New file |
| | |
| | | /********************************************************************************* |
| | | * Copyright: (C) 2012 Guo Wenxue <guowenxue@gmail.com> |
| | | * All rights reserved. |
| | | * |
| | | * Filename: list.h |
| | | * Description: This file is copied from Linux kernel, which provide link list API. |
| | | * |
| | | * Version: 1.0.0(08/09/2012~) |
| | | * Author: Guo Wenxue <guowenxue@gmail.com> |
| | | * ChangeLog: 1, Release initial version on "08/09/2012 02:24:34 AM" |
| | | * |
| | | ********************************************************************************/ |
| | | |
| | | #ifndef _LINUX_LIST_H |
| | | #define _LINUX_LIST_H |
| | | |
| | | #include <linux/stddef.h> |
| | | |
| | | |
| | | /** |
| | | * container_of - cast a member of a structure out to the containing structure |
| | | * @ptr: the pointer to the member. |
| | | * @type: the type of the container struct this is embedded in. |
| | | * @member: the name of the member within the struct. |
| | | * |
| | | */ |
| | | #undef offsetof |
| | | #define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER) |
| | | #define container_of(ptr, type, member) ({ \ |
| | | const typeof( ((type *)0)->member ) *__mptr = (ptr); \ |
| | | (type *)( (char *)__mptr - offsetof(type,member) );}) |
| | | |
| | | |
| | | /* |
| | | * Architectures might want to move the poison pointer offset |
| | | * into some well-recognized area such as 0xdead000000000000, |
| | | * that is also not mappable by user-space exploits: |
| | | */ |
| | | #ifdef CONFIG_ILLEGAL_POINTER_VALUE |
| | | # define POISON_POINTER_DELTA _AC(CONFIG_ILLEGAL_POINTER_VALUE, UL) |
| | | #else |
| | | # define POISON_POINTER_DELTA 0 |
| | | #endif |
| | | |
| | | /* |
| | | * These are non-NULL pointers that will result in page faults |
| | | * under normal circumstances, used to verify that nobody uses |
| | | * non-initialized list entries. |
| | | */ |
| | | #define LIST_POISON1 ((void *) 0x00100100 + POISON_POINTER_DELTA) |
| | | #define LIST_POISON2 ((void *) 0x00200200 + POISON_POINTER_DELTA) |
| | | |
| | | #ifndef ARCH_HAS_PREFETCH |
| | | #define ARCH_HAS_PREFETCH |
| | | static inline void prefetch(const void *x) {;} |
| | | #endif |
| | | |
| | | /* |
| | | * Simple doubly linked list implementation. |
| | | * |
| | | * Some of the internal functions ("__xxx") are useful when |
| | | * manipulating whole lists rather than single entries, as |
| | | * sometimes we already know the next/prev entries and we can |
| | | * generate better code by using them directly rather than |
| | | * using the generic single-entry routines. |
| | | */ |
| | | |
| | | struct list_head { |
| | | struct list_head *next, *prev; |
| | | }; |
| | | |
| | | #define LIST_HEAD_INIT(name) { &(name), &(name) } |
| | | |
| | | #define LIST_HEAD(name) \ |
| | | struct list_head name = LIST_HEAD_INIT(name) |
| | | |
| | | static inline void INIT_LIST_HEAD(struct list_head *list) |
| | | { |
| | | list->next = list; |
| | | list->prev = list; |
| | | } |
| | | |
| | | /* |
| | | * Insert a new entry between two known consecutive entries. |
| | | * |
| | | * This is only for internal list manipulation where we know |
| | | * the prev/next entries already! |
| | | */ |
| | | static inline void __list_add(struct list_head *new, |
| | | struct list_head *prev, |
| | | struct list_head *next) |
| | | { |
| | | next->prev = new; |
| | | new->next = next; |
| | | new->prev = prev; |
| | | prev->next = new; |
| | | } |
| | | |
| | | /** |
| | | * list_add - add a new entry |
| | | * @new: new entry to be added |
| | | * @head: list head to add it after |
| | | * |
| | | * Insert a new entry after the specified head. |
| | | * This is good for implementing stacks. |
