From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mult_real_f32.c |  213 +++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 213 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mult_real_f32.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mult_real_f32.c
new file mode 100644
index 0000000..6f45804
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/ComplexMathFunctions/arm_cmplx_mult_real_f32.c
@@ -0,0 +1,213 @@
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS DSP Library
+ * Title:        arm_cmplx_mult_real_f32.c
+ * Description:  Floating-point complex by real multiplication
+ *
+ * $Date:        27. January 2017
+ * $Revision:    V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupCmplxMath
+ */
+
+/**
+ * @defgroup CmplxByRealMult Complex-by-Real Multiplication
+ *
+ * Multiplies a complex vector by a real vector and generates a complex result.
+ * The data in the complex arrays is stored in an interleaved fashion
+ * (real, imag, real, imag, ...).
+ * The parameter <code>numSamples</code> represents the number of complex
+ * samples processed.  The complex arrays have a total of <code>2*numSamples</code>
+ * real values while the real array has a total of <code>numSamples</code>
+ * real values.
+ *
+ * The underlying algorithm is used:
+ *
+ * <pre>
+ * for(n=0; n<numSamples; n++) {
+ *     pCmplxDst[(2*n)+0] = pSrcCmplx[(2*n)+0] * pSrcReal[n];
+ *     pCmplxDst[(2*n)+1] = pSrcCmplx[(2*n)+1] * pSrcReal[n];
+ * }
+ * </pre>
+ *
+ * There are separate functions for floating-point, Q15, and Q31 data types.
+ */
+
+/**
+ * @addtogroup CmplxByRealMult
+ * @{
+ */
+
+
+/**
+ * @brief  Floating-point complex-by-real multiplication
+ * @param[in]  *pSrcCmplx points to the complex input vector
+ * @param[in]  *pSrcReal points to the real input vector
+ * @param[out]  *pCmplxDst points to the complex output vector
+ * @param[in]  numSamples number of samples in each vector
+ * @return none.
+ */
+
+void arm_cmplx_mult_real_f32(
+  float32_t * pSrcCmplx,
+  float32_t * pSrcReal,
+  float32_t * pCmplxDst,
+  uint32_t numSamples)
+{
+  float32_t in;                                  /* Temporary variable to store input value */
+  uint32_t blkCnt;                               /* loop counters */
+
+#if defined (ARM_MATH_DSP)
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+  float32_t inA1, inA2, inA3, inA4;              /* Temporary variables to hold input data */
+  float32_t inA5, inA6, inA7, inA8;              /* Temporary variables to hold input data */
+  float32_t inB1, inB2, inB3, inB4;              /* Temporary variables to hold input data */
+  float32_t out1, out2, out3, out4;              /* Temporary variables to hold output data */
+  float32_t out5, out6, out7, out8;              /* Temporary variables to hold output data */
+
+  /* loop Unrolling */
+  blkCnt = numSamples >> 2U;
+
+  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
+   ** a second loop below computes the remaining 1 to 3 samples. */
+  while (blkCnt > 0U)
+  {
+    /* C[2 * i] = A[2 * i] * B[i].            */
+    /* C[2 * i + 1] = A[2 * i + 1] * B[i].        */
+    /* read input from complex input buffer */
+    inA1 = pSrcCmplx[0];
+    inA2 = pSrcCmplx[1];
+    /* read input from real input buffer */
+    inB1 = pSrcReal[0];
+
+    /* read input from complex input buffer */
+    inA3 = pSrcCmplx[2];
+
+    /* multiply complex buffer real input with real buffer input */
+    out1 = inA1 * inB1;
+
+    /* read input from complex input buffer */
+    inA4 = pSrcCmplx[3];
+
+    /* multiply complex buffer imaginary input with real buffer input */
+    out2 = inA2 * inB1;
+
+    /* read input from real input buffer */
+    inB2 = pSrcReal[1];
+    /* read input from complex input buffer */
+    inA5 = pSrcCmplx[4];
+
+    /* multiply complex buffer real input with real buffer input */
+    out3 = inA3 * inB2;
+
+    /* read input from complex input buffer */
+    inA6 = pSrcCmplx[5];
+    /* read input from real input buffer */
+    inB3 = pSrcReal[2];
+
+    /* multiply complex buffer imaginary input with real buffer input */
+    out4 = inA4 * inB2;
+
+    /* read input from complex input buffer */
+    inA7 = pSrcCmplx[6];
+
+    /* multiply complex buffer real input with real buffer input */
+    out5 = inA5 * inB3;
+
+    /* read input from complex input buffer */
+    inA8 = pSrcCmplx[7];
+
+    /* multiply complex buffer imaginary input with real buffer input */
+    out6 = inA6 * inB3;
+
+    /* read input from real input buffer */
+    inB4 = pSrcReal[3];
+
+    /* store result to destination bufer */
+    pCmplxDst[0] = out1;
+
+    /* multiply complex buffer real input with real buffer input */
+    out7 = inA7 * inB4;
+
+    /* store result to destination bufer */
+    pCmplxDst[1] = out2;
+
+    /* multiply complex buffer imaginary input with real buffer input */
+    out8 = inA8 * inB4;
+
+    /* store result to destination bufer */
+    pCmplxDst[2] = out3;
+    pCmplxDst[3] = out4;
+    pCmplxDst[4] = out5;
+
+    /* incremnet complex input buffer by 8 to process next samples */
+    pSrcCmplx += 8U;
+
+    /* store result to destination bufer */
+    pCmplxDst[5] = out6;
+
+    /* increment real input buffer by 4 to process next samples */
+    pSrcReal += 4U;
+
+    /* store result to destination bufer */
+    pCmplxDst[6] = out7;
+    pCmplxDst[7] = out8;
+
+    /* increment destination buffer by 8 to process next sampels */
+    pCmplxDst += 8U;
+
+    /* Decrement the numSamples loop counter */
+    blkCnt--;
+  }
+
+  /* If the numSamples is not a multiple of 4, compute any remaining output samples here.
+   ** No loop unrolling is used. */
+  blkCnt = numSamples % 0x4U;
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+  blkCnt = numSamples;
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+  while (blkCnt > 0U)
+  {
+    /* C[2 * i] = A[2 * i] * B[i].            */
+    /* C[2 * i + 1] = A[2 * i + 1] * B[i].        */
+    in = *pSrcReal++;
+    /* store the result in the destination buffer. */
+    *pCmplxDst++ = (*pSrcCmplx++) * (in);
+    *pCmplxDst++ = (*pSrcCmplx++) * (in);
+
+    /* Decrement the numSamples loop counter */
+    blkCnt--;
+  }
+}
+
+/**
+ * @} end of CmplxByRealMult group
+ */

--
Gitblit v1.9.1