */ uint32_t RESERVED27[1U]; __IOM uint32_t FUNCTION13; /*!< Offset: 0x0F8 (R/W) Function Register 13 */ uint32_t RESERVED28[1U]; __IOM uint32_t COMP14; /*!< Offset: 0x100 (R/W) Comparator Register 14 */ uint32_t RESERVED29[1U]; __IOM uint32_t FUNCTION14; /*!< Offset: 0x108 (R/W) Function Register 14 */ uint32_t RESERVED30[1U]; __IOM uint32_t COMP15; /*!< Offset: 0x110 (R/W) Comparator Register 15 */ uint32_t RESERVED31[1U]; __IOM uint32_t FUNCTION15; /*!< Offset: 0x118 (R/W) Function Register 15 */ uint32_t RESERVED32[934U]; __IM uint32_t LSR; /*!< Offset: 0xFB4 (R ) Lock Status Register */ uint32_t RESERVED33[1U]; __IM uint32_t DEVARCH; /*!< Offset: 0xFBC (R/ ) Device Architecture Register */ } DWT_Type; /* DWT Control Register Definitions */ #define DWT_CTRL_NUMCOMP_Pos 28U /*!< DWT CTRL: NUMCOMP Position */ #define DWT_CTRL_NUMCOMP_Msk (0xFUL << DWT_CTRL_NUMCOMP_Pos) /*!< DWT CTRL: NUMCOMP Mask */ #define DWT_CTRL_NOTRCPKT_Pos 27U /*!< DWT CTRL: NOTRCPKT Position */ #define DWT_CTRL_NOTRCPKT_Msk (0x1UL << DWT_CTRL_NOTRCPKT_Pos) /*!< DWT CTRL: NOTRCPKT Mask */ #define DWT_CTRL_NOEXTTRIG_Pos 26U /*!< DWT CTRL: NOEXTTRIG Position */ #define DWT_CTRL_NOEXTTRIG_Msk (0x1UL << DWT_CTRL_NOEXTTRIG_Pos) /*!< DWT CTRL: NOEXTTRIG Mask */ #define DWT_CTRL_NOCYCCNT_Pos 25U /*!< DWT CTRL: NOCYCCNT Position */ #define DWT_CTRL_NOCYCCNT_Msk (0x1UL << DWT_CTRL_NOCYCCNT_Pos) /*!< DWT CTRL: NOCYCCNT Mask */ #define DWT_CTRL_NOPRFCNT_Pos 24U /*!< DWT CTRL: NOPRFCNT Position */ #define DWT_CTRL_NOPRFCNT_Msk (0x1UL << DWT_CTRL_NOPRFCNT_Pos) /*!< DWT CTRL: NOPRFCNT Mask */ #define DWT_CTRL_CYCDISS_Pos 23U /*!< DWT CTRL: CYCDISS Position */ #define DWT_CTRL_CYCDISS_Msk (0x1UL << DWT_CTRL_CYCDISS_Pos) /*!< DWT CTRL: CYCDISS Mask */ #define DWT_CTRL_CYCEVTENA_Pos 22U /*!< DWT CTRL: CYCEVTENA Position */ #define DWT_CTRL_CYCEVTENA_Msk (0x1UL << DWT_CTRL_CYCEVTENA_Pos) /*!< DWT CTRL: CYCEVTENA Mask */ #define DWT_CTRL_FOLDEVTENA_Pos 21U /*!< DWT CTRL: FOLDEVTENA Position */ #define DWT_CTRL_FOLDEVTENA_Msk (0x1UL << DWT_CTRL_FOLDEVTENA_Pos) /*!< DWT CTRL: FOLDEVTENA Mask */ #define DWT_CTRL_LSUEVTENA_Pos 20U /*!< DWT CTRL: LSUEVTENA Position */ #define DWT_CTRL_LSUEVTENA_Msk (0x1UL << DWT_CTRL_LSUEVTENA_Pos) /*!< DWT CTRL: LSUEVTENA Mask */ #define DWT_CTRL_SLEEPEVTENA_Pos 19U /*!< DWT CTRL: SLEEPEVTENA Position */ #define DWT_CTRL_SLEEPEVTENA_Msk (0x1UL << DWT_CTRL_SLEEPEVTENA_Pos) /*!< DWT CTRL: SLEEPEVTENA Mask */ #define DWT_CTRL_EXCEVTENA_Pos 18U /*!< DWT CTRL: EXCEVTENA Position */ #define DWT_CTRL_EXCEVTENA_Msk (0x1UL << DWT_CTRL_EXCEVTENA_Pos) /*!< DWT CTRL: EXCEVTENA Mask */ #define DWT_CTRL_CPIEVTENA_Pos 17U /*!< DWT CTRL: CPIEVTENA Position */ #define DWT_CTRL_CPIEVTENA_Msk (0x1UL << DWT_CTRL_CPIEVTENA_Pos) /*!< DWT CTRL: CPIEVTENA Mask */ #define DWT_CTRL_EXCTRCENA_Pos 16U /*!< DWT CTRL: EXCTRCENA Position */ #define DWT_CTRL_EXCTRCENA_Msk (0x1UL << DWT_CTRL_EXCTRCENA_Pos) /*!< DWT CTRL: EXCTRCENA Mask */ #define DWT_CTRL_PCSAMPLENA_Pos 12U /*!< DWT CTRL: PCSAMPLENA Position */ #define DWT_CTRL_PCSAMPLENA_Msk (0x1UL << DWT_CTRL_PCSAMPLENA_Pos) /*!< DWT CTRL: PCSAMPLENA Mask */ #define DWT_CTRL_SYNCTAP_Pos 10U /*!< DWT CTRL: SYNCTAP Position */ #define DWT_CTRL_SYNCTAP_Msk (0x3UL << DWT_CTRL_SYNCTAP_Pos) /*!< DWT CTRL: SYNCTAP Mask */ #define DWT_CTRL_CYCTAP_Pos 9U /*!< DWT CTRL: CYCTAP Position */ #define DWT_CTRL_CYCTAP_Msk (0x1UL << DWT_CTRL_CYCTAP_Pos) /*!< DWT CTRL: CYCTAP Mask */ #define DWT_CTRL_POSTINIT_Pos 5U /*!< DWT CTRL: POSTINIT Position */ #define DWT_CTRL_POSTINIT_Msk (0xFUL << DWT_CTRL_POSTINIT_Pos) /*!< DWT CTRL: POSTINIT Mask */ #define DWT_CTRL_POSTPRESET_Pos 1U /*!< DWT CTRL: POSTPRESET Position */ #define DWT_CTRL_POSTPRESET_Msk (0xFUL << DWT_CTRL_POSTPRESET_Pos) /*!< DWT CTRL: POSTPRESET Mask */ #define DWT_CTRL_CYCCNTENA_Pos 0U /*!< DWT CTRL: CYCCNTENA Position */ #define DWT_CTRL_CYCCNTENA_Msk (0x1UL /*<< DWT_CTRL_CYCCNTENA_Pos*/) /*!< DWT CTRL: CYCCNTENA Mask */ /* DWT CPI Count Register Definitions */ #define DWT_CPICNT_CPICNT_Pos 0U /*!< DWT CPICNT: CPICNT Position */ #define DWT_CPICNT_CPICNT_Msk (0xFFUL /*<< DWT_CPICNT_CPICNT_Pos*/) /*!< DWT CPICNT: CPICNT Mask */ /* DWT Exception Overhead Count Register Definitions */ #define DWT_EXCCNT_EXCCNT_Pos 0U /*!< DWT EXCCNT: EXCCNT Position */ #define DWT_EXCCNT_EXCCNT_Msk (0xFFUL /*<< DWT_EXCCNT_EXCCNT_Pos*/) /*!< DWT EXCCNT: EXCCNT Mask */ /* DWT Sleep Count Register Definitions */ #define DWT_SLEEPCNT_SLEEPCNT_Pos 0U /*!< DWT SLEEPCNT: SLEEPCNT Position */ #define DWT_SLEEPCNT_SLEEPCNT_Msk (0xFFUL /*<< DWT_SLEEPCNT_SLEEPCNT_Pos*/) /*!< DWT SLEEPCNT: SLEEPCNT Mask */ /* DWT LSU Count Register Definitions */ #define DWT_LSUCNT_LSUCNT_Pos 0U /*!< DWT LSUCNT: LSUCNT Position */ #define DWT_LSUCNT_LSUCNT_Msk (0xFFUL /*<< DWT_LSUCNT_LSUCNT_Pos*/) /*!< DWT LSUCNT: LSUCNT Mask */ /* DWT Folded-instruction Count Register Definitions */ #define DWT_FOLDCNT_FOLDCNT_Pos 0U /*!< DWT FOLDCNT: FOLDCNT Position */ #define DWT_FOLDCNT_FOLDCNT_Msk (0xFFUL /*<< DWT_FOLDCNT_FOLDCNT_Pos*/) /*!< DWT FOLDCNT: FOLDCNT Mask */ /* DWT Comparator Function Register Definitions */ #define DWT_FUNCTION_ID_Pos 27U /*!< DWT FUNCTION: ID Position */ #define DWT_FUNCTION_ID_Msk (0x1FUL << DWT_FUNCTION_ID_Pos) /*!< DWT FUNCTION: ID Mask */ #define DWT_FUNCTION_MATCHED_Pos 24U /*!< DWT FUNCTION: MATCHED Position */ #define DWT_FUNCTION_MATCHED_Msk (0x1UL << DWT_FUNCTION_MATCHED_Pos) /*!< DWT FUNCTION: MATCHED Mask */ #define DWT_FUNCTION_DATAVSIZE_Pos 10U /*!< DWT FUNCTION: DATAVSIZE Position */ #define DWT_FUNCTION_DATAVSIZE_Msk (0x3UL << DWT_FUNCTION_DATAVSIZE_Pos) /*!< DWT FUNCTION: DATAVSIZE Mask */ #define DWT_FUNCTION_ACTION_Pos 4U /*!< DWT FUNCTION: ACTION Position */ #define DWT_FUNCTION_ACTION_Msk (0x1UL << DWT_FUNCTION_ACTION_Pos) /*!< DWT FUNCTION: ACTION Mask */ #define DWT_FUNCTION_MATCH_Pos 0U /*!< DWT FUNCTION: MATCH Position */ #define DWT_FUNCTION_MATCH_Msk (0xFUL /*<< DWT_FUNCTION_MATCH_Pos*/) /*!< DWT FUNCTION: MATCH Mask */ /*@}*/ /* end of group CMSIS_DWT */ /** \ingroup CMSIS_core_register \defgroup CMSIS_TPI Trace Port Interface (TPI) \brief Type definitions for the Trace Port Interface (TPI) @{ */ /** \brief Structure type to access the Trace Port Interface Register (TPI). */ typedef struct { __IM uint32_t SSPSR; /*!< Offset: 0x000 (R/ ) Supported Parallel Port Sizes Register */ __IOM uint32_t CSPSR; /*!< Offset: 0x004 (R/W) Current Parallel Port Sizes Register */ uint32_t RESERVED0[2U]; __IOM uint32_t ACPR; /*!< Offset: 0x010 (R/W) Asynchronous Clock Prescaler Register */ uint32_t RESERVED1[55U]; __IOM uint32_t SPPR; /*!< Offset: 0x0F0 (R/W) Selected Pin Protocol Register */ uint32_t RESERVED2[131U]; __IM uint32_t FFSR; /*!< Offset: 0x300 (R/ ) Formatter and Flush Status Register */ __IOM uint32_t FFCR; /*!< Offset: 0x304 (R/W) Formatter and Flush Control Register */ __IOM uint32_t PSCR; /*!< Offset: 0x308 (R/W) Periodic Synchronization Control Register */ uint32_t RESERVED3[809U]; __OM uint32_t LAR; /*!< Offset: 0xFB0 ( /W) Software Lock Access Register */ __IM uint32_t LSR; /*!< Offset: 0xFB4 (R/ ) Software Lock Status Register */ uint32_t RESERVED4[4U]; __IM uint32_t TYPE; /*!< Offset: 0xFC8 (R/ ) Device Identifier Register */ __IM uint32_t DEVTYPE; /*!< Offset: 0xFCC (R/ ) Device Type Register */ } TPI_Type; /* TPI Asynchronous Clock Prescaler Register Definitions */ #define TPI_ACPR_SWOSCALER_Pos 0U /*!< TPI ACPR: SWOSCALER Position */ #define TPI_ACPR_SWOSCALER_Msk (0xFFFFUL /*<< TPI_ACPR_SWOSCALER_Pos*/) /*!< TPI ACPR: SWOSCALER Mask */ /* TPI Selected Pin Protocol Register Definitions */ #define TPI_SPPR_TXMODE_Pos 0U /*!< TPI SPPR: TXMODE Position */ #define TPI_SPPR_TXMODE_Msk (0x3UL /*<< TPI_SPPR_TXMODE_Pos*/) /*!< TPI SPPR: TXMODE Mask */ /* TPI Formatter and Flush Status Register Definitions */ #define TPI_FFSR_FtNonStop_Pos 3U /*!< TPI FFSR: FtNonStop Position */ #define TPI_FFSR_FtNonStop_Msk (0x1UL << TPI_FFSR_FtNonStop_Pos) /*!< TPI FFSR: FtNonStop Mask */ #define TPI_FFSR_TCPresent_Pos 2U /*!< TPI FFSR: TCPresent Position */ #define TPI_FFSR_TCPresent_Msk (0x1UL << TPI_FFSR_TCPresent_Pos) /*!< TPI FFSR: TCPresent Mask */ #define TPI_FFSR_FtStopped_Pos 1U /*!< TPI FFSR: FtStopped Position */ #define TPI_FFSR_FtStopped_Msk (0x1UL << TPI_FFSR_FtStopped_Pos) /*!< TPI FFSR: FtStopped Mask */ #define TPI_FFSR_FlInProg_Pos 0U /*!< TPI FFSR: FlInProg Position */ #define TPI_FFSR_FlInProg_Msk (0x1UL /*<< TPI_FFSR_FlInProg_Pos*/) /*!< TPI FFSR: FlInProg Mask */ /* TPI Formatter and Flush Control Register Definitions */ #define TPI_FFCR_TrigIn_Pos 8U /*!< TPI FFCR: TrigIn Position */ #define TPI_FFCR_TrigIn_Msk (0x1UL << TPI_FFCR_TrigIn_Pos) /*!< TPI FFCR: TrigIn Mask */ #define TPI_FFCR_FOnMan_Pos 6U /*!< TPI FFCR: FOnMan Position */ #define TPI_FFCR_FOnMan_Msk (0x1UL << TPI_FFCR_FOnMan_Pos) /*!< TPI FFCR: FOnMan Mask */ #define TPI_FFCR_EnFCont_Pos 1U /*!< TPI FFCR: EnFCont Position */ #define TPI_FFCR_EnFCont_Msk (0x1UL << TPI_FFCR_EnFCont_Pos) /*!< TPI FFCR: EnFCont Mask */ /* TPI Periodic Synchronization Control Register Definitions */ #define TPI_PSCR_PSCount_Pos 0U /*!< TPI PSCR: PSCount Position */ #define TPI_PSCR_PSCount_Msk (0x1FUL /*<< TPI_PSCR_PSCount_Pos*/) /*!< TPI PSCR: TPSCount Mask */ /* TPI Software Lock Status Register Definitions */ #define TPI_LSR_nTT_Pos 1U /*!< TPI LSR: Not thirty-two bit. Position */ #define TPI_LSR_nTT_Msk (0x1UL << TPI_LSR_nTT_Pos) /*!< TPI LSR: Not thirty-two bit. Mask */ #define TPI_LSR_SLK_Pos 1U /*!< TPI LSR: Software Lock status Position */ #define TPI_LSR_SLK_Msk (0x1UL << TPI_LSR_SLK_Pos) /*!< TPI LSR: Software Lock status Mask */ #define TPI_LSR_SLI_Pos 0U /*!< TPI LSR: Software Lock implemented Position */ #define TPI_LSR_SLI_Msk (0x1UL /*<< TPI_LSR_SLI_Pos*/) /*!< TPI LSR: Software Lock implemented Mask */ /* TPI DEVID Register Definitions */ #define TPI_DEVID_NRZVALID_Pos 11U /*!< TPI DEVID: NRZVALID Position */ #define TPI_DEVID_NRZVALID_Msk (0x1UL << TPI_DEVID_NRZVALID_Pos) /*!< TPI DEVID: NRZVALID Mask */ #define TPI_DEVID_MANCVALID_Pos 10U /*!< TPI DEVID: MANCVALID Position */ #define TPI_DEVID_MANCVALID_Msk (0x1UL << TPI_DEVID_MANCVALID_Pos) /*!< TPI DEVID: MANCVALID Mask */ #define TPI_DEVID_PTINVALID_Pos 9U /*!< TPI DEVID: PTINVALID Position */ #define TPI_DEVID_PTINVALID_Msk (0x1UL << TPI_DEVID_PTINVALID_Pos) /*!< TPI DEVID: PTINVALID Mask */ #define TPI_DEVID_FIFOSZ_Pos 6U /*!< TPI DEVID: FIFO depth Position */ #define TPI_DEVID_FIFOSZ_Msk (0x7UL << TPI_DEVID_FIFOSZ_Pos) /*!< TPI DEVID: FIFO depth Mask */ /* TPI DEVTYPE Register Definitions */ #define TPI_DEVTYPE_SubType_Pos 4U /*!< TPI DEVTYPE: SubType Position */ #define TPI_DEVTYPE_SubType_Msk (0xFUL /*<< TPI_DEVTYPE_SubType_Pos*/) /*!< TPI DEVTYPE: SubType Mask */ #define TPI_DEVTYPE_MajorType_Pos 0U /*!< TPI DEVTYPE: MajorType Position */ #define TPI_DEVTYPE_MajorType_Msk (0xFUL << TPI_DEVTYPE_MajorType_Pos) /*!< TPI DEVTYPE: MajorType Mask */ /*@}*/ /* end of group CMSIS_TPI */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) /** \ingroup CMSIS_core_register \defgroup CMSIS_MPU Memory Protection Unit (MPU) \brief Type definitions for the Memory Protection Unit (MPU) @{ */ /** \brief Structure type to access the Memory Protection Unit (MPU). */ typedef struct { __IM uint32_t TYPE; /*!< Offset: 0x000 (R/ ) MPU Type Register */ __IOM uint32_t CTRL; /*!< Offset: 0x004 (R/W) MPU Control Register */ __IOM uint32_t RNR; /*!< Offset: 0x008 (R/W) MPU Region Number Register */ __IOM uint32_t RBAR; /*!< Offset: 0x00C (R/W) MPU Region Base Address Register */ __IOM uint32_t RLAR; /*!< Offset: 0x010 (R/W) MPU Region Limit Address Register */ __IOM uint32_t RBAR_A1; /*!< Offset: 0x014 (R/W) MPU Region Base Address Register Alias 1 */ __IOM uint32_t RLAR_A1; /*!< Offset: 0x018 (R/W) MPU Region Limit Address Register Alias 1 */ __IOM uint32_t RBAR_A2; /*!< Offset: 0x01C (R/W) MPU Region Base Address Register Alias 2 */ __IOM uint32_t RLAR_A2; /*!< Offset: 0x020 (R/W) MPU Region Limit Address Register Alias 2 */ __IOM uint32_t RBAR_A3; /*!< Offset: 0x024 (R/W) MPU Region Base Address Register Alias 3 */ __IOM uint32_t RLAR_A3; /*!< Offset: 0x028 (R/W) MPU Region Limit Address Register Alias 3 */ uint32_t RESERVED0[1]; union { __IOM uint32_t MAIR[2]; struct { __IOM uint32_t MAIR0; /*!< Offset: 0x030 (R/W) MPU Memory Attribute Indirection Register 0 */ __IOM uint32_t MAIR1; /*!< Offset: 0x034 (R/W) MPU Memory Attribute Indirection Register 1 */ }; }; } MPU_Type; #define MPU_TYPE_RALIASES 4U /* MPU Type Register Definitions */ #define MPU_TYPE_IREGION_Pos 16U /*!< MPU TYPE: IREGION Position */ #define MPU_TYPE_IREGION_Msk (0xFFUL << MPU_TYPE_IREGION_Pos) /*!< MPU TYPE: IREGION Mask */ #define MPU_TYPE_DREGION_Pos 8U /*!< MPU TYPE: DREGION Position */ #define MPU_TYPE_DREGION_Msk (0xFFUL << MPU_TYPE_DREGION_Pos) /*!< MPU TYPE: DREGION Mask */ #define MPU_TYPE_SEPARATE_Pos 0U /*!< MPU TYPE: SEPARATE Position */ #define MPU_TYPE_SEPARATE_Msk (1UL /*<< MPU_TYPE_SEPARATE_Pos*/) /*!< MPU TYPE: SEPARATE Mask */ /* MPU Control Register Definitions */ #define MPU_CTRL_PRIVDEFENA_Pos 2U /*!< MPU CTRL: PRIVDEFENA Position */ #define MPU_CTRL_PRIVDEFENA_Msk (1UL << MPU_CTRL_PRIVDEFENA_Pos) /*!< MPU CTRL: PRIVDEFENA Mask */ #define MPU_CTRL_HFNMIENA_Pos 1U /*!< MPU CTRL: HFNMIENA Position */ #define MPU_CTRL_HFNMIENA_Msk (1UL << MPU_CTRL_HFNMIENA_Pos) /*!< MPU CTRL: HFNMIENA Mask */ #define MPU_CTRL_ENABLE_Pos 0U /*!< MPU CTRL: ENABLE Position */ #define MPU_CTRL_ENABLE_Msk (1UL /*<< MPU_CTRL_ENABLE_Pos*/) /*!< MPU CTRL: ENABLE Mask */ /* MPU Region Number Register Definitions */ #define MPU_RNR_REGION_Pos 0U /*!< MPU RNR: REGION Position */ #define MPU_RNR_REGION_Msk (0xFFUL /*<< MPU_RNR_REGION_Pos*/) /*!< MPU RNR: REGION Mask */ /* MPU Region Base Address Register Definitions */ #define MPU_RBAR_BASE_Pos 5U /*!< MPU RBAR: BASE Position */ #define MPU_RBAR_BASE_Msk (0x7FFFFFFUL << MPU_RBAR_BASE_Pos) /*!< MPU RBAR: BASE Mask */ #define MPU_RBAR_SH_Pos 3U /*!< MPU RBAR: SH Position */ #define MPU_RBAR_SH_Msk (0x3UL << MPU_RBAR_SH_Pos) /*!< MPU RBAR: SH Mask */ #define MPU_RBAR_AP_Pos 1U /*!< MPU RBAR: AP Position */ #define MPU_RBAR_AP_Msk (0x3UL << MPU_RBAR_AP_Pos) /*!< MPU RBAR: AP Mask */ #define MPU_RBAR_XN_Pos 0U /*!< MPU RBAR: XN Position */ #define MPU_RBAR_XN_Msk (01UL /*<< MPU_RBAR_XN_Pos*/) /*!< MPU RBAR: XN Mask */ /* MPU Region Limit Address Register Definitions */ #define MPU_RLAR_LIMIT_Pos 5U /*!< MPU RLAR: LIMIT Position */ #define MPU_RLAR_LIMIT_Msk (0x7FFFFFFUL << MPU_RLAR_LIMIT_Pos) /*!< MPU RLAR: LIMIT Mask */ #define MPU_RLAR_AttrIndx_Pos 1U /*!< MPU RLAR: AttrIndx Position */ #define MPU_RLAR_AttrIndx_Msk (0x7UL << MPU_RLAR_AttrIndx_Pos) /*!< MPU RLAR: AttrIndx Mask */ #define MPU_RLAR_EN_Pos 0U /*!< MPU RLAR: Region enable bit Position */ #define MPU_RLAR_EN_Msk (1UL /*<< MPU_RLAR_EN_Pos*/) /*!< MPU RLAR: Region enable bit Disable Mask */ /* MPU Memory Attribute Indirection Register 0 Definitions */ #define MPU_MAIR0_Attr3_Pos 24U /*!< MPU MAIR0: Attr3 Position */ #define MPU_MAIR0_Attr3_Msk (0xFFUL << MPU_MAIR0_Attr3_Pos) /*!< MPU MAIR0: Attr3 Mask */ #define MPU_MAIR0_Attr2_Pos 16U /*!< MPU MAIR0: Attr2 Position */ #define MPU_MAIR0_Attr2_Msk (0xFFUL << MPU_MAIR0_Attr2_Pos) /*!< MPU MAIR0: Attr2 Mask */ #define MPU_MAIR0_Attr1_Pos 8U /*!< MPU MAIR0: Attr1 Position */ #define MPU_MAIR0_Attr1_Msk (0xFFUL << MPU_MAIR0_Attr1_Pos) /*!< MPU MAIR0: Attr1 Mask */ #define MPU_MAIR0_Attr0_Pos 0U /*!< MPU MAIR0: Attr0 Position */ #define MPU_MAIR0_Attr0_Msk (0xFFUL /*<< MPU_MAIR0_Attr0_Pos*/) /*!< MPU MAIR0: Attr0 Mask */ /* MPU Memory Attribute Indirection Register 1 Definitions */ #define MPU_MAIR1_Attr7_Pos 24U /*!< MPU MAIR1: Attr7 Position */ #define MPU_MAIR1_Attr7_Msk (0xFFUL << MPU_MAIR1_Attr7_Pos) /*!< MPU MAIR1: Attr7 Mask */ #define MPU_MAIR1_Attr6_Pos 16U /*!< MPU MAIR1: Attr6 Position */ #define MPU_MAIR1_Attr6_Msk (0xFFUL << MPU_MAIR1_Attr6_Pos) /*!< MPU MAIR1: Attr6 Mask */ #define MPU_MAIR1_Attr5_Pos 8U /*!< MPU MAIR1: Attr5 Position */ #define MPU_MAIR1_Attr5_Msk (0xFFUL << MPU_MAIR1_Attr5_Pos) /*!