| | | */ |
| | | static inline void list_add(struct list_head *new, struct list_head *head) |
| | | { |
| | | __list_add(new, head, head->next); |
| | | } |
| | | |
| | | /** |
| | | * list_add_tail - add a new entry |
| | | * @new: new entry to be added |
| | | * @head: list head to add it before |
| | | * |
| | | * Insert a new entry before the specified head. |
| | | * This is useful for implementing queues. |
| | | */ |
| | | static inline void list_add_tail(struct list_head *new, struct list_head *head) |
| | | { |
| | | __list_add(new, head->prev, head); |
| | | } |
| | | |
| | | /* |
| | | * Delete a list entry by making the prev/next entries |
| | | * point to each other. |
| | | * |
| | | * This is only for internal list manipulation where we know |
| | | * the prev/next entries already! |
| | | */ |
| | | static inline void __list_del(struct list_head *prev, struct list_head *next) |
| | | { |
| | | next->prev = prev; |
| | | prev->next = next; |
| | | } |
| | | |
| | | /** |
| | | * list_del - deletes entry from list. |
| | | * @entry: the element to delete from the list. |
| | | * Note: list_empty() on entry does not return true after this, the entry is |
| | | * in an undefined state. |
| | | */ |
| | | static inline void list_del(struct list_head *entry) |
| | | { |
| | | __list_del(entry->prev, entry->next); |
| | | entry->next = LIST_POISON1; |
| | | entry->prev = LIST_POISON2; |
| | | } |
| | | |
| | | /** |
| | | * list_replace - replace old entry by new one |
| | | * @old : the element to be replaced |
| | | * @new : the new element to insert |
| | | * |
| | | * If @old was empty, it will be overwritten. |
| | | */ |
| | | static inline void list_replace(struct list_head *old, |
| | | struct list_head *new) |
| | | { |
| | | new->next = old->next; |
| | | new->next->prev = new; |
| | | new->prev = old->prev; |
| | | new->prev->next = new; |
| | | } |
| | | |
| | | static inline void list_replace_init(struct list_head *old, |
| | | struct list_head *new) |
| | | { |
| | | list_replace(old, new); |
| | | INIT_LIST_HEAD(old); |
| | | } |
| | | |
| | | /** |
| | | * list_del_init - deletes entry from list and reinitialize it. |
| | | * @entry: the element to delete from the list. |
| | | */ |
| | | static inline void list_del_init(struct list_head *entry) |
| | | { |
| | | __list_del(entry->prev, entry->next); |
| | | INIT_LIST_HEAD(entry); |
| | | } |
| | | |
| | | /** |
| | | * list_move - delete from one list and add as another's head |
| | | * @list: the entry to move |
| | | * @head: the head that will precede our entry |
| | | */ |
| | | static inline void list_move(struct list_head *list, struct list_head *head) |
| | | { |
| | | __list_del(list->prev, list->next); |
| | | list_add(list, head); |
| | | } |
| | | |
| | | /** |
| | | * list_move_tail - delete from one list and add as another's tail |
| | | * @list: the entry to move |
| | | * @head: the head that will follow our entry |
| | | */ |
| | | static inline void list_move_tail(struct list_head *list, |
| | | struct list_head *head) |
| | | { |
| | | __list_del(list->prev, list->next); |
| | | list_add_tail(list, head); |
| | | } |
| | | |
| | | /** |
| | | * list_is_last - tests whether @list is the last entry in list @head |
| | | * @list: the entry to test |
| | | * @head: the head of the list |
| | | */ |
| | | static inline int list_is_last(const struct list_head *list, |
| | | const struct list_head *head) |
| | | { |
| | | return list->next == head; |
| | | } |
| | | |
| | | /** |
| | | * list_empty - tests whether a list is empty |
| | | * @head: the list to test. |
| | | */ |
| | | static inline int list_empty(const struct list_head *head) |
| | | { |
| | | return head->next == head; |
| | | } |
| | | |
| | | /** |
| | | * list_empty_careful - tests whether a list is empty and not being modified |
| | | * @head: the list to test |
| | | * |
| | | * Description: |
| | | * tests whether a list is empty _and_ checks that no other CPU might be |
| | | * in the process of modifying either member (next or prev) |
| | | * |
| | | * NOTE: using list_empty_careful() without synchronization |
| | | * can only be safe if the only activity that can happen |
| | | * to the list entry is list_del_init(). Eg. it cannot be used |
| | | * if another CPU could re-list_add() it. |
| | | */ |
| | | static inline int list_empty_careful(const struct list_head *head) |
| | | { |
| | | struct list_head *next = head->next; |
| | | return (next == head) && (next == head->prev); |
| | | } |
| | | |
| | | /** |
| | | * list_is_singular - tests whether a list has just one entry. |
| | | * @head: the list to test. |
| | | */ |
| | | static inline int list_is_singular(const struct list_head *head) |
| | | { |
| | | return !list_empty(head) && (head->next == head->prev); |
| | | } |
| | | |
| | | static inline void __list_cut_position(struct list_head *list, |
| | | struct list_head *head, struct list_head *entry) |
| | | { |
| | | struct list_head *new_first = entry->next; |
| | | list->next = head->next; |
| | | list->next->prev = list; |
| | | list->prev = entry; |
| | | entry->next = list; |
| | | head->next = new_first; |
| | | new_first->prev = head; |
| | | } |
| | | |
| | | /** |
| | | * list_cut_position - cut a list into two |
| | | * @list: a new list to add all removed entries |
| | | * @head: a list with entries |
| | | * @entry: an entry within head, could be the head itself |
| | | * and if so we won't cut the list |
| | | * |
| | | * This helper moves the initial part of @head, up to and |
| | | * including @entry, from @head to @list. You should |
| | | * pass on @entry an element you know is on @head. @list |
| | | * should be an empty list or a list you do not care about |
| | | * losing its data. |
| | | * |
| | | */ |
| | | static inline void list_cut_position(struct list_head *list, |
| | | struct list_head *head, struct list_head *entry) |
| | | { |
| | | if (list_empty(head)) |
| | | return; |
| | | if (list_is_singular(head) && |
| | | (head->next != entry && head != entry)) |
| | | return; |
| | | if (entry == head) |
| | | INIT_LIST_HEAD(list); |
| | | else |
| | | __list_cut_position(list, head, entry); |
| | | } |
| | | |
| | | static inline void __list_splice(const struct list_head *list, |
| | | struct list_head *prev, |
| | | struct list_head *next) |
| | | { |
| | | struct list_head *first = list->next; |
| | | struct list_head *last = list->prev; |
| | | |
| | | first->prev = prev; |
| | | prev->next = first; |
| | | |
| | | last->next = next; |
| | | next->prev = last; |
| | | } |
| | | |
| | | /** |
| | | * list_splice - join two lists, this is designed for stacks |
| | | * @list: the new list to add. |
| | | * @head: the place to add it in the first list. |
| | | */ |
| | | static inline void list_splice(const struct list_head *list, |
| | | struct list_head *head) |
| | | { |
| | | if (!list_empty(list)) |
| | | __list_splice(list, head, head->next); |
| | | } |
| | | |
| | | /** |
| | | * list_splice_tail - join two lists, each list being a queue |
| | | * @list: the new list to add. |
| | | * @head: the place to add it in the first list. |
| | | */ |
| | | static inline void list_splice_tail(struct list_head *list, |
| | | struct list_head *head) |
| | | { |
| | | if (!list_empty(list)) |
| | | __list_splice(list, head->prev, head); |
| | | } |
| | | |
| | | /** |
| | | * list_splice_init - join two lists and reinitialise the emptied list. |