< MPU MAIR1: Attr5 Mask */ #define MPU_MAIR1_Attr4_Pos 0U /*!< MPU MAIR1: Attr4 Position */ #define MPU_MAIR1_Attr4_Msk (0xFFUL /*<< MPU_MAIR1_Attr4_Pos*/) /*!< MPU MAIR1: Attr4 Mask */ /*@} end of group CMSIS_MPU */ #endif #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \ingroup CMSIS_core_register \defgroup CMSIS_SAU Security Attribution Unit (SAU) \brief Type definitions for the Security Attribution Unit (SAU) @{ */ /** \brief Structure type to access the Security Attribution Unit (SAU). */ typedef struct { __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SAU Control Register */ __IM uint32_t TYPE; /*!< Offset: 0x004 (R/ ) SAU Type Register */ #if defined (__SAUREGION_PRESENT) && (__SAUREGION_PRESENT == 1U) __IOM uint32_t RNR; /*!< Offset: 0x008 (R/W) SAU Region Number Register */ __IOM uint32_t RBAR; /*!< Offset: 0x00C (R/W) SAU Region Base Address Register */ __IOM uint32_t RLAR; /*!< Offset: 0x010 (R/W) SAU Region Limit Address Register */ #else uint32_t RESERVED0[3]; #endif __IOM uint32_t SFSR; /*!< Offset: 0x014 (R/W) Secure Fault Status Register */ __IOM uint32_t SFAR; /*!< Offset: 0x018 (R/W) Secure Fault Address Register */ } SAU_Type; /* SAU Control Register Definitions */ #define SAU_CTRL_ALLNS_Pos 1U /*!< SAU CTRL: ALLNS Position */ #define SAU_CTRL_ALLNS_Msk (1UL << SAU_CTRL_ALLNS_Pos) /*!< SAU CTRL: ALLNS Mask */ #define SAU_CTRL_ENABLE_Pos 0U /*!< SAU CTRL: ENABLE Position */ #define SAU_CTRL_ENABLE_Msk (1UL /*<< SAU_CTRL_ENABLE_Pos*/) /*!< SAU CTRL: ENABLE Mask */ /* SAU Type Register Definitions */ #define SAU_TYPE_SREGION_Pos 0U /*!< SAU TYPE: SREGION Position */ #define SAU_TYPE_SREGION_Msk (0xFFUL /*<< SAU_TYPE_SREGION_Pos*/) /*!< SAU TYPE: SREGION Mask */ #if defined (__SAUREGION_PRESENT) && (__SAUREGION_PRESENT == 1U) /* SAU Region Number Register Definitions */ #define SAU_RNR_REGION_Pos 0U /*!< SAU RNR: REGION Position */ #define SAU_RNR_REGION_Msk (0xFFUL /*<< SAU_RNR_REGION_Pos*/) /*!< SAU RNR: REGION Mask */ /* SAU Region Base Address Register Definitions */ #define SAU_RBAR_BADDR_Pos 5U /*!< SAU RBAR: BADDR Position */ #define SAU_RBAR_BADDR_Msk (0x7FFFFFFUL << SAU_RBAR_BADDR_Pos) /*!< SAU RBAR: BADDR Mask */ /* SAU Region Limit Address Register Definitions */ #define SAU_RLAR_LADDR_Pos 5U /*!< SAU RLAR: LADDR Position */ #define SAU_RLAR_LADDR_Msk (0x7FFFFFFUL << SAU_RLAR_LADDR_Pos) /*!< SAU RLAR: LADDR Mask */ #define SAU_RLAR_NSC_Pos 1U /*!< SAU RLAR: NSC Position */ #define SAU_RLAR_NSC_Msk (1UL << SAU_RLAR_NSC_Pos) /*!< SAU RLAR: NSC Mask */ #define SAU_RLAR_ENABLE_Pos 0U /*!< SAU RLAR: ENABLE Position */ #define SAU_RLAR_ENABLE_Msk (1UL /*<< SAU_RLAR_ENABLE_Pos*/) /*!< SAU RLAR: ENABLE Mask */ #endif /* defined (__SAUREGION_PRESENT) && (__SAUREGION_PRESENT == 1U) */ /* Secure Fault Status Register Definitions */ #define SAU_SFSR_LSERR_Pos 7U /*!< SAU SFSR: LSERR Position */ #define SAU_SFSR_LSERR_Msk (1UL << SAU_SFSR_LSERR_Pos) /*!< SAU SFSR: LSERR Mask */ #define SAU_SFSR_SFARVALID_Pos 6U /*!< SAU SFSR: SFARVALID Position */ #define SAU_SFSR_SFARVALID_Msk (1UL << SAU_SFSR_SFARVALID_Pos) /*!< SAU SFSR: SFARVALID Mask */ #define SAU_SFSR_LSPERR_Pos 5U /*!< SAU SFSR: LSPERR Position */ #define SAU_SFSR_LSPERR_Msk (1UL << SAU_SFSR_LSPERR_Pos) /*!< SAU SFSR: LSPERR Mask */ #define SAU_SFSR_INVTRAN_Pos 4U /*!< SAU SFSR: INVTRAN Position */ #define SAU_SFSR_INVTRAN_Msk (1UL << SAU_SFSR_INVTRAN_Pos) /*!< SAU SFSR: INVTRAN Mask */ #define SAU_SFSR_AUVIOL_Pos 3U /*!< SAU SFSR: AUVIOL Position */ #define SAU_SFSR_AUVIOL_Msk (1UL << SAU_SFSR_AUVIOL_Pos) /*!< SAU SFSR: AUVIOL Mask */ #define SAU_SFSR_INVER_Pos 2U /*!< SAU SFSR: INVER Position */ #define SAU_SFSR_INVER_Msk (1UL << SAU_SFSR_INVER_Pos) /*!< SAU SFSR: INVER Mask */ #define SAU_SFSR_INVIS_Pos 1U /*!< SAU SFSR: INVIS Position */ #define SAU_SFSR_INVIS_Msk (1UL << SAU_SFSR_INVIS_Pos) /*!< SAU SFSR: INVIS Mask */ #define SAU_SFSR_INVEP_Pos 0U /*!< SAU SFSR: INVEP Position */ #define SAU_SFSR_INVEP_Msk (1UL /*<< SAU_SFSR_INVEP_Pos*/) /*!< SAU SFSR: INVEP Mask */ /*@} end of group CMSIS_SAU */ #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /** \ingroup CMSIS_core_register \defgroup CMSIS_FPU Floating Point Unit (FPU) \brief Type definitions for the Floating Point Unit (FPU) @{ */ /** \brief Structure type to access the Floating Point Unit (FPU). */ typedef struct { uint32_t RESERVED0[1U]; __IOM uint32_t FPCCR; /*!< Offset: 0x004 (R/W) Floating-Point Context Control Register */ __IOM uint32_t FPCAR; /*!< Offset: 0x008 (R/W) Floating-Point Context Address Register */ __IOM uint32_t FPDSCR; /*!< Offset: 0x00C (R/W) Floating-Point Default Status Control Register */ __IM uint32_t MVFR0; /*!< Offset: 0x010 (R/ ) Media and FP Feature Register 0 */ __IM uint32_t MVFR1; /*!< Offset: 0x014 (R/ ) Media and FP Feature Register 1 */ } FPU_Type; /* Floating-Point Context Control Register Definitions */ #define FPU_FPCCR_ASPEN_Pos 31U /*!< FPCCR: ASPEN bit Position */ #define FPU_FPCCR_ASPEN_Msk (1UL << FPU_FPCCR_ASPEN_Pos) /*!< FPCCR: ASPEN bit Mask */ #define FPU_FPCCR_LSPEN_Pos 30U /*!< FPCCR: LSPEN Position */ #define FPU_FPCCR_LSPEN_Msk (1UL << FPU_FPCCR_LSPEN_Pos) /*!< FPCCR: LSPEN bit Mask */ #define FPU_FPCCR_LSPENS_Pos 29U /*!< FPCCR: LSPENS Position */ #define FPU_FPCCR_LSPENS_Msk (1UL << FPU_FPCCR_LSPENS_Pos) /*!< FPCCR: LSPENS bit Mask */ #define FPU_FPCCR_CLRONRET_Pos 28U /*!< FPCCR: CLRONRET Position */ #define FPU_FPCCR_CLRONRET_Msk (1UL << FPU_FPCCR_CLRONRET_Pos) /*!< FPCCR: CLRONRET bit Mask */ #define FPU_FPCCR_CLRONRETS_Pos 27U /*!< FPCCR: CLRONRETS Position */ #define FPU_FPCCR_CLRONRETS_Msk (1UL << FPU_FPCCR_CLRONRETS_Pos) /*!< FPCCR: CLRONRETS bit Mask */ #define FPU_FPCCR_TS_Pos 26U /*!< FPCCR: TS Position */ #define FPU_FPCCR_TS_Msk (1UL << FPU_FPCCR_TS_Pos) /*!< FPCCR: TS bit Mask */ #define FPU_FPCCR_UFRDY_Pos 10U /*!< FPCCR: UFRDY Position */ #define FPU_FPCCR_UFRDY_Msk (1UL << FPU_FPCCR_UFRDY_Pos) /*!< FPCCR: UFRDY bit Mask */ #define FPU_FPCCR_SPLIMVIOL_Pos 9U /*!< FPCCR: SPLIMVIOL Position */ #define FPU_FPCCR_SPLIMVIOL_Msk (1UL << FPU_FPCCR_SPLIMVIOL_Pos) /*!< FPCCR: SPLIMVIOL bit Mask */ #define FPU_FPCCR_MONRDY_Pos 8U /*!< FPCCR: MONRDY Position */ #define FPU_FPCCR_MONRDY_Msk (1UL << FPU_FPCCR_MONRDY_Pos) /*!< FPCCR: MONRDY bit Mask */ #define FPU_FPCCR_SFRDY_Pos 7U /*!< FPCCR: SFRDY Position */ #define FPU_FPCCR_SFRDY_Msk (1UL << FPU_FPCCR_SFRDY_Pos) /*!< FPCCR: SFRDY bit Mask */ #define FPU_FPCCR_BFRDY_Pos 6U /*!< FPCCR: BFRDY Position */ #define FPU_FPCCR_BFRDY_Msk (1UL << FPU_FPCCR_BFRDY_Pos) /*!< FPCCR: BFRDY bit Mask */ #define FPU_FPCCR_MMRDY_Pos 5U /*!< FPCCR: MMRDY Position */ #define FPU_FPCCR_MMRDY_Msk (1UL << FPU_FPCCR_MMRDY_Pos) /*!< FPCCR: MMRDY bit Mask */ #define FPU_FPCCR_HFRDY_Pos 4U /*!< FPCCR: HFRDY Position */ #define FPU_FPCCR_HFRDY_Msk (1UL << FPU_FPCCR_HFRDY_Pos) /*!< FPCCR: HFRDY bit Mask */ #define FPU_FPCCR_THREAD_Pos 3U /*!< FPCCR: processor mode bit Position */ #define FPU_FPCCR_THREAD_Msk (1UL << FPU_FPCCR_THREAD_Pos) /*!< FPCCR: processor mode active bit Mask */ #define FPU_FPCCR_S_Pos 2U /*!< FPCCR: Security status of the FP context bit Position */ #define FPU_FPCCR_S_Msk (1UL << FPU_FPCCR_S_Pos) /*!< FPCCR: Security status of the FP context bit Mask */ #define FPU_FPCCR_USER_Pos 1U /*!< FPCCR: privilege level bit Position */ #define FPU_FPCCR_USER_Msk (1UL << FPU_FPCCR_USER_Pos) /*!< FPCCR: privilege level bit Mask */ #define FPU_FPCCR_LSPACT_Pos 0U /*!< FPCCR: Lazy state preservation active bit Position */ #define FPU_FPCCR_LSPACT_Msk (1UL /*<< FPU_FPCCR_LSPACT_Pos*/) /*!< FPCCR: Lazy state preservation active bit Mask */ /* Floating-Point Context Address Register Definitions */ #define FPU_FPCAR_ADDRESS_Pos 3U /*!< FPCAR: ADDRESS bit Position */ #define FPU_FPCAR_ADDRESS_Msk (0x1FFFFFFFUL << FPU_FPCAR_ADDRESS_Pos) /*!< FPCAR: ADDRESS bit Mask */ /* Floating-Point Default Status Control Register Definitions */ #define FPU_FPDSCR_AHP_Pos 26U /*!< FPDSCR: AHP bit Position */ #define FPU_FPDSCR_AHP_Msk (1UL << FPU_FPDSCR_AHP_Pos) /*!< FPDSCR: AHP bit Mask */ #define FPU_FPDSCR_DN_Pos 25U /*!< FPDSCR: DN bit Position */ #define FPU_FPDSCR_DN_Msk (1UL << FPU_FPDSCR_DN_Pos) /*!< FPDSCR: DN bit Mask */ #define FPU_FPDSCR_FZ_Pos 24U /*!< FPDSCR: FZ bit Position */ #define FPU_FPDSCR_FZ_Msk (1UL << FPU_FPDSCR_FZ_Pos) /*!< FPDSCR: FZ bit Mask */ #define FPU_FPDSCR_RMode_Pos 22U /*!< FPDSCR: RMode bit Position */ #define FPU_FPDSCR_RMode_Msk (3UL << FPU_FPDSCR_RMode_Pos) /*!< FPDSCR: RMode bit Mask */ /* Media and FP Feature Register 0 Definitions */ #define FPU_MVFR0_FP_rounding_modes_Pos 28U /*!< MVFR0: FP rounding modes bits Position */ #define FPU_MVFR0_FP_rounding_modes_Msk (0xFUL << FPU_MVFR0_FP_rounding_modes_Pos) /*!< MVFR0: FP rounding modes bits Mask */ #define FPU_MVFR0_Short_vectors_Pos 24U /*!< MVFR0: Short vectors bits Position */ #define FPU_MVFR0_Short_vectors_Msk (0xFUL << FPU_MVFR0_Short_vectors_Pos) /*!< MVFR0: Short vectors bits Mask */ #define FPU_MVFR0_Square_root_Pos 20U /*!< MVFR0: Square root bits Position */ #define FPU_MVFR0_Square_root_Msk (0xFUL << FPU_MVFR0_Square_root_Pos) /*!< MVFR0: Square root bits Mask */ #define FPU_MVFR0_Divide_Pos 16U /*!< MVFR0: Divide bits Position */ #define FPU_MVFR0_Divide_Msk (0xFUL << FPU_MVFR0_Divide_Pos) /*!< MVFR0: Divide bits Mask */ #define FPU_MVFR0_FP_excep_trapping_Pos 12U /*!< MVFR0: FP exception trapping bits Position */ #define FPU_MVFR0_FP_excep_trapping_Msk (0xFUL << FPU_MVFR0_FP_excep_trapping_Pos) /*!< MVFR0: FP exception trapping bits Mask */ #define FPU_MVFR0_Double_precision_Pos 8U /*!< MVFR0: Double-precision bits Position */ #define FPU_MVFR0_Double_precision_Msk (0xFUL << FPU_MVFR0_Double_precision_Pos) /*!< MVFR0: Double-precision bits Mask */ #define FPU_MVFR0_Single_precision_Pos 4U /*!< MVFR0: Single-precision bits Position */ #define FPU_MVFR0_Single_precision_Msk (0xFUL << FPU_MVFR0_Single_precision_Pos) /*!< MVFR0: Single-precision bits Mask */ #define FPU_MVFR0_A_SIMD_registers_Pos 0U /*!< MVFR0: A_SIMD registers bits Position */ #define FPU_MVFR0_A_SIMD_registers_Msk (0xFUL /*<< FPU_MVFR0_A_SIMD_registers_Pos*/) /*!< MVFR0: A_SIMD registers bits Mask */ /* Media and FP Feature Register 1 Definitions */ #define FPU_MVFR1_FP_fused_MAC_Pos 28U /*!< MVFR1: FP fused MAC bits Position */ #define FPU_MVFR1_FP_fused_MAC_Msk (0xFUL << FPU_MVFR1_FP_fused_MAC_Pos) /*!< MVFR1: FP fused MAC bits Mask */ #define FPU_MVFR1_FP_HPFP_Pos 24U /*!< MVFR1: FP HPFP bits Position */ #define FPU_MVFR1_FP_HPFP_Msk (0xFUL << FPU_MVFR1_FP_HPFP_Pos) /*!< MVFR1: FP HPFP bits Mask */ #define FPU_MVFR1_D_NaN_mode_Pos 4U /*!< MVFR1: D_NaN mode bits Position */ #define FPU_MVFR1_D_NaN_mode_Msk (0xFUL << FPU_MVFR1_D_NaN_mode_Pos) /*!< MVFR1: D_NaN mode bits Mask */ #define FPU_MVFR1_FtZ_mode_Pos 0U /*!< MVFR1: FtZ mode bits Position */ #define FPU_MVFR1_FtZ_mode_Msk (0xFUL /*<< FPU_MVFR1_FtZ_mode_Pos*/) /*!< MVFR1: FtZ mode bits Mask */ /*@} end of group CMSIS_FPU */ /** \ingroup CMSIS_core_register \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug) \brief Type definitions for the Core Debug Registers @{ */ /** \brief Structure type to access the Core Debug Register (CoreDebug). */ typedef struct { __IOM uint32_t DHCSR; /*!< Offset: 0x000 (R/W) Debug Halting Control and Status Register */ __OM uint32_t DCRSR; /*!< Offset: 0x004 ( /W) Debug Core Register Selector Register */ __IOM uint32_t DCRDR; /*!< Offset: 0x008 (R/W) Debug Core Register Data Register */ __IOM uint32_t DEMCR; /*!< Offset: 0x00C (R/W) Debug Exception and Monitor Control Register */ uint32_t RESERVED4[1U]; __IOM uint32_t DAUTHCTRL; /*!< Offset: 0x014 (R/W) Debug Authentication Control Register */ __IOM uint32_t DSCSR; /*!< Offset: 0x018 (R/W) Debug Security Control and Status Register */ } CoreDebug_Type; /* Debug Halting Control and Status Register Definitions */ #define CoreDebug_DHCSR_DBGKEY_Pos 16U /*!< CoreDebug DHCSR: DBGKEY Position */ #define CoreDebug_DHCSR_DBGKEY_Msk (0xFFFFUL << CoreDebug_DHCSR_DBGKEY_Pos) /*!< CoreDebug DHCSR: DBGKEY Mask */ #define CoreDebug_DHCSR_S_RESTART_ST_Pos 26U /*!< CoreDebug DHCSR: S_RESTART_ST Position */ #define CoreDebug_DHCSR_S_RESTART_ST_Msk (1UL << CoreDebug_DHCSR_S_RESTART_ST_Pos) /*!< CoreDebug DHCSR: S_RESTART_ST Mask */ #define CoreDebug_DHCSR_S_RESET_ST_Pos 25U /*!< CoreDebug DHCSR: S_RESET_ST Position */ #define CoreDebug_DHCSR_S_RESET_ST_Msk (1UL << CoreDebug_DHCSR_S_RESET_ST_Pos) /*!< CoreDebug DHCSR: S_RESET_ST Mask */ #define CoreDebug_DHCSR_S_RETIRE_ST_Pos 24U /*!< CoreDebug DHCSR: S_RETIRE_ST Position */ #define CoreDebug_DHCSR_S_RETIRE_ST_Msk (1UL << CoreDebug_DHCSR_S_RETIRE_ST_Pos) /*!< CoreDebug DHCSR: S_RETIRE_ST Mask */ #define CoreDebug_DHCSR_S_LOCKUP_Pos 19U /*!< CoreDebug DHCSR: S_LOCKUP Position */ #define CoreDebug_DHCSR_S_LOCKUP_Msk (1UL << CoreDebug_DHCSR_S_LOCKUP_Pos) /*!< CoreDebug DHCSR: S_LOCKUP Mask */ #define CoreDebug_DHCSR_S_SLEEP_Pos 18U /*!< CoreDebug DHCSR: S_SLEEP Position */ #define CoreDebug_DHCSR_S_SLEEP_Msk (1UL << CoreDebug_DHCSR_S_SLEEP_Pos) /*!< CoreDebug DHCSR: S_SLEEP Mask */ #define CoreDebug_DHCSR_S_HALT_Pos 17U /*!< CoreDebug DHCSR: S_HALT Position */ #define CoreDebug_DHCSR_S_HALT_Msk (1UL << CoreDebug_DHCSR_S_HALT_Pos) /*!< CoreDebug DHCSR: S_HALT Mask */ #define CoreDebug_DHCSR_S_REGRDY_Pos 16U /*!< CoreDebug DHCSR: S_REGRDY Position */ #define CoreDebug_DHCSR_S_REGRDY_Msk (1UL << CoreDebug_DHCSR_S_REGRDY_Pos) /*!< CoreDebug DHCSR: S_REGRDY Mask */ #define CoreDebug_DHCSR_C_SNAPSTALL_Pos 5U /*!< CoreDebug DHCSR: C_SNAPSTALL Position */ #define CoreDebug_DHCSR_C_SNAPSTALL_Msk (1UL << CoreDebug_DHCSR_C_SNAPSTALL_Pos) /*!< CoreDebug DHCSR: C_SNAPSTALL Mask */ #define CoreDebug_DHCSR_C_MASKINTS_Pos 3U /*!< CoreDebug DHCSR: C_MASKINTS Position */ #define CoreDebug_DHCSR_C_MASKINTS_Msk (1UL << CoreDebug_DHCSR_C_MASKINTS_Pos) /*!< CoreDebug DHCSR: C_MASKINTS Mask */ #define CoreDebug_DHCSR_C_STEP_Pos 2U /*!< CoreDebug DHCSR: C_STEP Position */ #define CoreDebug_DHCSR_C_STEP_Msk (1UL << CoreDebug_DHCSR_C_STEP_Pos) /*!< CoreDebug DHCSR: C_STEP Mask */ #define CoreDebug_DHCSR_C_HALT_Pos 1U /*!< CoreDebug DHCSR: C_HALT Position */ #define CoreDebug_DHCSR_C_HALT_Msk (1UL << CoreDebug_DHCSR_C_HALT_Pos) /*!< CoreDebug DHCSR: C_HALT Mask */ #define CoreDebug_DHCSR_C_DEBUGEN_Pos 0U /*!< CoreDebug DHCSR: C_DEBUGEN Position */ #define CoreDebug_DHCSR_C_DEBUGEN_Msk (1UL /*<< CoreDebug_DHCSR_C_DEBUGEN_Pos*/) /*!< CoreDebug DHCSR: C_DEBUGEN Mask */ /* Debug Core Register Selector Register Definitions */ #define CoreDebug_DCRSR_REGWnR_Pos 16U /*!< CoreDebug DCRSR: REGWnR Position */ #define CoreDebug_DCRSR_REGWnR_Msk (1UL << CoreDebug_DCRSR_REGWnR_Pos) /*!< CoreDebug DCRSR: REGWnR Mask */ #define CoreDebug_DCRSR_REGSEL_Pos 0U /*!< CoreDebug DCRSR: REGSEL Position */ #define CoreDebug_DCRSR_REGSEL_Msk (0x1FUL /*<< CoreDebug_DCRSR_REGSEL_Pos*/) /*!< CoreDebug DCRSR: REGSEL Mask */ /* Debug Exception and Monitor Control Register Definitions */ #define CoreDebug_DEMCR_TRCENA_Pos 24U /*!< CoreDebug DEMCR: TRCENA Position */ #define CoreDebug_DEMCR_TRCENA_Msk (1UL << CoreDebug_DEMCR_TRCENA_Pos) /*!< CoreDebug DEMCR: TRCENA Mask */ #define CoreDebug_DEMCR_MON_REQ_Pos 19U /*!< CoreDebug DEMCR: MON_REQ Position */ #define CoreDebug_DEMCR_MON_REQ_Msk (1UL << CoreDebug_DEMCR_MON_REQ_Pos) /*!< CoreDebug DEMCR: MON_REQ Mask */ #define CoreDebug_DEMCR_MON_STEP_Pos 18U /*!< CoreDebug DEMCR: MON_STEP Position */ #define CoreDebug_DEMCR_MON_STEP_Msk (1UL << CoreDebug_DEMCR_MON_STEP_Pos) /*!< CoreDebug DEMCR: MON_STEP Mask */ #define CoreDebug_DEMCR_MON_PEND_Pos 17U /*!< CoreDebug DEMCR: MON_PEND Position */ #define CoreDebug_DEMCR_MON_PEND_Msk (1UL << CoreDebug_DEMCR_MON_PEND_Pos) /*!< CoreDebug DEMCR: MON_PEND Mask */ #define CoreDebug_DEMCR_MON_EN_Pos 16U /*!< CoreDebug DEMCR: MON_EN Position */ #define CoreDebug_DEMCR_MON_EN_Msk (1UL << CoreDebug_DEMCR_MON_EN_Pos) /*!< CoreDebug DEMCR: MON_EN Mask */ #define CoreDebug_DEMCR_VC_HARDERR_Pos 10U /*!