| | | * @list: the new list to add. |
| | | * @head: the place to add it in the first list. |
| | | * |
| | | * The list at @list is reinitialised |
| | | */ |
| | | static inline void list_splice_init(struct list_head *list, |
| | | struct list_head *head) |
| | | { |
| | | if (!list_empty(list)) { |
| | | __list_splice(list, head, head->next); |
| | | INIT_LIST_HEAD(list); |
| | | } |
| | | } |
| | | |
| | | /** |
| | | * list_splice_tail_init - join two lists and reinitialise the emptied list |
| | | * @list: the new list to add. |
| | | * @head: the place to add it in the first list. |
| | | * |
| | | * Each of the lists is a queue. |
| | | * The list at @list is reinitialised |
| | | */ |
| | | static inline void list_splice_tail_init(struct list_head *list, |
| | | struct list_head *head) |
| | | { |
| | | if (!list_empty(list)) { |
| | | __list_splice(list, head->prev, head); |
| | | INIT_LIST_HEAD(list); |
| | | } |
| | | } |
| | | |
| | | /** |
| | | * list_entry - get the struct for this entry |
| | | * @ptr: the &struct list_head pointer. |
| | | * @type: the type of the struct this is embedded in. |
| | | * @member: the name of the list_struct within the struct. |
| | | */ |
| | | #define list_entry(ptr, type, member) \ |
| | | container_of(ptr, type, member) |
| | | |
| | | /** |
| | | * list_first_entry - get the first element from a list |
| | | * @ptr: the list head to take the element from. |
| | | * @type: the type of the struct this is embedded in. |
| | | * @member: the name of the list_struct within the struct. |
| | | * |
| | | * Note, that list is expected to be not empty. |
| | | */ |
| | | #define list_first_entry(ptr, type, member) \ |
| | | list_entry((ptr)->next, type, member) |
| | | |
| | | /** |
| | | * list_for_each - iterate over a list |
| | | * @pos: the &struct list_head to use as a loop cursor. |
| | | * @head: the head for your list. |
| | | */ |
| | | #define list_for_each(pos, head) \ |
| | | for (pos = (head)->next; prefetch(pos->next), pos != (head); \ |
| | | pos = pos->next) |
| | | |
| | | /** |
| | | * __list_for_each - iterate over a list |
| | | * @pos: the &struct list_head to use as a loop cursor. |
| | | * @head: the head for your list. |
| | | * |
| | | * This variant differs from list_for_each() in that it's the |
| | | * simplest possible list iteration code, no prefetching is done. |
| | | * Use this for code that knows the list to be very short (empty |
| | | * or 1 entry) most of the time. |
| | | */ |
| | | #define __list_for_each(pos, head) \ |
| | | for (pos = (head)->next; pos != (head); pos = pos->next) |
| | | |
| | | /** |
| | | * list_for_each_prev - iterate over a list backwards |
| | | * @pos: the &struct list_head to use as a loop cursor. |
| | | * @head: the head for your list. |
| | | */ |
| | | #define list_for_each_prev(pos, head) \ |
| | | for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ |
| | | pos = pos->prev) |
| | | |
| | | /** |
| | | * list_for_each_safe - iterate over a list safe against removal of list entry |
| | | * @pos: the &struct list_head to use as a loop cursor. |
| | | * @n: another &struct list_head to use as temporary storage |
| | | * @head: the head for your list. |
| | | */ |
| | | #define list_for_each_safe(pos, n, head) \ |
| | | for (pos = (head)->next, n = pos->next; pos != (head); \ |
| | | pos = n, n = pos->next) |
| | | |
| | | /** |
| | | * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry |
| | | * @pos: the &struct list_head to use as a loop cursor. |
| | | * @n: another &struct list_head to use as temporary storage |
| | | * @head: the head for your list. |
| | | */ |
| | | #define list_for_each_prev_safe(pos, n, head) \ |
| | | for (pos = (head)->prev, n = pos->prev; \ |
| | | prefetch(pos->prev), pos != (head); \ |
| | | pos = n, n = pos->prev) |
| | | |
| | | /** |
| | | * list_for_each_entry - iterate over list of given type |
| | | * @pos: the type * to use as a loop cursor. |
| | | * @head: the head for your list. |
| | | * @member: the name of the list_struct within the struct. |
| | | */ |
| | | #define list_for_each_entry(pos, head, member) \ |
| | | for (pos = list_entry((head)->next, typeof(*pos), member); \ |
| | | prefetch(pos->member.next), &pos->member != (head); \ |
| | | pos = list_entry(pos->member.next, typeof(*pos), member)) |
| | | |
| | | /** |
| | | * list_for_each_entry_reverse - iterate backwards over list of given type. |
| | | * @pos: the type * to use as a loop cursor. |
| | | * @head: the head for your list. |
| | | * @member: the name of the list_struct within the struct. |
| | | */ |
| | | #define list_for_each_entry_reverse(pos, head, member) \ |
| | | for (pos = list_entry((head)->prev, typeof(*pos), member); \ |
| | | prefetch(pos->member.prev), &pos->member != (head); \ |
| | | pos = list_entry(pos->member.prev, typeof(*pos), member)) |
| | | |
| | | /** |
| | | * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() |
| | | * @pos: the type * to use as a start point |
| | | * @head: the head of the list |
| | | * @member: the name of the list_struct within the struct. |
| | | * |
| | | * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). |
| | | */ |
| | | #define list_prepare_entry(pos, head, member) \ |
| | | ((pos) ? : list_entry(head, typeof(*pos), member)) |
| | | |
| | | /** |
| | | * list_for_each_entry_continue - continue iteration over list of given type |
| | | * @pos: the type * to use as a loop cursor. |
| | | * @head: the head for your list. |
| | | * @member: the name of the list_struct within the struct. |
| | | * |
| | | * Continue to iterate over list of given type, continuing after |
| | | * the current position. |
| | | */ |
| | | #define list_for_each_entry_continue(pos, head, member) \ |
| | | for (pos = list_entry(pos->member.next, typeof(*pos), member); \ |
| | | prefetch(pos->member.next), &pos->member != (head); \ |
| | | pos = list_entry(pos->member.next, typeof(*pos), member)) |
| | | |
| | | /** |
| | | * list_for_each_entry_continue_reverse - iterate backwards from the given point |
| | | * @pos: the type * to use as a loop cursor. |
| | | * @head: the head for your list. |
| | | * @member: the name of the list_struct within the struct. |
| | | * |
| | | * Start to iterate over list of given type backwards, continuing after |
| | | * the current position. |
| | | */ |
| | | #define list_for_each_entry_continue_reverse(pos, head, member) \ |
| | | for (pos = list_entry(pos->member.prev, typeof(*pos), member); \ |
| | | prefetch(pos->member.prev), &pos->member != (head); \ |
| | | pos = list_entry(pos->member.prev, typeof(*pos), member)) |
| | | |
| | | /** |
| | | * list_for_each_entry_from - iterate over list of given type from the current point |
| | | * @pos: the type * to use as a loop cursor. |
| | | * @head: the head for your list. |
| | | * @member: the name of the list_struct within the struct. |
| | | * |
| | | * Iterate over list of given type, continuing from current position. |
| | | */ |
| | | #define list_for_each_entry_from(pos, head, member) \ |
| | | for (; prefetch(pos->member.next), &pos->member != (head); \ |
| | | pos = list_entry(pos->member.next, typeof(*pos), member)) |
| | | |
| | | /** |
| | | * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry |
| | | * @pos: the type * to use as a loop cursor. |
| | | * @n: another type * to use as temporary storage |
| | | * @head: the head for your list. |
| | | * @member: the name of the list_struct within the struct. |