< CoreDebug DEMCR: VC_HARDERR Position */ #define CoreDebug_DEMCR_VC_HARDERR_Msk (1UL << CoreDebug_DEMCR_VC_HARDERR_Pos) /*!< CoreDebug DEMCR: VC_HARDERR Mask */ #define CoreDebug_DEMCR_VC_INTERR_Pos 9U /*!< CoreDebug DEMCR: VC_INTERR Position */ #define CoreDebug_DEMCR_VC_INTERR_Msk (1UL << CoreDebug_DEMCR_VC_INTERR_Pos) /*!< CoreDebug DEMCR: VC_INTERR Mask */ #define CoreDebug_DEMCR_VC_BUSERR_Pos 8U /*!< CoreDebug DEMCR: VC_BUSERR Position */ #define CoreDebug_DEMCR_VC_BUSERR_Msk (1UL << CoreDebug_DEMCR_VC_BUSERR_Pos) /*!< CoreDebug DEMCR: VC_BUSERR Mask */ #define CoreDebug_DEMCR_VC_STATERR_Pos 7U /*!< CoreDebug DEMCR: VC_STATERR Position */ #define CoreDebug_DEMCR_VC_STATERR_Msk (1UL << CoreDebug_DEMCR_VC_STATERR_Pos) /*!< CoreDebug DEMCR: VC_STATERR Mask */ #define CoreDebug_DEMCR_VC_CHKERR_Pos 6U /*!< CoreDebug DEMCR: VC_CHKERR Position */ #define CoreDebug_DEMCR_VC_CHKERR_Msk (1UL << CoreDebug_DEMCR_VC_CHKERR_Pos) /*!< CoreDebug DEMCR: VC_CHKERR Mask */ #define CoreDebug_DEMCR_VC_NOCPERR_Pos 5U /*!< CoreDebug DEMCR: VC_NOCPERR Position */ #define CoreDebug_DEMCR_VC_NOCPERR_Msk (1UL << CoreDebug_DEMCR_VC_NOCPERR_Pos) /*!< CoreDebug DEMCR: VC_NOCPERR Mask */ #define CoreDebug_DEMCR_VC_MMERR_Pos 4U /*!< CoreDebug DEMCR: VC_MMERR Position */ #define CoreDebug_DEMCR_VC_MMERR_Msk (1UL << CoreDebug_DEMCR_VC_MMERR_Pos) /*!< CoreDebug DEMCR: VC_MMERR Mask */ #define CoreDebug_DEMCR_VC_CORERESET_Pos 0U /*!< CoreDebug DEMCR: VC_CORERESET Position */ #define CoreDebug_DEMCR_VC_CORERESET_Msk (1UL /*<< CoreDebug_DEMCR_VC_CORERESET_Pos*/) /*!< CoreDebug DEMCR: VC_CORERESET Mask */ /* Debug Authentication Control Register Definitions */ #define CoreDebug_DAUTHCTRL_INTSPNIDEN_Pos 3U /*!< CoreDebug DAUTHCTRL: INTSPNIDEN, Position */ #define CoreDebug_DAUTHCTRL_INTSPNIDEN_Msk (1UL << CoreDebug_DAUTHCTRL_INTSPNIDEN_Pos) /*!< CoreDebug DAUTHCTRL: INTSPNIDEN, Mask */ #define CoreDebug_DAUTHCTRL_SPNIDENSEL_Pos 2U /*!< CoreDebug DAUTHCTRL: SPNIDENSEL Position */ #define CoreDebug_DAUTHCTRL_SPNIDENSEL_Msk (1UL << CoreDebug_DAUTHCTRL_SPNIDENSEL_Pos) /*!< CoreDebug DAUTHCTRL: SPNIDENSEL Mask */ #define CoreDebug_DAUTHCTRL_INTSPIDEN_Pos 1U /*!< CoreDebug DAUTHCTRL: INTSPIDEN Position */ #define CoreDebug_DAUTHCTRL_INTSPIDEN_Msk (1UL << CoreDebug_DAUTHCTRL_INTSPIDEN_Pos) /*!< CoreDebug DAUTHCTRL: INTSPIDEN Mask */ #define CoreDebug_DAUTHCTRL_SPIDENSEL_Pos 0U /*!< CoreDebug DAUTHCTRL: SPIDENSEL Position */ #define CoreDebug_DAUTHCTRL_SPIDENSEL_Msk (1UL /*<< CoreDebug_DAUTHCTRL_SPIDENSEL_Pos*/) /*!< CoreDebug DAUTHCTRL: SPIDENSEL Mask */ /* Debug Security Control and Status Register Definitions */ #define CoreDebug_DSCSR_CDS_Pos 16U /*!< CoreDebug DSCSR: CDS Position */ #define CoreDebug_DSCSR_CDS_Msk (1UL << CoreDebug_DSCSR_CDS_Pos) /*!< CoreDebug DSCSR: CDS Mask */ #define CoreDebug_DSCSR_SBRSEL_Pos 1U /*!< CoreDebug DSCSR: SBRSEL Position */ #define CoreDebug_DSCSR_SBRSEL_Msk (1UL << CoreDebug_DSCSR_SBRSEL_Pos) /*!< CoreDebug DSCSR: SBRSEL Mask */ #define CoreDebug_DSCSR_SBRSELEN_Pos 0U /*!< CoreDebug DSCSR: SBRSELEN Position */ #define CoreDebug_DSCSR_SBRSELEN_Msk (1UL /*<< CoreDebug_DSCSR_SBRSELEN_Pos*/) /*!< CoreDebug DSCSR: SBRSELEN Mask */ /*@} end of group CMSIS_CoreDebug */ /** \ingroup CMSIS_core_register \defgroup CMSIS_core_bitfield Core register bit field macros \brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk). @{ */ /** \brief Mask and shift a bit field value for use in a register bit range. \param[in] field Name of the register bit field. \param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type. \return Masked and shifted value. */ #define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk) /** \brief Mask and shift a register value to extract a bit filed value. \param[in] field Name of the register bit field. \param[in] value Value of register. This parameter is interpreted as an uint32_t type. \return Masked and shifted bit field value. */ #define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos) /*@} end of group CMSIS_core_bitfield */ /** \ingroup CMSIS_core_register \defgroup CMSIS_core_base Core Definitions \brief Definitions for base addresses, unions, and structures. @{ */ /* Memory mapping of Core Hardware */ #define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */ #define ITM_BASE (0xE0000000UL) /*!< ITM Base Address */ #define DWT_BASE (0xE0001000UL) /*!< DWT Base Address */ #define TPI_BASE (0xE0040000UL) /*!< TPI Base Address */ #define CoreDebug_BASE (0xE000EDF0UL) /*!< Core Debug Base Address */ #define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */ #define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */ #define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */ #define SCnSCB ((SCnSCB_Type *) SCS_BASE ) /*!< System control Register not in SCB */ #define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */ #define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */ #define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */ #define ITM ((ITM_Type *) ITM_BASE ) /*!< ITM configuration struct */ #define DWT ((DWT_Type *) DWT_BASE ) /*!< DWT configuration struct */ #define TPI ((TPI_Type *) TPI_BASE ) /*!< TPI configuration struct */ #define CoreDebug ((CoreDebug_Type *) CoreDebug_BASE ) /*!< Core Debug configuration struct */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) #define MPU_BASE (SCS_BASE + 0x0D90UL) /*!< Memory Protection Unit */ #define MPU ((MPU_Type *) MPU_BASE ) /*!< Memory Protection Unit */ #endif #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) #define SAU_BASE (SCS_BASE + 0x0DD0UL) /*!< Security Attribution Unit */ #define SAU ((SAU_Type *) SAU_BASE ) /*!< Security Attribution Unit */ #endif #define FPU_BASE (SCS_BASE + 0x0F30UL) /*!< Floating Point Unit */ #define FPU ((FPU_Type *) FPU_BASE ) /*!< Floating Point Unit */ #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) #define SCS_BASE_NS (0xE002E000UL) /*!< System Control Space Base Address (non-secure address space) */ #define CoreDebug_BASE_NS (0xE002EDF0UL) /*!< Core Debug Base Address (non-secure address space) */ #define SysTick_BASE_NS (SCS_BASE_NS + 0x0010UL) /*!< SysTick Base Address (non-secure address space) */ #define NVIC_BASE_NS (SCS_BASE_NS + 0x0100UL) /*!< NVIC Base Address (non-secure address space) */ #define SCB_BASE_NS (SCS_BASE_NS + 0x0D00UL) /*!< System Control Block Base Address (non-secure address space) */ #define SCnSCB_NS ((SCnSCB_Type *) SCS_BASE_NS ) /*!< System control Register not in SCB(non-secure address space) */ #define SCB_NS ((SCB_Type *) SCB_BASE_NS ) /*!< SCB configuration struct (non-secure address space) */ #define SysTick_NS ((SysTick_Type *) SysTick_BASE_NS ) /*!< SysTick configuration struct (non-secure address space) */ #define NVIC_NS ((NVIC_Type *) NVIC_BASE_NS ) /*!< NVIC configuration struct (non-secure address space) */ #define CoreDebug_NS ((CoreDebug_Type *) CoreDebug_BASE_NS) /*!< Core Debug configuration struct (non-secure address space) */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) #define MPU_BASE_NS (SCS_BASE_NS + 0x0D90UL) /*!< Memory Protection Unit (non-secure address space) */ #define MPU_NS ((MPU_Type *) MPU_BASE_NS ) /*!< Memory Protection Unit (non-secure address space) */ #endif #define FPU_BASE_NS (SCS_BASE_NS + 0x0F30UL) /*!< Floating Point Unit (non-secure address space) */ #define FPU_NS ((FPU_Type *) FPU_BASE_NS ) /*!< Floating Point Unit (non-secure address space) */ #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /*@} */ /******************************************************************************* * Hardware Abstraction Layer Core Function Interface contains: - Core NVIC Functions - Core SysTick Functions - Core Debug Functions - Core Register Access Functions ******************************************************************************/ /** \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference */ /* ########################## NVIC functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_NVICFunctions NVIC Functions \brief Functions that manage interrupts and exceptions via the NVIC. @{ */ #ifdef CMSIS_NVIC_VIRTUAL #ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE #define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h" #endif #include CMSIS_NVIC_VIRTUAL_HEADER_FILE #else #define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping #define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping #define NVIC_EnableIRQ __NVIC_EnableIRQ #define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ #define NVIC_DisableIRQ __NVIC_DisableIRQ #define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ #define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ #define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ #define NVIC_GetActive __NVIC_GetActive #define NVIC_SetPriority __NVIC_SetPriority #define NVIC_GetPriority __NVIC_GetPriority #define NVIC_SystemReset __NVIC_SystemReset #endif /* CMSIS_NVIC_VIRTUAL */ #ifdef CMSIS_VECTAB_VIRTUAL #ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE #define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h" #endif #include CMSIS_VECTAB_VIRTUAL_HEADER_FILE #else #define NVIC_SetVector __NVIC_SetVector #define NVIC_GetVector __NVIC_GetVector #endif /* (CMSIS_VECTAB_VIRTUAL) */ #define NVIC_USER_IRQ_OFFSET 16 /* Special LR values for Secure/Non-Secure call handling and exception handling */ /* Function Return Payload (from ARMv8-M Architecture Reference Manual) LR value on entry from Secure BLXNS */ #define FNC_RETURN (0xFEFFFFFFUL) /* bit [0] ignored when processing a branch */ /* The following EXC_RETURN mask values are used to evaluate the LR on exception entry */ #define EXC_RETURN_PREFIX (0xFF000000UL) /* bits [31:24] set to indicate an EXC_RETURN value */ #define EXC_RETURN_S (0x00000040UL) /* bit [6] stack used to push registers: 0=Non-secure 1=Secure */ #define EXC_RETURN_DCRS (0x00000020UL) /* bit [5] stacking rules for called registers: 0=skipped 1=saved */ #define EXC_RETURN_FTYPE (0x00000010UL) /* bit [4] allocate stack for floating-point context: 0=done 1=skipped */ #define EXC_RETURN_MODE (0x00000008UL) /* bit [3] processor mode for return: 0=Handler mode 1=Thread mode */ #define EXC_RETURN_SPSEL (0x00000004UL) /* bit [2] stack pointer used to restore context: 0=MSP 1=PSP */ #define EXC_RETURN_ES (0x00000001UL) /* bit [0] security state exception was taken to: 0=Non-secure 1=Secure */ /* Integrity Signature (from ARMv8-M Architecture Reference Manual) for exception context stacking */ #if defined (__FPU_PRESENT) && (__FPU_PRESENT == 1U) /* Value for processors with floating-point extension: */ #define EXC_INTEGRITY_SIGNATURE (0xFEFA125AUL) /* bit [0] SFTC must match LR bit[4] EXC_RETURN_FTYPE */ #else #define EXC_INTEGRITY_SIGNATURE (0xFEFA125BUL) /* Value for processors without floating-point extension */ #endif /** \brief Set Priority Grouping \details Sets the priority grouping field using the required unlock sequence. The parameter PriorityGroup is assigned to the field SCB->AIRCR [10:8] PRIGROUP field. Only values from 0..7 are used. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set. \param [in] PriorityGroup Priority grouping field. */ __STATIC_INLINE void __NVIC_SetPriorityGrouping(uint32_t PriorityGroup) { uint32_t reg_value; uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ reg_value = SCB->AIRCR; /* read old register configuration */ reg_value &= ~((uint32_t)(SCB_AIRCR_VECTKEY_Msk | SCB_AIRCR_PRIGROUP_Msk)); /* clear bits to change */ reg_value = (reg_value | ((uint32_t)0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | (PriorityGroupTmp << SCB_AIRCR_PRIGROUP_Pos) ); /* Insert write key and priority group */ SCB->AIRCR = reg_value; } /** \brief Get Priority Grouping \details Reads the priority grouping field from the NVIC Interrupt Controller. \return Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field). */ __STATIC_INLINE uint32_t __NVIC_GetPriorityGrouping(void) { return ((uint32_t)((SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) >> SCB_AIRCR_PRIGROUP_Pos)); } /** \brief Enable Interrupt \details Enables a device specific interrupt in the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { __COMPILER_BARRIER(); NVIC->ISER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); __COMPILER_BARRIER(); } } /** \brief Get Interrupt Enable status \details Returns a device specific interrupt enable status from the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt is not enabled. \return 1 Interrupt is enabled. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ISER[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Disable Interrupt \details Disables a device specific interrupt in the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ICER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); __DSB(); __ISB(); } } /** \brief Get Pending Interrupt \details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not pending. \return 1 Interrupt status is pending. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ISPR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Pending Interrupt \details Sets the pending bit of a device specific interrupt in the NVIC pending register. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ISPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Clear Pending Interrupt \details Clears the pending bit of a device specific interrupt in the NVIC pending register. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ICPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Active Interrupt \details Reads the active register in the NVIC and returns the active bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not active. \return 1 Interrupt status is active. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetActive(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->IABR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief Get Interrupt Target State \details Reads the interrupt target field in the NVIC and returns the interrupt target bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 if interrupt is assigned to Secure \return 1 if interrupt is assigned to Non Secure \note IRQn must not be negative. */ __STATIC_INLINE uint32_t NVIC_GetTargetState(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Interrupt Target State \details Sets the interrupt target field in the NVIC and returns the interrupt target bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 if interrupt is assigned to Secure 1 if interrupt is assigned to Non Secure \note IRQn must not be negative. */ __STATIC_INLINE uint32_t NVIC_SetTargetState(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] |= ((uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL))); return((uint32_t)(((NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Clear Interrupt Target State \details Clears the interrupt target field in the NVIC and returns the interrupt target bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 if interrupt is assigned to Secure 1 if interrupt is assigned to Non Secure \note IRQn must not be negative. */ __STATIC_INLINE uint32_t NVIC_ClearTargetState(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] &= ~((uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL))); return((uint32_t)(((NVIC->ITNS[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /** \brief Set Interrupt Priority \details Sets the priority of a device specific interrupt or a processor exception. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \param [in] priority Priority to set. \note The priority cannot be set for every processor exception. */ __STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) { if ((int32_t)(IRQn) >= 0) { NVIC->IPR[((uint32_t)IRQn)] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL); } else { SCB->SHPR[(((uint32_t)IRQn) & 0xFUL)-4UL] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL); } } /** \brief Get Interrupt Priority \details Reads the priority of a device specific interrupt or a processor exception. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Interrupt Priority. Value is aligned automatically to the implemented priority bits of the microcontroller. */ __STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return(((uint32_t)NVIC->IPR[((uint32_t)IRQn)] >> (8U - __NVIC_PRIO_BITS))); } else { return(((uint32_t)SCB->SHPR[(((uint32_t)IRQn) & 0xFUL)-4UL] >> (8U - __NVIC_PRIO_BITS))); } } /** \brief Encode Priority \details Encodes the priority for an interrupt with the given priority group, preemptive priority value, and subpriority value. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set. \param [in] PriorityGroup Used priority group. \param [in] PreemptPriority Preemptive priority value (starting from 0). \param [in] SubPriority Subpriority value (starting from 0). \return Encoded priority. Value can be used in the function \ref NVIC_SetPriority(). */ __STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority) { uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ uint32_t PreemptPriorityBits; uint32_t SubPriorityBits; PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); return ( ((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) | ((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL))) ); } /** \brief Decode Priority \details Decodes an interrupt priority value with a given priority group to preemptive priority value and subpriority value. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set. \param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority(). \param [in] PriorityGroup Used priority group. \param [out] pPreemptPriority Preemptive priority value (starting from 0). \param [out] pSubPriority Subpriority value (starting from 0). */ __STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority) { uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ uint32_t PreemptPriorityBits; uint32_t SubPriorityBits; PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); *pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL); *pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL); } /** \brief Set Interrupt Vector \details Sets an interrupt vector in SRAM based interrupt vector table. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. VTOR must been relocated to SRAM before. \param [in] IRQn Interrupt number \param [in] vector Address of interrupt handler function */ __STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) { uint32_t *vectors = (uint32_t *)SCB->VTOR; vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET] = vector; __DSB(); } /** \brief Get Interrupt Vector \details Reads an interrupt vector from interrupt vector table. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Address of interrupt handler function */ __STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn) { uint32_t *vectors = (uint32_t *)SCB->VTOR; return vectors[(int32_t)IRQn + NVIC_USER_IRQ_OFFSET]; } /** \brief System Reset \details Initiates a system reset request to reset the MCU. */ __NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void) { __DSB(); /* Ensure all outstanding memory accesses included buffered write are completed before reset */ SCB->AIRCR = (uint32_t)((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | (SCB->AIRCR & SCB_AIRCR_PRIGROUP_Msk) | SCB_AIRCR_SYSRESETREQ_Msk ); /* Keep priority group unchanged */ __DSB(); /* Ensure completion of memory access */ for(;;) /* wait until reset */ { __NOP(); } } #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief Set Priority Grouping (non-secure) \details Sets the non-secure priority grouping field when in secure state using the required unlock sequence. The parameter PriorityGroup is assigned to the field SCB->AIRCR [10:8] PRIGROUP field. Only values from 0..7 are used. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set. \param [in] PriorityGroup Priority grouping field. */ __STATIC_INLINE void TZ_NVIC_SetPriorityGrouping_NS(uint32_t PriorityGroup) { uint32_t reg_value; uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ reg_value = SCB_NS->AIRCR; /* read old register configuration */ reg_value &= ~((uint32_t)(SCB_AIRCR_VECTKEY_Msk | SCB_AIRCR_PRIGROUP_Msk)); /* clear bits to change */ reg_value = (reg_value | ((uint32_t)0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | (PriorityGroupTmp << SCB_AIRCR_PRIGROUP_Pos) ); /* Insert write key and priority group */ SCB_NS->AIRCR = reg_value; } /** \brief Get Priority Grouping (non-secure) \details Reads the priority grouping field from the non-secure NVIC when in secure state. \return Priority grouping field (SCB->AIRCR [10:8] PRIGROUP field). */ __STATIC_INLINE uint32_t TZ_NVIC_GetPriorityGrouping_NS(void) { return ((uint32_t)((SCB_NS->AIRCR & SCB_AIRCR_PRIGROUP_Msk) >> SCB_AIRCR_PRIGROUP_Pos)); } /** \brief Enable Interrupt (non-secure) \details Enables a device specific interrupt in the non-secure NVIC interrupt controller when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_EnableIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ISER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Interrupt Enable status (non-secure) \details Returns a device specific interrupt enable status from the non-secure NVIC interrupt controller when in secure state. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt is not enabled. \return 1 Interrupt is enabled. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t TZ_NVIC_GetEnableIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC_NS->ISER[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Disable Interrupt (non-secure) \details Disables a device specific interrupt in the non-secure NVIC interrupt controller when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_DisableIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ICER[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Pending Interrupt (non-secure) \details Reads the NVIC pending register in the non-secure NVIC when in secure state and returns the pending bit for the specified device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not pending. \return 1 Interrupt status is pending. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t TZ_NVIC_GetPendingIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC_NS->ISPR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Pending Interrupt (non-secure) \details Sets the pending bit of a device specific interrupt in the non-secure NVIC pending register when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_SetPendingIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ISPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Clear Pending Interrupt (non-secure) \details Clears the pending bit of a device specific interrupt in the non-secure NVIC pending register when in secure state. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void TZ_NVIC_ClearPendingIRQ_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->ICPR[(((uint32_t)IRQn) >> 5UL)] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Get Active Interrupt (non-secure) \details Reads the active register in non-secure NVIC when in secure state and returns the active bit for the device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not active. \return 1 Interrupt status is active. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t TZ_NVIC_GetActive_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC_NS->IABR[(((uint32_t)IRQn) >> 5UL)] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Interrupt Priority (non-secure) \details Sets the priority of a non-secure device specific interrupt or a non-secure processor exception when in secure state. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \param [in] priority Priority to set. \note The priority cannot be set for every non-secure processor exception. */ __STATIC_INLINE void TZ_NVIC_SetPriority_NS(IRQn_Type IRQn, uint32_t priority) { if ((int32_t)(IRQn) >= 0) { NVIC_NS->IPR[((uint32_t)IRQn)] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL); } else { SCB_NS->SHPR[(((uint32_t)IRQn) & 0xFUL)-4UL] = (uint8_t)((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL); } } /** \brief Get Interrupt Priority (non-secure) \details Reads the priority of a non-secure device specific interrupt or a non-secure processor exception when in secure state. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Interrupt Priority. Value is aligned automatically to the implemented priority bits of the microcontroller. */ __STATIC_INLINE uint32_t TZ_NVIC_GetPriority_NS(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return(((uint32_t)NVIC_NS->IPR[((uint32_t)IRQn)] >> (8U - __NVIC_PRIO_BITS))); } else { return(((uint32_t)SCB_NS->SHPR[(((uint32_t)IRQn) & 0xFUL)-4UL] >> (8U - __NVIC_PRIO_BITS))); } } #endif /* defined (__ARM_FEATURE_CMSE) &&(__ARM_FEATURE_CMSE == 3U) */ /*@} end of CMSIS_Core_NVICFunctions */ /* ########################## MPU functions #################################### */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) #include "mpu_armv8.h" #endif /* ########################## FPU functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_FpuFunctions FPU Functions \brief Function that provides FPU type. @{ */ /** \brief get FPU type \details returns the FPU type \returns - \b 0: No FPU - \b 1: Single precision FPU - \b 2: Double + Single precision FPU */ __STATIC_INLINE uint32_t SCB_GetFPUType(void) { uint32_t mvfr0; mvfr0 = FPU->MVFR0; if ((mvfr0 & (FPU_MVFR0_Single_precision_Msk | FPU_MVFR0_Double_precision_Msk)) == 0x220U) { return 2U; /* Double + Single precision FPU */ } else if ((mvfr0 & (FPU_MVFR0_Single_precision_Msk | FPU_MVFR0_Double_precision_Msk)) == 0x020U) { return 1U; /* Single precision FPU */ } else { return 0U; /* No FPU */ } } /*@} end of CMSIS_Core_FpuFunctions */ /* ########################## SAU functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_SAUFunctions SAU Functions \brief Functions that configure the SAU. @{ */ #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief Enable SAU \details Enables the Security Attribution Unit (SAU). */ __STATIC_INLINE void TZ_SAU_Enable(void) { SAU->CTRL |= (SAU_CTRL_ENABLE_Msk); } /** \brief Disable SAU \details Disables the Security Attribution Unit (SAU). */ __STATIC_INLINE void TZ_SAU_Disable(void) { SAU->CTRL &= ~(SAU_CTRL_ENABLE_Msk); } #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ /*@} end of CMSIS_Core_SAUFunctions */ /* ################################## SysTick function ############################################ */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_SysTickFunctions SysTick Functions \brief Functions that configure the System. @{ */ #if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U) /** \brief System Tick Configuration \details Initializes the System Timer and its interrupt, and starts the System Tick Timer. Counter is in free running mode to generate periodic interrupts. \param [in] ticks Number of ticks between two interrupts. \return 0 Function succeeded. \return 1 Function failed. \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b> must contain a vendor-specific implementation of this function. */ __STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks) { if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) { return (1UL); /* Reload value impossible */ } SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */ NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */ SysTick->VAL = 0UL; /* Load the SysTick Counter Value */ SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ return (0UL); /* Function successful */ } #if defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) /** \brief System Tick Configuration (non-secure) \details Initializes the non-secure System Timer and its interrupt when in secure state, and starts the System Tick Timer. Counter is in free running mode to generate periodic interrupts. \param [in] ticks Number of ticks between two interrupts. \return 0 Function succeeded. \return 1 Function failed. \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the function <b>TZ_SysTick_Config_NS</b> is not included. In this case, the file <b><i>device</i>.h</b> must contain a vendor-specific implementation of this function. */ __STATIC_INLINE uint32_t TZ_SysTick_Config_NS(uint32_t ticks) { if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) { return (1UL); /* Reload value impossible */ } SysTick_NS->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */ TZ_NVIC_SetPriority_NS (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */ SysTick_NS->VAL = 0UL; /* Load the SysTick Counter Value */ SysTick_NS->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ return (0UL); /* Function successful */ } #endif /* defined (__ARM_FEATURE_CMSE) && (__ARM_FEATURE_CMSE == 3U) */ #endif /*@} end of CMSIS_Core_SysTickFunctions */ /* ##################################### Debug In/Output function ########################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_core_DebugFunctions ITM Functions \brief Functions that access the ITM debug interface. @{ */ extern volatile int32_t ITM_RxBuffer; /*!< External variable to receive characters. */ #define ITM_RXBUFFER_EMPTY ((int32_t)0x5AA55AA5U) /*!< Value identifying \ref ITM_RxBuffer is ready for next character. */ /** \brief ITM Send Character \details Transmits a character via the ITM channel 0, and \li Just returns when no debugger is connected that has booked the output. \li Is blocking when a debugger is connected, but the previous character sent has not been transmitted. \param [in] ch Character to transmit. \returns Character to transmit. */ __STATIC_INLINE uint32_t ITM_SendChar (uint32_t ch) { if (((ITM->TCR & ITM_TCR_ITMENA_Msk) != 0UL) && /* ITM enabled */ ((ITM->TER & 1UL ) != 0UL) ) /* ITM Port #0 enabled */ { while (ITM->PORT[0U].u32 == 0UL) { __NOP(); } ITM->PORT[0U].u8 = (uint8_t)ch; } return (ch); } /** \brief ITM Receive Character \details Inputs a character via the external variable \ref ITM_RxBuffer. \return Received character. \return -1 No character pending. */ __STATIC_INLINE int32_t ITM_ReceiveChar (void) { int32_t ch = -1; /* no character available */ if (ITM_RxBuffer != ITM_RXBUFFER_EMPTY) { ch = ITM_RxBuffer; ITM_RxBuffer = ITM_RXBUFFER_EMPTY; /* ready for next character */ } return (ch); } /** \brief ITM Check Character \details Checks whether a character is pending for reading in the variable \ref ITM_RxBuffer. \return 0 No character available. \return 1 Character available. */ __STATIC_INLINE int32_t ITM_CheckChar (void) { if (ITM_RxBuffer == ITM_RXBUFFER_EMPTY) { return (0); /* no character available */ } else { return (1); /* character available */ } } /*@} end of CMSIS_core_DebugFunctions */ #ifdef __cplusplus } #endif #endif /* __CORE_ARMV8MML_H_DEPENDANT */ #endif /* __CMSIS_GENERIC */ Drivers/CMSIS/Include/core_cm0.h