| | | */ |
| | | #define list_for_each_entry_safe(pos, n, head, member) \ |
| | | for (pos = list_entry((head)->next, typeof(*pos), member), \ |
| | | n = list_entry(pos->member.next, typeof(*pos), member); \ |
| | | &pos->member != (head); \ |
| | | pos = n, n = list_entry(n->member.next, typeof(*n), member)) |
| | | |
| | | /** |
| | | * list_for_each_entry_safe_continue |
| | | * @pos: the type * to use as a loop cursor. |
| | | * @n: another type * to use as temporary storage |
| | | * @head: the head for your list. |
| | | * @member: the name of the list_struct within the struct. |
| | | * |
| | | * Iterate over list of given type, continuing after current point, |
| | | * safe against removal of list entry. |
| | | */ |
| | | #define list_for_each_entry_safe_continue(pos, n, head, member) \ |
| | | for (pos = list_entry(pos->member.next, typeof(*pos), member), \ |
| | | n = list_entry(pos->member.next, typeof(*pos), member); \ |
| | | &pos->member != (head); \ |
| | | pos = n, n = list_entry(n->member.next, typeof(*n), member)) |
| | | |
| | | /** |
| | | * list_for_each_entry_safe_from |
| | | * @pos: the type * to use as a loop cursor. |
| | | * @n: another type * to use as temporary storage |
| | | * @head: the head for your list. |
| | | * @member: the name of the list_struct within the struct. |
| | | * |
| | | * Iterate over list of given type from current point, safe against |
| | | * removal of list entry. |
| | | */ |
| | | #define list_for_each_entry_safe_from(pos, n, head, member) \ |
| | | for (n = list_entry(pos->member.next, typeof(*pos), member); \ |
| | | &pos->member != (head); \ |
| | | pos = n, n = list_entry(n->member.next, typeof(*n), member)) |
| | | |
| | | /** |
| | | * list_for_each_entry_safe_reverse |
| | | * @pos: the type * to use as a loop cursor. |
| | | * @n: another type * to use as temporary storage |
| | | * @head: the head for your list. |
| | | * @member: the name of the list_struct within the struct. |
| | | * |
| | | * Iterate backwards over list of given type, safe against removal |
| | | * of list entry. |
| | | */ |
| | | #define list_for_each_entry_safe_reverse(pos, n, head, member) \ |
| | | for (pos = list_entry((head)->prev, typeof(*pos), member), \ |
| | | n = list_entry(pos->member.prev, typeof(*pos), member); \ |
| | | &pos->member != (head); \ |
| | | pos = n, n = list_entry(n->member.prev, typeof(*n), member)) |
| | | |
| | | /* |
| | | * Double linked lists with a single pointer list head. |
| | | * Mostly useful for hash tables where the two pointer list head is |
| | | * too wasteful. |
| | | * You lose the ability to access the tail in O(1). |
| | | */ |
| | | |
| | | struct hlist_head { |
| | | struct hlist_node *first; |
| | | }; |
| | | |
| | | struct hlist_node { |
| | | struct hlist_node *next, **pprev; |
| | | }; |
| | | |
| | | #define HLIST_HEAD_INIT { .first = NULL } |
| | | #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } |
| | | #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) |
| | | static inline void INIT_HLIST_NODE(struct hlist_node *h) |
| | | { |
| | | h->next = NULL; |
| | | h->pprev = NULL; |
| | | } |
| | | |
| | | static inline int hlist_unhashed(const struct hlist_node *h) |
| | | { |
| | | return !h->pprev; |
| | | } |
| | | |
| | | static inline int hlist_empty(const struct hlist_head *h) |
| | | { |
| | | return !h->first; |
| | | } |
| | | |
| | | static inline void __hlist_del(struct hlist_node *n) |
| | | { |
| | | struct hlist_node *next = n->next; |
| | | struct hlist_node **pprev = n->pprev; |
| | | *pprev = next; |
| | | if (next) |
| | | next->pprev = pprev; |
| | | } |
| | | |
| | | static inline void hlist_del(struct hlist_node *n) |
| | | { |