New file @@ -0,0 +1,952 @@ /**************************************************************************//** * @file core_cm0.h * @brief CMSIS Cortex-M0 Core Peripheral Access Layer Header File * @version V5.0.6 * @date 13. March 2019 ******************************************************************************/ /* * Copyright (c) 2009-2019 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined ( __ICCARM__ ) #pragma system_include /* treat file as system include file for MISRA check */ #elif defined (__clang__) #pragma clang system_header /* treat file as system include file */ #endif #ifndef __CORE_CM0_H_GENERIC #define __CORE_CM0_H_GENERIC #include <stdint.h> #ifdef __cplusplus extern "C" { #endif /** \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions CMSIS violates the following MISRA-C:2004 rules: \li Required Rule 8.5, object/function definition in header file.<br> Function definitions in header files are used to allow 'inlining'. \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br> Unions are used for effective representation of core registers. \li Advisory Rule 19.7, Function-like macro defined.<br> Function-like macros are used to allow more efficient code. */ /******************************************************************************* * CMSIS definitions ******************************************************************************/ /** \ingroup Cortex_M0 @{ */ #include "cmsis_version.h" /* CMSIS CM0 definitions */ #define __CM0_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */ #define __CM0_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */ #define __CM0_CMSIS_VERSION ((__CM0_CMSIS_VERSION_MAIN << 16U) | \ __CM0_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */ #define __CORTEX_M (0U) /*!< Cortex-M Core */ /** __FPU_USED indicates whether an FPU is used or not. This core does not support an FPU at all */ #define __FPU_USED 0U #if defined ( __CC_ARM ) #if defined __TARGET_FPU_VFP #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) #if defined __ARM_FP #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __GNUC__ ) #if defined (__VFP_FP__) && !defined(__SOFTFP__) #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __ICCARM__ ) #if defined __ARMVFP__ #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __TI_ARM__ ) #if defined __TI_VFP_SUPPORT__ #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __TASKING__ ) #if defined __FPU_VFP__ #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __CSMC__ ) #if ( __CSMC__ & 0x400U) #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #endif #include "cmsis_compiler.h" /* CMSIS compiler specific defines */ #ifdef __cplusplus } #endif #endif /* __CORE_CM0_H_GENERIC */ #ifndef __CMSIS_GENERIC #ifndef __CORE_CM0_H_DEPENDANT #define __CORE_CM0_H_DEPENDANT #ifdef __cplusplus extern "C" { #endif /* check device defines and use defaults */ #if defined __CHECK_DEVICE_DEFINES #ifndef __CM0_REV #define __CM0_REV 0x0000U #warning "__CM0_REV not defined in device header file; using default!" #endif #ifndef __NVIC_PRIO_BITS #define __NVIC_PRIO_BITS 2U #warning "__NVIC_PRIO_BITS not defined in device header file; using default!" #endif #ifndef __Vendor_SysTickConfig #define __Vendor_SysTickConfig 0U #warning "__Vendor_SysTickConfig not defined in device header file; using default!" #endif #endif /* IO definitions (access restrictions to peripheral registers) */ /** \defgroup CMSIS_glob_defs CMSIS Global Defines <strong>IO Type Qualifiers</strong> are used \li to specify the access to peripheral variables. \li for automatic generation of peripheral register debug information. */ #ifdef __cplusplus #define __I volatile /*!< Defines 'read only' permissions */ #else #define __I volatile const /*!< Defines 'read only' permissions */ #endif #define __O volatile /*!< Defines 'write only' permissions */ #define __IO volatile /*!< Defines 'read / write' permissions */ /* following defines should be used for structure members */ #define __IM volatile const /*! Defines 'read only' structure member permissions */ #define __OM volatile /*! Defines 'write only' structure member permissions */ #define __IOM volatile /*! Defines 'read / write' structure member permissions */ /*@} end of group Cortex_M0 */ /******************************************************************************* * Register Abstraction Core Register contain: - Core Register - Core NVIC Register - Core SCB Register - Core SysTick Register ******************************************************************************/ /** \defgroup CMSIS_core_register Defines and Type Definitions \brief Type definitions and defines for Cortex-M processor based devices. */ /** \ingroup CMSIS_core_register \defgroup CMSIS_CORE Status and Control Registers \brief Core Register type definitions. @{ */ /** \brief Union type to access the Application Program Status Register (APSR). */ typedef union { struct { uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ uint32_t C:1; /*!< bit: 29 Carry condition code flag */ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ uint32_t N:1; /*!< bit: 31 Negative condition code flag */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } APSR_Type; /* APSR Register Definitions */ #define APSR_N_Pos 31U /*!< APSR: N Position */ #define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */ #define APSR_Z_Pos 30U /*!< APSR: Z Position */ #define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */ #define APSR_C_Pos 29U /*!< APSR: C Position */ #define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */ #define APSR_V_Pos 28U /*!< APSR: V Position */ #define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */ /** \brief Union type to access the Interrupt Program Status Register (IPSR). */ typedef union { struct { uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } IPSR_Type; /* IPSR Register Definitions */ #define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */ #define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */ /** \brief Union type to access the Special-Purpose Program Status Registers (xPSR). */ typedef union { struct { uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */ uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */ uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ uint32_t C:1; /*!< bit: 29 Carry condition code flag */ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ uint32_t N:1; /*!< bit: 31 Negative condition code flag */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } xPSR_Type; /* xPSR Register Definitions */ #define xPSR_N_Pos 31U /*!< xPSR: N Position */ #define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */ #define xPSR_Z_Pos 30U /*!< xPSR: Z Position */ #define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */ #define xPSR_C_Pos 29U /*!< xPSR: C Position */ #define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */ #define xPSR_V_Pos 28U /*!< xPSR: V Position */ #define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */ #define xPSR_T_Pos 24U /*!< xPSR: T Position */ #define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */ #define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */ #define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */ /** \brief Union type to access the Control Registers (CONTROL). */ typedef union { struct { uint32_t _reserved0:1; /*!< bit: 0 Reserved */ uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */ uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } CONTROL_Type; /* CONTROL Register Definitions */ #define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */ #define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */ /*@} end of group CMSIS_CORE */ /** \ingroup CMSIS_core_register \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC) \brief Type definitions for the NVIC Registers @{ */ /** \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC). */ typedef struct { __IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */ uint32_t RESERVED0[31U]; __IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */ uint32_t RESERVED1[31U]; __IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */ uint32_t RESERVED2[31U]; __IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */ uint32_t RESERVED3[31U]; uint32_t RESERVED4[64U]; __IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */ } NVIC_Type; /*@} end of group CMSIS_NVIC */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SCB System Control Block (SCB) \brief Type definitions for the System Control Block Registers @{ */ /** \brief Structure type to access the System Control Block (SCB). */ typedef struct { __IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */ __IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */ uint32_t RESERVED0; __IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */ __IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */ __IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */ uint32_t RESERVED1; __IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */ __IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */ } SCB_Type; /* SCB CPUID Register Definitions */ #define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */ #define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */ #define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */ #define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */ #define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */ #define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */ #define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */ #define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */ #define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */ #define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */ /* SCB Interrupt Control State Register Definitions */ #define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */ #define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */ #define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */ #define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */ #define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */ #define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */ #define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */ #define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */ #define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */ #define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */ #define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */ #define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */ #define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */ #define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */ #define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */ #define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */ #define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */ #define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */ /* SCB Application Interrupt and Reset Control Register Definitions */ #define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */ #define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */ #define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */ #define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */ #define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */ #define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */ #define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */ #define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */ #define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */ #define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */ /* SCB System Control Register Definitions */ #define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */ #define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */ #define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */ #define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */ #define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */ #define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */ /* SCB Configuration Control Register Definitions */ #define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */ #define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */ #define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */ #define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */ /* SCB System Handler Control and State Register Definitions */ #define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */ #define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */ /*@} end of group CMSIS_SCB */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SysTick System Tick Timer (SysTick) \brief Type definitions for the System Timer Registers. @{ */ /** \brief Structure type to access the System Timer (SysTick). */ typedef struct { __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */ __IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */ __IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */ __IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */ } SysTick_Type; /* SysTick Control / Status Register Definitions */ #define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */ #define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */ #define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */ #define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */ #define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */ #define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */ #define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */ #define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */ /* SysTick Reload Register Definitions */ #define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */ #define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */ /* SysTick Current Register Definitions */ #define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */ #define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */ /* SysTick Calibration Register Definitions */ #define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */ #define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */ #define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */ #define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */ #define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */ #define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */ /*@} end of group CMSIS_SysTick */ /** \ingroup CMSIS_core_register \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug) \brief Cortex-M0 Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor. Therefore they are not covered by the Cortex-M0 header file. @{ */ /*@} end of group CMSIS_CoreDebug */ /** \ingroup CMSIS_core_register \defgroup CMSIS_core_bitfield Core register bit field macros \brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk). @{ */ /** \brief Mask and shift a bit field value for use in a register bit range. \param[in] field Name of the register bit field. \param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type. \return Masked and shifted value. */ #define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk) /** \brief Mask and shift a register value to extract a bit filed value. \param[in] field Name of the register bit field. \param[in] value Value of register. This parameter is interpreted as an uint32_t type. \return Masked and shifted bit field value. */ #define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos) /*@} end of group CMSIS_core_bitfield */ /** \ingroup CMSIS_core_register \defgroup CMSIS_core_base Core Definitions \brief Definitions for base addresses, unions, and structures. @{ */ /* Memory mapping of Core Hardware */ #define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */ #define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */ #define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */ #define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */ #define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */ #define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */ #define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */ /*@} */ /******************************************************************************* * Hardware Abstraction Layer Core Function Interface contains: - Core NVIC Functions - Core SysTick Functions - Core Register Access Functions ******************************************************************************/ /** \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference */ /* ########################## NVIC functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_NVICFunctions NVIC Functions \brief Functions that manage interrupts and exceptions via the NVIC. @{ */ #ifdef CMSIS_NVIC_VIRTUAL #ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE #define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h" #endif #include CMSIS_NVIC_VIRTUAL_HEADER_FILE #else #define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping #define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping #define NVIC_EnableIRQ __NVIC_EnableIRQ #define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ #define NVIC_DisableIRQ __NVIC_DisableIRQ #define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ #define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ #define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ /*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M0 */ #define NVIC_SetPriority __NVIC_SetPriority #define NVIC_GetPriority __NVIC_GetPriority #define NVIC_SystemReset __NVIC_SystemReset #endif /* CMSIS_NVIC_VIRTUAL */ #ifdef CMSIS_VECTAB_VIRTUAL #ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE #define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h" #endif #include CMSIS_VECTAB_VIRTUAL_HEADER_FILE #else #define NVIC_SetVector __NVIC_SetVector #define NVIC_GetVector __NVIC_GetVector #endif /* (CMSIS_VECTAB_VIRTUAL) */ #define NVIC_USER_IRQ_OFFSET 16 /* The following EXC_RETURN values are saved the LR on exception entry */ #define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */ #define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */ #define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */ /* Interrupt Priorities are WORD accessible only under Armv6-M */ /* The following MACROS handle generation of the register offset and byte masks */ #define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL) #define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) ) #define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) ) #define __NVIC_SetPriorityGrouping(X) (void)(X) #define __NVIC_GetPriorityGrouping() (0U) /** \brief Enable Interrupt \details Enables a device specific interrupt in the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { __COMPILER_BARRIER(); NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); __COMPILER_BARRIER(); } } /** \brief Get Interrupt Enable status \details Returns a device specific interrupt enable status from the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt is not enabled. \return 1 Interrupt is enabled. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Disable Interrupt \details Disables a device specific interrupt in the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); __DSB(); __ISB(); } } /** \brief Get Pending Interrupt \details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not pending. \return 1 Interrupt status is pending. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Pending Interrupt \details Sets the pending bit of a device specific interrupt in the NVIC pending register. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Clear Pending Interrupt \details Clears the pending bit of a device specific interrupt in the NVIC pending register. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Set Interrupt Priority \details Sets the priority of a device specific interrupt or a processor exception. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \param [in] priority Priority to set. \note The priority cannot be set for every processor exception. */ __STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) { if ((int32_t)(IRQn) >= 0) { NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) | (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn))); } else { SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) | (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn))); } } /** \brief Get Interrupt Priority \details Reads the priority of a device specific interrupt or a processor exception. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Interrupt Priority. Value is aligned automatically to the implemented priority bits of the microcontroller. */ __STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS))); } else { return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS))); } } /** \brief Encode Priority \details Encodes the priority for an interrupt with the given priority group, preemptive priority value, and subpriority value. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set. \param [in] PriorityGroup Used priority group. \param [in] PreemptPriority Preemptive priority value (starting from 0). \param [in] SubPriority Subpriority value (starting from 0). \return Encoded priority. Value can be used in the function \ref NVIC_SetPriority(). */ __STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority) { uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ uint32_t PreemptPriorityBits; uint32_t SubPriorityBits; PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); return ( ((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) | ((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL))) ); } /** \brief Decode Priority \details Decodes an interrupt priority value with a given priority group to preemptive priority value and subpriority value. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set. \param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority(). \param [in] PriorityGroup Used priority group. \param [out] pPreemptPriority Preemptive priority value (starting from 0). \param [out] pSubPriority Subpriority value (starting from 0). */ __STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority) { uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ uint32_t PreemptPriorityBits; uint32_t SubPriorityBits; PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); *pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL); *pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL); } /** \brief Set Interrupt Vector \details Sets an interrupt vector in SRAM based interrupt vector table. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. Address 0 must be mapped to SRAM. \param [in] IRQn Interrupt number \param [in] vector Address of interrupt handler function */ __STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) { uint32_t vectors = 0x0U; (* (int *) (vectors + ((int32_t)IRQn + NVIC_USER_IRQ_OFFSET) * 4)) = vector; /* ARM Application Note 321 states that the M0 does not require the architectural barrier */ } /** \brief Get Interrupt Vector \details Reads an interrupt vector from interrupt vector table. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Address of interrupt handler function */ __STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn) { uint32_t vectors = 0x0U; return (uint32_t)(* (int *) (vectors + ((int32_t)IRQn + NVIC_USER_IRQ_OFFSET) * 4)); } /** \brief System Reset \details Initiates a system reset request to reset the MCU. */ __NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void) { __DSB(); /* Ensure all outstanding memory accesses included buffered write are completed before reset */ SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | SCB_AIRCR_SYSRESETREQ_Msk); __DSB(); /* Ensure completion of memory access */ for(;;) /* wait until reset */ { __NOP(); } } /*@} end of CMSIS_Core_NVICFunctions */ /* ########################## FPU functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_FpuFunctions FPU Functions \brief Function that provides FPU type. @{ */ /** \brief get FPU type \details returns the FPU type \returns - \b 0: No FPU - \b 1: Single precision FPU - \b 2: Double + Single precision FPU */ __STATIC_INLINE uint32_t SCB_GetFPUType(void) { return 0U; /* No FPU */ } /*@} end of CMSIS_Core_FpuFunctions */ /* ################################## SysTick function ############################################ */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_SysTickFunctions SysTick Functions \brief Functions that configure the System. @{ */ #if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U) /** \brief System Tick Configuration \details Initializes the System Timer and its interrupt, and starts the System Tick Timer. Counter is in free running mode to generate periodic interrupts. \param [in] ticks Number of ticks between two interrupts. \return 0 Function succeeded. \return 1 Function failed. \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b> must contain a vendor-specific implementation of this function. */ __STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks) { if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) { return (1UL); /* Reload value impossible */ } SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */ NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */ SysTick->VAL = 0UL; /* Load the SysTick Counter Value */ SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ return (0UL); /* Function successful */ } #endif /*@} end of CMSIS_Core_SysTickFunctions */ #ifdef __cplusplus } #endif #endif /* __CORE_CM0_H_DEPENDANT */ #endif /* __CMSIS_GENERIC */ Drivers/CMSIS/Include/core_cm0plus.h
New file @@ -0,0 +1,1085 @@ /**************************************************************************//** * @file core_cm0plus.h * @brief CMSIS Cortex-M0+ Core Peripheral Access Layer Header File * @version V5.0.7 * @date 13. March 2019 ******************************************************************************/ /* * Copyright (c) 2009-2019 Arm Limited. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined ( __ICCARM__ ) #pragma system_include /* treat file as system include file for MISRA check */ #elif defined (__clang__) #pragma clang system_header /* treat file as system include file */ #endif #ifndef __CORE_CM0PLUS_H_GENERIC #define __CORE_CM0PLUS_H_GENERIC #include <stdint.h> #ifdef __cplusplus extern "C" { #endif /** \page CMSIS_MISRA_Exceptions MISRA-C:2004 Compliance Exceptions CMSIS violates the following MISRA-C:2004 rules: \li Required Rule 8.5, object/function definition in header file.<br> Function definitions in header files are used to allow 'inlining'. \li Required Rule 18.4, declaration of union type or object of union type: '{...}'.<br> Unions are used for effective representation of core registers. \li Advisory Rule 19.7, Function-like macro defined.<br> Function-like macros are used to allow more efficient code. */ /******************************************************************************* * CMSIS definitions ******************************************************************************/ /** \ingroup Cortex-M0+ @{ */ #include "cmsis_version.h" /* CMSIS CM0+ definitions */ #define __CM0PLUS_CMSIS_VERSION_MAIN (__CM_CMSIS_VERSION_MAIN) /*!< \deprecated [31:16] CMSIS HAL main version */ #define __CM0PLUS_CMSIS_VERSION_SUB (__CM_CMSIS_VERSION_SUB) /*!< \deprecated [15:0] CMSIS HAL sub version */ #define __CM0PLUS_CMSIS_VERSION ((__CM0PLUS_CMSIS_VERSION_MAIN << 16U) | \ __CM0PLUS_CMSIS_VERSION_SUB ) /*!< \deprecated CMSIS HAL version number */ #define __CORTEX_M (0U) /*!< Cortex-M Core */ /** __FPU_USED indicates whether an FPU is used or not. This core does not support an FPU at all */ #define __FPU_USED 0U #if defined ( __CC_ARM ) #if defined __TARGET_FPU_VFP #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined (__ARMCC_VERSION) && (__ARMCC_VERSION >= 6010050) #if defined __ARM_FP #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __GNUC__ ) #if defined (__VFP_FP__) && !defined(__SOFTFP__) #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __ICCARM__ ) #if defined __ARMVFP__ #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __TI_ARM__ ) #if defined __TI_VFP_SUPPORT__ #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __TASKING__ ) #if defined __FPU_VFP__ #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #elif defined ( __CSMC__ ) #if ( __CSMC__ & 0x400U) #error "Compiler generates FPU instructions for a device without an FPU (check __FPU_PRESENT)" #endif #endif #include "cmsis_compiler.h" /* CMSIS compiler specific defines */ #ifdef __cplusplus } #endif #endif /* __CORE_CM0PLUS_H_GENERIC */ #ifndef __CMSIS_GENERIC #ifndef __CORE_CM0PLUS_H_DEPENDANT #define __CORE_CM0PLUS_H_DEPENDANT #ifdef __cplusplus extern "C" { #endif /* check device defines and use defaults */ #if defined __CHECK_DEVICE_DEFINES #ifndef __CM0PLUS_REV #define __CM0PLUS_REV 0x0000U #warning "__CM0PLUS_REV not defined in device header file; using default!" #endif #ifndef __MPU_PRESENT #define __MPU_PRESENT 0U #warning "__MPU_PRESENT not defined in device header file; using default!" #endif #ifndef __VTOR_PRESENT #define __VTOR_PRESENT 0U #warning "__VTOR_PRESENT not defined in device header file; using default!" #endif #ifndef __NVIC_PRIO_BITS #define __NVIC_PRIO_BITS 2U #warning "__NVIC_PRIO_BITS not defined in device header file; using default!" #endif #ifndef __Vendor_SysTickConfig #define __Vendor_SysTickConfig 0U #warning "__Vendor_SysTickConfig not defined in device header file; using default!" #endif #endif /* IO definitions (access restrictions to peripheral registers) */ /** \defgroup CMSIS_glob_defs CMSIS Global Defines <strong>IO Type Qualifiers</strong> are used \li to specify the access to peripheral variables. \li for automatic generation of peripheral register debug information. */ #ifdef __cplusplus #define __I volatile /*!< Defines 'read only' permissions */ #else #define __I volatile const /*!< Defines 'read only' permissions */ #endif #define __O volatile /*!< Defines 'write only' permissions */ #define __IO volatile /*!< Defines 'read / write' permissions */ /* following defines should be used for structure members */ #define __IM volatile const /*! Defines 'read only' structure member permissions */ #define __OM volatile /*! Defines 'write only' structure member permissions */ #define __IOM volatile /*! Defines 'read / write' structure member permissions */ /*@} end of group Cortex-M0+ */ /******************************************************************************* * Register Abstraction Core Register contain: - Core Register - Core NVIC Register - Core SCB Register - Core SysTick Register - Core MPU Register ******************************************************************************/ /** \defgroup CMSIS_core_register Defines and Type Definitions \brief Type definitions and defines for Cortex-M processor based devices. */ /** \ingroup CMSIS_core_register \defgroup CMSIS_CORE Status and Control Registers \brief Core Register type definitions. @{ */ /** \brief Union type to access the Application Program Status Register (APSR). */ typedef union { struct { uint32_t _reserved0:28; /*!< bit: 0..27 Reserved */ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ uint32_t C:1; /*!< bit: 29 Carry condition code flag */ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ uint32_t N:1; /*!< bit: 31 Negative condition code flag */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } APSR_Type; /* APSR Register Definitions */ #define APSR_N_Pos 31U /*!< APSR: N Position */ #define APSR_N_Msk (1UL << APSR_N_Pos) /*!< APSR: N Mask */ #define APSR_Z_Pos 30U /*!< APSR: Z Position */ #define APSR_Z_Msk (1UL << APSR_Z_Pos) /*!< APSR: Z Mask */ #define APSR_C_Pos 29U /*!< APSR: C Position */ #define APSR_C_Msk (1UL << APSR_C_Pos) /*!< APSR: C Mask */ #define APSR_V_Pos 28U /*!< APSR: V Position */ #define APSR_V_Msk (1UL << APSR_V_Pos) /*!< APSR: V Mask */ /** \brief Union type to access the Interrupt Program Status Register (IPSR). */ typedef union { struct { uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ uint32_t _reserved0:23; /*!< bit: 9..31 Reserved */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } IPSR_Type; /* IPSR Register Definitions */ #define IPSR_ISR_Pos 0U /*!< IPSR: ISR Position */ #define IPSR_ISR_Msk (0x1FFUL /*<< IPSR_ISR_Pos*/) /*!< IPSR: ISR Mask */ /** \brief Union type to access the Special-Purpose Program Status Registers (xPSR). */ typedef union { struct { uint32_t ISR:9; /*!< bit: 0.. 8 Exception number */ uint32_t _reserved0:15; /*!< bit: 9..23 Reserved */ uint32_t T:1; /*!< bit: 24 Thumb bit (read 0) */ uint32_t _reserved1:3; /*!< bit: 25..27 Reserved */ uint32_t V:1; /*!< bit: 28 Overflow condition code flag */ uint32_t C:1; /*!< bit: 29 Carry condition code flag */ uint32_t Z:1; /*!< bit: 30 Zero condition code flag */ uint32_t N:1; /*!< bit: 31 Negative condition code flag */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } xPSR_Type; /* xPSR Register Definitions */ #define xPSR_N_Pos 31U /*!< xPSR: N Position */ #define xPSR_N_Msk (1UL << xPSR_N_Pos) /*!< xPSR: N Mask */ #define xPSR_Z_Pos 30U /*!< xPSR: Z Position */ #define xPSR_Z_Msk (1UL << xPSR_Z_Pos) /*!< xPSR: Z Mask */ #define xPSR_C_Pos 29U /*!< xPSR: C Position */ #define xPSR_C_Msk (1UL << xPSR_C_Pos) /*!