| | | __hlist_del(n); |
| | | n->next = LIST_POISON1; |
| | | n->pprev = LIST_POISON2; |
| | | } |
| | | |
| | | static inline void hlist_del_init(struct hlist_node *n) |
| | | { |
| | | if (!hlist_unhashed(n)) { |
| | | __hlist_del(n); |
| | | INIT_HLIST_NODE(n); |
| | | } |
| | | } |
| | | |
| | | static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) |
| | | { |
| | | struct hlist_node *first = h->first; |
| | | n->next = first; |
| | | if (first) |
| | | first->pprev = &n->next; |
| | | h->first = n; |
| | | n->pprev = &h->first; |
| | | } |
| | | |
| | | /* next must be != NULL */ |
| | | static inline void hlist_add_before(struct hlist_node *n, |
| | | struct hlist_node *next) |
| | | { |
| | | n->pprev = next->pprev; |
| | | n->next = next; |
| | | next->pprev = &n->next; |
| | | *(n->pprev) = n; |
| | | } |
| | | |
| | | static inline void hlist_add_after(struct hlist_node *n, |
| | | struct hlist_node *next) |
| | | { |
| | | next->next = n->next; |
| | | n->next = next; |
| | | next->pprev = &n->next; |
| | | |
| | | if(next->next) |
| | | next->next->pprev = &next->next; |
| | | } |
| | | |
| | | #define hlist_entry(ptr, type, member) container_of(ptr,type,member) |
| | | |
| | | #define hlist_for_each(pos, head) \ |
| | | for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ |
| | | pos = pos->next) |
| | | |
| | | #define hlist_for_each_safe(pos, n, head) \ |
| | | for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ |
| | | pos = n) |
| | | |
| | | /** |
| | | * hlist_for_each_entry - iterate over list of given type |
| | | * @tpos: the type * to use as a loop cursor. |
| | | * @pos: the &struct hlist_node to use as a loop cursor. |
| | | * @head: the head for your list. |
| | | * @member: the name of the hlist_node within the struct. |
| | | */ |
| | | #define hlist_for_each_entry(tpos, pos, head, member) \ |
| | | for (pos = (head)->first; \ |
| | | pos && ({ prefetch(pos->next); 1;}) && \ |
| | | ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ |
| | | pos = pos->next) |
| | | |
| | | /** |
| | | * hlist_for_each_entry_continue - iterate over a hlist continuing after current point |
| | | * @tpos: the type * to use as a loop cursor. |
| | | * @pos: the &struct hlist_node to use as a loop cursor. |
| | | * @member: the name of the hlist_node within the struct. |
| | | */ |
| | | #define hlist_for_each_entry_continue(tpos, pos, member) \ |
| | | for (pos = (pos)->next; \ |
| | | pos && ({ prefetch(pos->next); 1;}) && \ |
| | | ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ |
| | | pos = pos->next) |
| | | |
| | | /** |
| | | * hlist_for_each_entry_from - iterate over a hlist continuing from current point |
| | | * @tpos: the type * to use as a loop cursor. |
| | | * @pos: the &struct hlist_node to use as a loop cursor. |
| | | * @member: the name of the hlist_node within the struct. |
| | | */ |
| | | #define hlist_for_each_entry_from(tpos, pos, member) \ |
| | | for (; pos && ({ prefetch(pos->next); 1;}) && \ |
| | | ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ |
| | | pos = pos->next) |
| | | |
| | | /** |
| | | * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry |
| | | * @tpos: the type * to use as a loop cursor. |
| | | * @pos: the &struct hlist_node to use as a loop cursor. |
| | | * @n: another &struct hlist_node to use as temporary storage |
| | | * @head: the head for your list. |
| | | * @member: the name of the hlist_node within the struct. |
| | | */ |
| | | #define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ |
| | | for (pos = (head)->first; \ |
| | | pos && ({ n = pos->next; 1; }) && \ |
| | | ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ |
| | | pos = n) |
| | | |
| | | |
| | | #endif |
| | | |
| | | |