< xPSR: C Mask */ #define xPSR_V_Pos 28U /*!< xPSR: V Position */ #define xPSR_V_Msk (1UL << xPSR_V_Pos) /*!< xPSR: V Mask */ #define xPSR_T_Pos 24U /*!< xPSR: T Position */ #define xPSR_T_Msk (1UL << xPSR_T_Pos) /*!< xPSR: T Mask */ #define xPSR_ISR_Pos 0U /*!< xPSR: ISR Position */ #define xPSR_ISR_Msk (0x1FFUL /*<< xPSR_ISR_Pos*/) /*!< xPSR: ISR Mask */ /** \brief Union type to access the Control Registers (CONTROL). */ typedef union { struct { uint32_t nPRIV:1; /*!< bit: 0 Execution privilege in Thread mode */ uint32_t SPSEL:1; /*!< bit: 1 Stack to be used */ uint32_t _reserved1:30; /*!< bit: 2..31 Reserved */ } b; /*!< Structure used for bit access */ uint32_t w; /*!< Type used for word access */ } CONTROL_Type; /* CONTROL Register Definitions */ #define CONTROL_SPSEL_Pos 1U /*!< CONTROL: SPSEL Position */ #define CONTROL_SPSEL_Msk (1UL << CONTROL_SPSEL_Pos) /*!< CONTROL: SPSEL Mask */ #define CONTROL_nPRIV_Pos 0U /*!< CONTROL: nPRIV Position */ #define CONTROL_nPRIV_Msk (1UL /*<< CONTROL_nPRIV_Pos*/) /*!< CONTROL: nPRIV Mask */ /*@} end of group CMSIS_CORE */ /** \ingroup CMSIS_core_register \defgroup CMSIS_NVIC Nested Vectored Interrupt Controller (NVIC) \brief Type definitions for the NVIC Registers @{ */ /** \brief Structure type to access the Nested Vectored Interrupt Controller (NVIC). */ typedef struct { __IOM uint32_t ISER[1U]; /*!< Offset: 0x000 (R/W) Interrupt Set Enable Register */ uint32_t RESERVED0[31U]; __IOM uint32_t ICER[1U]; /*!< Offset: 0x080 (R/W) Interrupt Clear Enable Register */ uint32_t RESERVED1[31U]; __IOM uint32_t ISPR[1U]; /*!< Offset: 0x100 (R/W) Interrupt Set Pending Register */ uint32_t RESERVED2[31U]; __IOM uint32_t ICPR[1U]; /*!< Offset: 0x180 (R/W) Interrupt Clear Pending Register */ uint32_t RESERVED3[31U]; uint32_t RESERVED4[64U]; __IOM uint32_t IP[8U]; /*!< Offset: 0x300 (R/W) Interrupt Priority Register */ } NVIC_Type; /*@} end of group CMSIS_NVIC */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SCB System Control Block (SCB) \brief Type definitions for the System Control Block Registers @{ */ /** \brief Structure type to access the System Control Block (SCB). */ typedef struct { __IM uint32_t CPUID; /*!< Offset: 0x000 (R/ ) CPUID Base Register */ __IOM uint32_t ICSR; /*!< Offset: 0x004 (R/W) Interrupt Control and State Register */ #if defined (__VTOR_PRESENT) && (__VTOR_PRESENT == 1U) __IOM uint32_t VTOR; /*!< Offset: 0x008 (R/W) Vector Table Offset Register */ #else uint32_t RESERVED0; #endif __IOM uint32_t AIRCR; /*!< Offset: 0x00C (R/W) Application Interrupt and Reset Control Register */ __IOM uint32_t SCR; /*!< Offset: 0x010 (R/W) System Control Register */ __IOM uint32_t CCR; /*!< Offset: 0x014 (R/W) Configuration Control Register */ uint32_t RESERVED1; __IOM uint32_t SHP[2U]; /*!< Offset: 0x01C (R/W) System Handlers Priority Registers. [0] is RESERVED */ __IOM uint32_t SHCSR; /*!< Offset: 0x024 (R/W) System Handler Control and State Register */ } SCB_Type; /* SCB CPUID Register Definitions */ #define SCB_CPUID_IMPLEMENTER_Pos 24U /*!< SCB CPUID: IMPLEMENTER Position */ #define SCB_CPUID_IMPLEMENTER_Msk (0xFFUL << SCB_CPUID_IMPLEMENTER_Pos) /*!< SCB CPUID: IMPLEMENTER Mask */ #define SCB_CPUID_VARIANT_Pos 20U /*!< SCB CPUID: VARIANT Position */ #define SCB_CPUID_VARIANT_Msk (0xFUL << SCB_CPUID_VARIANT_Pos) /*!< SCB CPUID: VARIANT Mask */ #define SCB_CPUID_ARCHITECTURE_Pos 16U /*!< SCB CPUID: ARCHITECTURE Position */ #define SCB_CPUID_ARCHITECTURE_Msk (0xFUL << SCB_CPUID_ARCHITECTURE_Pos) /*!< SCB CPUID: ARCHITECTURE Mask */ #define SCB_CPUID_PARTNO_Pos 4U /*!< SCB CPUID: PARTNO Position */ #define SCB_CPUID_PARTNO_Msk (0xFFFUL << SCB_CPUID_PARTNO_Pos) /*!< SCB CPUID: PARTNO Mask */ #define SCB_CPUID_REVISION_Pos 0U /*!< SCB CPUID: REVISION Position */ #define SCB_CPUID_REVISION_Msk (0xFUL /*<< SCB_CPUID_REVISION_Pos*/) /*!< SCB CPUID: REVISION Mask */ /* SCB Interrupt Control State Register Definitions */ #define SCB_ICSR_NMIPENDSET_Pos 31U /*!< SCB ICSR: NMIPENDSET Position */ #define SCB_ICSR_NMIPENDSET_Msk (1UL << SCB_ICSR_NMIPENDSET_Pos) /*!< SCB ICSR: NMIPENDSET Mask */ #define SCB_ICSR_PENDSVSET_Pos 28U /*!< SCB ICSR: PENDSVSET Position */ #define SCB_ICSR_PENDSVSET_Msk (1UL << SCB_ICSR_PENDSVSET_Pos) /*!< SCB ICSR: PENDSVSET Mask */ #define SCB_ICSR_PENDSVCLR_Pos 27U /*!< SCB ICSR: PENDSVCLR Position */ #define SCB_ICSR_PENDSVCLR_Msk (1UL << SCB_ICSR_PENDSVCLR_Pos) /*!< SCB ICSR: PENDSVCLR Mask */ #define SCB_ICSR_PENDSTSET_Pos 26U /*!< SCB ICSR: PENDSTSET Position */ #define SCB_ICSR_PENDSTSET_Msk (1UL << SCB_ICSR_PENDSTSET_Pos) /*!< SCB ICSR: PENDSTSET Mask */ #define SCB_ICSR_PENDSTCLR_Pos 25U /*!< SCB ICSR: PENDSTCLR Position */ #define SCB_ICSR_PENDSTCLR_Msk (1UL << SCB_ICSR_PENDSTCLR_Pos) /*!< SCB ICSR: PENDSTCLR Mask */ #define SCB_ICSR_ISRPREEMPT_Pos 23U /*!< SCB ICSR: ISRPREEMPT Position */ #define SCB_ICSR_ISRPREEMPT_Msk (1UL << SCB_ICSR_ISRPREEMPT_Pos) /*!< SCB ICSR: ISRPREEMPT Mask */ #define SCB_ICSR_ISRPENDING_Pos 22U /*!< SCB ICSR: ISRPENDING Position */ #define SCB_ICSR_ISRPENDING_Msk (1UL << SCB_ICSR_ISRPENDING_Pos) /*!< SCB ICSR: ISRPENDING Mask */ #define SCB_ICSR_VECTPENDING_Pos 12U /*!< SCB ICSR: VECTPENDING Position */ #define SCB_ICSR_VECTPENDING_Msk (0x1FFUL << SCB_ICSR_VECTPENDING_Pos) /*!< SCB ICSR: VECTPENDING Mask */ #define SCB_ICSR_VECTACTIVE_Pos 0U /*!< SCB ICSR: VECTACTIVE Position */ #define SCB_ICSR_VECTACTIVE_Msk (0x1FFUL /*<< SCB_ICSR_VECTACTIVE_Pos*/) /*!< SCB ICSR: VECTACTIVE Mask */ #if defined (__VTOR_PRESENT) && (__VTOR_PRESENT == 1U) /* SCB Interrupt Control State Register Definitions */ #define SCB_VTOR_TBLOFF_Pos 8U /*!< SCB VTOR: TBLOFF Position */ #define SCB_VTOR_TBLOFF_Msk (0xFFFFFFUL << SCB_VTOR_TBLOFF_Pos) /*!< SCB VTOR: TBLOFF Mask */ #endif /* SCB Application Interrupt and Reset Control Register Definitions */ #define SCB_AIRCR_VECTKEY_Pos 16U /*!< SCB AIRCR: VECTKEY Position */ #define SCB_AIRCR_VECTKEY_Msk (0xFFFFUL << SCB_AIRCR_VECTKEY_Pos) /*!< SCB AIRCR: VECTKEY Mask */ #define SCB_AIRCR_VECTKEYSTAT_Pos 16U /*!< SCB AIRCR: VECTKEYSTAT Position */ #define SCB_AIRCR_VECTKEYSTAT_Msk (0xFFFFUL << SCB_AIRCR_VECTKEYSTAT_Pos) /*!< SCB AIRCR: VECTKEYSTAT Mask */ #define SCB_AIRCR_ENDIANESS_Pos 15U /*!< SCB AIRCR: ENDIANESS Position */ #define SCB_AIRCR_ENDIANESS_Msk (1UL << SCB_AIRCR_ENDIANESS_Pos) /*!< SCB AIRCR: ENDIANESS Mask */ #define SCB_AIRCR_SYSRESETREQ_Pos 2U /*!< SCB AIRCR: SYSRESETREQ Position */ #define SCB_AIRCR_SYSRESETREQ_Msk (1UL << SCB_AIRCR_SYSRESETREQ_Pos) /*!< SCB AIRCR: SYSRESETREQ Mask */ #define SCB_AIRCR_VECTCLRACTIVE_Pos 1U /*!< SCB AIRCR: VECTCLRACTIVE Position */ #define SCB_AIRCR_VECTCLRACTIVE_Msk (1UL << SCB_AIRCR_VECTCLRACTIVE_Pos) /*!< SCB AIRCR: VECTCLRACTIVE Mask */ /* SCB System Control Register Definitions */ #define SCB_SCR_SEVONPEND_Pos 4U /*!< SCB SCR: SEVONPEND Position */ #define SCB_SCR_SEVONPEND_Msk (1UL << SCB_SCR_SEVONPEND_Pos) /*!< SCB SCR: SEVONPEND Mask */ #define SCB_SCR_SLEEPDEEP_Pos 2U /*!< SCB SCR: SLEEPDEEP Position */ #define SCB_SCR_SLEEPDEEP_Msk (1UL << SCB_SCR_SLEEPDEEP_Pos) /*!< SCB SCR: SLEEPDEEP Mask */ #define SCB_SCR_SLEEPONEXIT_Pos 1U /*!< SCB SCR: SLEEPONEXIT Position */ #define SCB_SCR_SLEEPONEXIT_Msk (1UL << SCB_SCR_SLEEPONEXIT_Pos) /*!< SCB SCR: SLEEPONEXIT Mask */ /* SCB Configuration Control Register Definitions */ #define SCB_CCR_STKALIGN_Pos 9U /*!< SCB CCR: STKALIGN Position */ #define SCB_CCR_STKALIGN_Msk (1UL << SCB_CCR_STKALIGN_Pos) /*!< SCB CCR: STKALIGN Mask */ #define SCB_CCR_UNALIGN_TRP_Pos 3U /*!< SCB CCR: UNALIGN_TRP Position */ #define SCB_CCR_UNALIGN_TRP_Msk (1UL << SCB_CCR_UNALIGN_TRP_Pos) /*!< SCB CCR: UNALIGN_TRP Mask */ /* SCB System Handler Control and State Register Definitions */ #define SCB_SHCSR_SVCALLPENDED_Pos 15U /*!< SCB SHCSR: SVCALLPENDED Position */ #define SCB_SHCSR_SVCALLPENDED_Msk (1UL << SCB_SHCSR_SVCALLPENDED_Pos) /*!< SCB SHCSR: SVCALLPENDED Mask */ /*@} end of group CMSIS_SCB */ /** \ingroup CMSIS_core_register \defgroup CMSIS_SysTick System Tick Timer (SysTick) \brief Type definitions for the System Timer Registers. @{ */ /** \brief Structure type to access the System Timer (SysTick). */ typedef struct { __IOM uint32_t CTRL; /*!< Offset: 0x000 (R/W) SysTick Control and Status Register */ __IOM uint32_t LOAD; /*!< Offset: 0x004 (R/W) SysTick Reload Value Register */ __IOM uint32_t VAL; /*!< Offset: 0x008 (R/W) SysTick Current Value Register */ __IM uint32_t CALIB; /*!< Offset: 0x00C (R/ ) SysTick Calibration Register */ } SysTick_Type; /* SysTick Control / Status Register Definitions */ #define SysTick_CTRL_COUNTFLAG_Pos 16U /*!< SysTick CTRL: COUNTFLAG Position */ #define SysTick_CTRL_COUNTFLAG_Msk (1UL << SysTick_CTRL_COUNTFLAG_Pos) /*!< SysTick CTRL: COUNTFLAG Mask */ #define SysTick_CTRL_CLKSOURCE_Pos 2U /*!< SysTick CTRL: CLKSOURCE Position */ #define SysTick_CTRL_CLKSOURCE_Msk (1UL << SysTick_CTRL_CLKSOURCE_Pos) /*!< SysTick CTRL: CLKSOURCE Mask */ #define SysTick_CTRL_TICKINT_Pos 1U /*!< SysTick CTRL: TICKINT Position */ #define SysTick_CTRL_TICKINT_Msk (1UL << SysTick_CTRL_TICKINT_Pos) /*!< SysTick CTRL: TICKINT Mask */ #define SysTick_CTRL_ENABLE_Pos 0U /*!< SysTick CTRL: ENABLE Position */ #define SysTick_CTRL_ENABLE_Msk (1UL /*<< SysTick_CTRL_ENABLE_Pos*/) /*!< SysTick CTRL: ENABLE Mask */ /* SysTick Reload Register Definitions */ #define SysTick_LOAD_RELOAD_Pos 0U /*!< SysTick LOAD: RELOAD Position */ #define SysTick_LOAD_RELOAD_Msk (0xFFFFFFUL /*<< SysTick_LOAD_RELOAD_Pos*/) /*!< SysTick LOAD: RELOAD Mask */ /* SysTick Current Register Definitions */ #define SysTick_VAL_CURRENT_Pos 0U /*!< SysTick VAL: CURRENT Position */ #define SysTick_VAL_CURRENT_Msk (0xFFFFFFUL /*<< SysTick_VAL_CURRENT_Pos*/) /*!< SysTick VAL: CURRENT Mask */ /* SysTick Calibration Register Definitions */ #define SysTick_CALIB_NOREF_Pos 31U /*!< SysTick CALIB: NOREF Position */ #define SysTick_CALIB_NOREF_Msk (1UL << SysTick_CALIB_NOREF_Pos) /*!< SysTick CALIB: NOREF Mask */ #define SysTick_CALIB_SKEW_Pos 30U /*!< SysTick CALIB: SKEW Position */ #define SysTick_CALIB_SKEW_Msk (1UL << SysTick_CALIB_SKEW_Pos) /*!< SysTick CALIB: SKEW Mask */ #define SysTick_CALIB_TENMS_Pos 0U /*!< SysTick CALIB: TENMS Position */ #define SysTick_CALIB_TENMS_Msk (0xFFFFFFUL /*<< SysTick_CALIB_TENMS_Pos*/) /*!< SysTick CALIB: TENMS Mask */ /*@} end of group CMSIS_SysTick */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) /** \ingroup CMSIS_core_register \defgroup CMSIS_MPU Memory Protection Unit (MPU) \brief Type definitions for the Memory Protection Unit (MPU) @{ */ /** \brief Structure type to access the Memory Protection Unit (MPU). */ typedef struct { __IM uint32_t TYPE; /*!< Offset: 0x000 (R/ ) MPU Type Register */ __IOM uint32_t CTRL; /*!< Offset: 0x004 (R/W) MPU Control Register */ __IOM uint32_t RNR; /*!< Offset: 0x008 (R/W) MPU Region RNRber Register */ __IOM uint32_t RBAR; /*!< Offset: 0x00C (R/W) MPU Region Base Address Register */ __IOM uint32_t RASR; /*!< Offset: 0x010 (R/W) MPU Region Attribute and Size Register */ } MPU_Type; #define MPU_TYPE_RALIASES 1U /* MPU Type Register Definitions */ #define MPU_TYPE_IREGION_Pos 16U /*!< MPU TYPE: IREGION Position */ #define MPU_TYPE_IREGION_Msk (0xFFUL << MPU_TYPE_IREGION_Pos) /*!< MPU TYPE: IREGION Mask */ #define MPU_TYPE_DREGION_Pos 8U /*!< MPU TYPE: DREGION Position */ #define MPU_TYPE_DREGION_Msk (0xFFUL << MPU_TYPE_DREGION_Pos) /*!< MPU TYPE: DREGION Mask */ #define MPU_TYPE_SEPARATE_Pos 0U /*!< MPU TYPE: SEPARATE Position */ #define MPU_TYPE_SEPARATE_Msk (1UL /*<< MPU_TYPE_SEPARATE_Pos*/) /*!< MPU TYPE: SEPARATE Mask */ /* MPU Control Register Definitions */ #define MPU_CTRL_PRIVDEFENA_Pos 2U /*!< MPU CTRL: PRIVDEFENA Position */ #define MPU_CTRL_PRIVDEFENA_Msk (1UL << MPU_CTRL_PRIVDEFENA_Pos) /*!< MPU CTRL: PRIVDEFENA Mask */ #define MPU_CTRL_HFNMIENA_Pos 1U /*!< MPU CTRL: HFNMIENA Position */ #define MPU_CTRL_HFNMIENA_Msk (1UL << MPU_CTRL_HFNMIENA_Pos) /*!< MPU CTRL: HFNMIENA Mask */ #define MPU_CTRL_ENABLE_Pos 0U /*!< MPU CTRL: ENABLE Position */ #define MPU_CTRL_ENABLE_Msk (1UL /*<< MPU_CTRL_ENABLE_Pos*/) /*!< MPU CTRL: ENABLE Mask */ /* MPU Region Number Register Definitions */ #define MPU_RNR_REGION_Pos 0U /*!< MPU RNR: REGION Position */ #define MPU_RNR_REGION_Msk (0xFFUL /*<< MPU_RNR_REGION_Pos*/) /*!< MPU RNR: REGION Mask */ /* MPU Region Base Address Register Definitions */ #define MPU_RBAR_ADDR_Pos 8U /*!< MPU RBAR: ADDR Position */ #define MPU_RBAR_ADDR_Msk (0xFFFFFFUL << MPU_RBAR_ADDR_Pos) /*!< MPU RBAR: ADDR Mask */ #define MPU_RBAR_VALID_Pos 4U /*!< MPU RBAR: VALID Position */ #define MPU_RBAR_VALID_Msk (1UL << MPU_RBAR_VALID_Pos) /*!< MPU RBAR: VALID Mask */ #define MPU_RBAR_REGION_Pos 0U /*!< MPU RBAR: REGION Position */ #define MPU_RBAR_REGION_Msk (0xFUL /*<< MPU_RBAR_REGION_Pos*/) /*!< MPU RBAR: REGION Mask */ /* MPU Region Attribute and Size Register Definitions */ #define MPU_RASR_ATTRS_Pos 16U /*!< MPU RASR: MPU Region Attribute field Position */ #define MPU_RASR_ATTRS_Msk (0xFFFFUL << MPU_RASR_ATTRS_Pos) /*!< MPU RASR: MPU Region Attribute field Mask */ #define MPU_RASR_XN_Pos 28U /*!< MPU RASR: ATTRS.XN Position */ #define MPU_RASR_XN_Msk (1UL << MPU_RASR_XN_Pos) /*!< MPU RASR: ATTRS.XN Mask */ #define MPU_RASR_AP_Pos 24U /*!< MPU RASR: ATTRS.AP Position */ #define MPU_RASR_AP_Msk (0x7UL << MPU_RASR_AP_Pos) /*!< MPU RASR: ATTRS.AP Mask */ #define MPU_RASR_TEX_Pos 19U /*!< MPU RASR: ATTRS.TEX Position */ #define MPU_RASR_TEX_Msk (0x7UL << MPU_RASR_TEX_Pos) /*!< MPU RASR: ATTRS.TEX Mask */ #define MPU_RASR_S_Pos 18U /*!< MPU RASR: ATTRS.S Position */ #define MPU_RASR_S_Msk (1UL << MPU_RASR_S_Pos) /*!< MPU RASR: ATTRS.S Mask */ #define MPU_RASR_C_Pos 17U /*!< MPU RASR: ATTRS.C Position */ #define MPU_RASR_C_Msk (1UL << MPU_RASR_C_Pos) /*!< MPU RASR: ATTRS.C Mask */ #define MPU_RASR_B_Pos 16U /*!< MPU RASR: ATTRS.B Position */ #define MPU_RASR_B_Msk (1UL << MPU_RASR_B_Pos) /*!< MPU RASR: ATTRS.B Mask */ #define MPU_RASR_SRD_Pos 8U /*!< MPU RASR: Sub-Region Disable Position */ #define MPU_RASR_SRD_Msk (0xFFUL << MPU_RASR_SRD_Pos) /*!< MPU RASR: Sub-Region Disable Mask */ #define MPU_RASR_SIZE_Pos 1U /*!< MPU RASR: Region Size Field Position */ #define MPU_RASR_SIZE_Msk (0x1FUL << MPU_RASR_SIZE_Pos) /*!< MPU RASR: Region Size Field Mask */ #define MPU_RASR_ENABLE_Pos 0U /*!< MPU RASR: Region enable bit Position */ #define MPU_RASR_ENABLE_Msk (1UL /*<< MPU_RASR_ENABLE_Pos*/) /*!< MPU RASR: Region enable bit Disable Mask */ /*@} end of group CMSIS_MPU */ #endif /** \ingroup CMSIS_core_register \defgroup CMSIS_CoreDebug Core Debug Registers (CoreDebug) \brief Cortex-M0+ Core Debug Registers (DCB registers, SHCSR, and DFSR) are only accessible over DAP and not via processor. Therefore they are not covered by the Cortex-M0+ header file. @{ */ /*@} end of group CMSIS_CoreDebug */ /** \ingroup CMSIS_core_register \defgroup CMSIS_core_bitfield Core register bit field macros \brief Macros for use with bit field definitions (xxx_Pos, xxx_Msk). @{ */ /** \brief Mask and shift a bit field value for use in a register bit range. \param[in] field Name of the register bit field. \param[in] value Value of the bit field. This parameter is interpreted as an uint32_t type. \return Masked and shifted value. */ #define _VAL2FLD(field, value) (((uint32_t)(value) << field ## _Pos) & field ## _Msk) /** \brief Mask and shift a register value to extract a bit filed value. \param[in] field Name of the register bit field. \param[in] value Value of register. This parameter is interpreted as an uint32_t type. \return Masked and shifted bit field value. */ #define _FLD2VAL(field, value) (((uint32_t)(value) & field ## _Msk) >> field ## _Pos) /*@} end of group CMSIS_core_bitfield */ /** \ingroup CMSIS_core_register \defgroup CMSIS_core_base Core Definitions \brief Definitions for base addresses, unions, and structures. @{ */ /* Memory mapping of Core Hardware */ #define SCS_BASE (0xE000E000UL) /*!< System Control Space Base Address */ #define SysTick_BASE (SCS_BASE + 0x0010UL) /*!< SysTick Base Address */ #define NVIC_BASE (SCS_BASE + 0x0100UL) /*!< NVIC Base Address */ #define SCB_BASE (SCS_BASE + 0x0D00UL) /*!< System Control Block Base Address */ #define SCB ((SCB_Type *) SCB_BASE ) /*!< SCB configuration struct */ #define SysTick ((SysTick_Type *) SysTick_BASE ) /*!< SysTick configuration struct */ #define NVIC ((NVIC_Type *) NVIC_BASE ) /*!< NVIC configuration struct */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) #define MPU_BASE (SCS_BASE + 0x0D90UL) /*!< Memory Protection Unit */ #define MPU ((MPU_Type *) MPU_BASE ) /*!< Memory Protection Unit */ #endif /*@} */ /******************************************************************************* * Hardware Abstraction Layer Core Function Interface contains: - Core NVIC Functions - Core SysTick Functions - Core Register Access Functions ******************************************************************************/ /** \defgroup CMSIS_Core_FunctionInterface Functions and Instructions Reference */ /* ########################## NVIC functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_NVICFunctions NVIC Functions \brief Functions that manage interrupts and exceptions via the NVIC. @{ */ #ifdef CMSIS_NVIC_VIRTUAL #ifndef CMSIS_NVIC_VIRTUAL_HEADER_FILE #define CMSIS_NVIC_VIRTUAL_HEADER_FILE "cmsis_nvic_virtual.h" #endif #include CMSIS_NVIC_VIRTUAL_HEADER_FILE #else #define NVIC_SetPriorityGrouping __NVIC_SetPriorityGrouping #define NVIC_GetPriorityGrouping __NVIC_GetPriorityGrouping #define NVIC_EnableIRQ __NVIC_EnableIRQ #define NVIC_GetEnableIRQ __NVIC_GetEnableIRQ #define NVIC_DisableIRQ __NVIC_DisableIRQ #define NVIC_GetPendingIRQ __NVIC_GetPendingIRQ #define NVIC_SetPendingIRQ __NVIC_SetPendingIRQ #define NVIC_ClearPendingIRQ __NVIC_ClearPendingIRQ /*#define NVIC_GetActive __NVIC_GetActive not available for Cortex-M0+ */ #define NVIC_SetPriority __NVIC_SetPriority #define NVIC_GetPriority __NVIC_GetPriority #define NVIC_SystemReset __NVIC_SystemReset #endif /* CMSIS_NVIC_VIRTUAL */ #ifdef CMSIS_VECTAB_VIRTUAL #ifndef CMSIS_VECTAB_VIRTUAL_HEADER_FILE #define CMSIS_VECTAB_VIRTUAL_HEADER_FILE "cmsis_vectab_virtual.h" #endif #include CMSIS_VECTAB_VIRTUAL_HEADER_FILE #else #define NVIC_SetVector __NVIC_SetVector #define NVIC_GetVector __NVIC_GetVector #endif /* (CMSIS_VECTAB_VIRTUAL) */ #define NVIC_USER_IRQ_OFFSET 16 /* The following EXC_RETURN values are saved the LR on exception entry */ #define EXC_RETURN_HANDLER (0xFFFFFFF1UL) /* return to Handler mode, uses MSP after return */ #define EXC_RETURN_THREAD_MSP (0xFFFFFFF9UL) /* return to Thread mode, uses MSP after return */ #define EXC_RETURN_THREAD_PSP (0xFFFFFFFDUL) /* return to Thread mode, uses PSP after return */ /* Interrupt Priorities are WORD accessible only under Armv6-M */ /* The following MACROS handle generation of the register offset and byte masks */ #define _BIT_SHIFT(IRQn) ( ((((uint32_t)(int32_t)(IRQn)) ) & 0x03UL) * 8UL) #define _SHP_IDX(IRQn) ( (((((uint32_t)(int32_t)(IRQn)) & 0x0FUL)-8UL) >> 2UL) ) #define _IP_IDX(IRQn) ( (((uint32_t)(int32_t)(IRQn)) >> 2UL) ) #define __NVIC_SetPriorityGrouping(X) (void)(X) #define __NVIC_GetPriorityGrouping() (0U) /** \brief Enable Interrupt \details Enables a device specific interrupt in the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_EnableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { __COMPILER_BARRIER(); NVIC->ISER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); __COMPILER_BARRIER(); } } /** \brief Get Interrupt Enable status \details Returns a device specific interrupt enable status from the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt is not enabled. \return 1 Interrupt is enabled. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetEnableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ISER[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Disable Interrupt \details Disables a device specific interrupt in the NVIC interrupt controller. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_DisableIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ICER[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); __DSB(); __ISB(); } } /** \brief Get Pending Interrupt \details Reads the NVIC pending register and returns the pending bit for the specified device specific interrupt. \param [in] IRQn Device specific interrupt number. \return 0 Interrupt status is not pending. \return 1 Interrupt status is pending. \note IRQn must not be negative. */ __STATIC_INLINE uint32_t __NVIC_GetPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->ISPR[0U] & (1UL << (((uint32_t)IRQn) & 0x1FUL))) != 0UL) ? 1UL : 0UL)); } else { return(0U); } } /** \brief Set Pending Interrupt \details Sets the pending bit of a device specific interrupt in the NVIC pending register. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_SetPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ISPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Clear Pending Interrupt \details Clears the pending bit of a device specific interrupt in the NVIC pending register. \param [in] IRQn Device specific interrupt number. \note IRQn must not be negative. */ __STATIC_INLINE void __NVIC_ClearPendingIRQ(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { NVIC->ICPR[0U] = (uint32_t)(1UL << (((uint32_t)IRQn) & 0x1FUL)); } } /** \brief Set Interrupt Priority \details Sets the priority of a device specific interrupt or a processor exception. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \param [in] priority Priority to set. \note The priority cannot be set for every processor exception. */ __STATIC_INLINE void __NVIC_SetPriority(IRQn_Type IRQn, uint32_t priority) { if ((int32_t)(IRQn) >= 0) { NVIC->IP[_IP_IDX(IRQn)] = ((uint32_t)(NVIC->IP[_IP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) | (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn))); } else { SCB->SHP[_SHP_IDX(IRQn)] = ((uint32_t)(SCB->SHP[_SHP_IDX(IRQn)] & ~(0xFFUL << _BIT_SHIFT(IRQn))) | (((priority << (8U - __NVIC_PRIO_BITS)) & (uint32_t)0xFFUL) << _BIT_SHIFT(IRQn))); } } /** \brief Get Interrupt Priority \details Reads the priority of a device specific interrupt or a processor exception. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Interrupt Priority. Value is aligned automatically to the implemented priority bits of the microcontroller. */ __STATIC_INLINE uint32_t __NVIC_GetPriority(IRQn_Type IRQn) { if ((int32_t)(IRQn) >= 0) { return((uint32_t)(((NVIC->IP[ _IP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS))); } else { return((uint32_t)(((SCB->SHP[_SHP_IDX(IRQn)] >> _BIT_SHIFT(IRQn) ) & (uint32_t)0xFFUL) >> (8U - __NVIC_PRIO_BITS))); } } /** \brief Encode Priority \details Encodes the priority for an interrupt with the given priority group, preemptive priority value, and subpriority value. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS), the smallest possible priority group is set. \param [in] PriorityGroup Used priority group. \param [in] PreemptPriority Preemptive priority value (starting from 0). \param [in] SubPriority Subpriority value (starting from 0). \return Encoded priority. Value can be used in the function \ref NVIC_SetPriority(). */ __STATIC_INLINE uint32_t NVIC_EncodePriority (uint32_t PriorityGroup, uint32_t PreemptPriority, uint32_t SubPriority) { uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ uint32_t PreemptPriorityBits; uint32_t SubPriorityBits; PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); return ( ((PreemptPriority & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL)) << SubPriorityBits) | ((SubPriority & (uint32_t)((1UL << (SubPriorityBits )) - 1UL))) ); } /** \brief Decode Priority \details Decodes an interrupt priority value with a given priority group to preemptive priority value and subpriority value. In case of a conflict between priority grouping and available priority bits (__NVIC_PRIO_BITS) the smallest possible priority group is set. \param [in] Priority Priority value, which can be retrieved with the function \ref NVIC_GetPriority(). \param [in] PriorityGroup Used priority group. \param [out] pPreemptPriority Preemptive priority value (starting from 0). \param [out] pSubPriority Subpriority value (starting from 0). */ __STATIC_INLINE void NVIC_DecodePriority (uint32_t Priority, uint32_t PriorityGroup, uint32_t* const pPreemptPriority, uint32_t* const pSubPriority) { uint32_t PriorityGroupTmp = (PriorityGroup & (uint32_t)0x07UL); /* only values 0..7 are used */ uint32_t PreemptPriorityBits; uint32_t SubPriorityBits; PreemptPriorityBits = ((7UL - PriorityGroupTmp) > (uint32_t)(__NVIC_PRIO_BITS)) ? (uint32_t)(__NVIC_PRIO_BITS) : (uint32_t)(7UL - PriorityGroupTmp); SubPriorityBits = ((PriorityGroupTmp + (uint32_t)(__NVIC_PRIO_BITS)) < (uint32_t)7UL) ? (uint32_t)0UL : (uint32_t)((PriorityGroupTmp - 7UL) + (uint32_t)(__NVIC_PRIO_BITS)); *pPreemptPriority = (Priority >> SubPriorityBits) & (uint32_t)((1UL << (PreemptPriorityBits)) - 1UL); *pSubPriority = (Priority ) & (uint32_t)((1UL << (SubPriorityBits )) - 1UL); } /** \brief Set Interrupt Vector \details Sets an interrupt vector in SRAM based interrupt vector table. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. VTOR must been relocated to SRAM before. If VTOR is not present address 0 must be mapped to SRAM. \param [in] IRQn Interrupt number \param [in] vector Address of interrupt handler function */ __STATIC_INLINE void __NVIC_SetVector(IRQn_Type IRQn, uint32_t vector) { #if defined (__VTOR_PRESENT) && (__VTOR_PRESENT == 1U) uint32_t vectors = SCB->VTOR; #else uint32_t vectors = 0x0U; #endif (* (int *) (vectors + ((int32_t)IRQn + NVIC_USER_IRQ_OFFSET) * 4)) = vector; /* ARM Application Note 321 states that the M0+ does not require the architectural barrier */ } /** \brief Get Interrupt Vector \details Reads an interrupt vector from interrupt vector table. The interrupt number can be positive to specify a device specific interrupt, or negative to specify a processor exception. \param [in] IRQn Interrupt number. \return Address of interrupt handler function */ __STATIC_INLINE uint32_t __NVIC_GetVector(IRQn_Type IRQn) { #if defined (__VTOR_PRESENT) && (__VTOR_PRESENT == 1U) uint32_t vectors = SCB->VTOR; #else uint32_t vectors = 0x0U; #endif return (uint32_t)(* (int *) (vectors + ((int32_t)IRQn + NVIC_USER_IRQ_OFFSET) * 4)); } /** \brief System Reset \details Initiates a system reset request to reset the MCU. */ __NO_RETURN __STATIC_INLINE void __NVIC_SystemReset(void) { __DSB(); /* Ensure all outstanding memory accesses included buffered write are completed before reset */ SCB->AIRCR = ((0x5FAUL << SCB_AIRCR_VECTKEY_Pos) | SCB_AIRCR_SYSRESETREQ_Msk); __DSB(); /* Ensure completion of memory access */ for(;;) /* wait until reset */ { __NOP(); } } /*@} end of CMSIS_Core_NVICFunctions */ /* ########################## MPU functions #################################### */ #if defined (__MPU_PRESENT) && (__MPU_PRESENT == 1U) #include "mpu_armv7.h" #endif /* ########################## FPU functions #################################### */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_FpuFunctions FPU Functions \brief Function that provides FPU type. @{ */ /** \brief get FPU type \details returns the FPU type \returns - \b 0: No FPU - \b 1: Single precision FPU - \b 2: Double + Single precision FPU */ __STATIC_INLINE uint32_t SCB_GetFPUType(void) { return 0U; /* No FPU */ } /*@} end of CMSIS_Core_FpuFunctions */ /* ################################## SysTick function ############################################ */ /** \ingroup CMSIS_Core_FunctionInterface \defgroup CMSIS_Core_SysTickFunctions SysTick Functions \brief Functions that configure the System. @{ */ #if defined (__Vendor_SysTickConfig) && (__Vendor_SysTickConfig == 0U) /** \brief System Tick Configuration \details Initializes the System Timer and its interrupt, and starts the System Tick Timer. Counter is in free running mode to generate periodic interrupts. \param [in] ticks Number of ticks between two interrupts. \return 0 Function succeeded. \return 1 Function failed. \note When the variable <b>__Vendor_SysTickConfig</b> is set to 1, then the function <b>SysTick_Config</b> is not included. In this case, the file <b><i>device</i>.h</b> must contain a vendor-specific implementation of this function. */ __STATIC_INLINE uint32_t SysTick_Config(uint32_t ticks) { if ((ticks - 1UL) > SysTick_LOAD_RELOAD_Msk) { return (1UL); /* Reload value impossible */ } SysTick->LOAD = (uint32_t)(ticks - 1UL); /* set reload register */ NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) - 1UL); /* set Priority for Systick Interrupt */ SysTick->VAL = 0UL; /* Load the SysTick Counter Value */ SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_TICKINT_Msk | SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */ return (0UL); /* Function successful */ } #endif /*@} end of CMSIS_Core_SysTickFunctions */ #ifdef __cplusplus } #endif #endif /* __CORE_CM0PLUS_H_DEPENDANT */ #endif /* __CMSIS_GENERIC */ Diff truncated after the above file
Drivers/CMSIS/Include/core_cm1.h Drivers/CMSIS/Include/core_cm23.h Drivers/CMSIS/Include/core_cm3.h Drivers/CMSIS/Include/core_cm33.h Drivers/CMSIS/Include/core_cm35p.h Drivers/CMSIS/Include/core_cm4.h Drivers/CMSIS/Include/core_cm7.h Drivers/CMSIS/Include/core_sc000.h Drivers/CMSIS/Include/core_sc300.h Drivers/CMSIS/Include/mpu_armv7.h Drivers/CMSIS/Include/mpu_armv8.h Drivers/CMSIS/Include/tz_context.h Drivers/CMSIS/LICENSE.txt Drivers/STM32L4xx_HAL_Driver/Inc/Legacy/stm32_hal_legacy.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_cortex.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_def.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_dma.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_dma_ex.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_exti.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_flash.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_flash_ex.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_flash_ramfunc.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_gpio.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_gpio_ex.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_i2c.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_i2c_ex.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_pwr.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_pwr_ex.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_rcc.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_hal_rcc_ex.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_ll_bus.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_ll_cortex.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_ll_crs.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_ll_dma.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_ll_dmamux.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_ll_exti.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_ll_gpio.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_ll_pwr.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_ll_rcc.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_ll_system.h Drivers/STM32L4xx_HAL_Driver/Inc/stm32l4xx_ll_utils.h Drivers/STM32L4xx_HAL_Driver/LICENSE.txt Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_cortex.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_dma.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_dma_ex.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_exti.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_flash.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_flash_ex.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_flash_ramfunc.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_gpio.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_i2c.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_i2c_ex.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_pwr.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_pwr_ex.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc.c Drivers/STM32L4xx_HAL_Driver/Src/stm32l4xx_hal_rcc_ex.c ISKBoard.ioc STM32L431RCTX_FLASH.ld