From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c |  413 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 413 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c
new file mode 100644
index 0000000..b1578a5
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q15.c
@@ -0,0 +1,413 @@
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS DSP Library
+ * Title:        arm_cmplx_mat_mult_q15.c
+ * Description:  Q15 complex matrix multiplication
+ *
+ * $Date:        27. January 2017
+ * $Revision:    V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupMatrix
+ */
+
+/**
+ * @addtogroup CmplxMatrixMult
+ * @{
+ */
+
+
+/**
+ * @brief Q15 Complex matrix multiplication
+ * @param[in]       *pSrcA points to the first input complex matrix structure
+ * @param[in]       *pSrcB points to the second input complex matrix structure
+ * @param[out]      *pDst points to output complex matrix structure
+ * @param[in]		*pScratch points to the array for storing intermediate results
+ * @return     		The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * \par Conditions for optimum performance
+ *  Input, output and state buffers should be aligned by 32-bit
+ *
+ * \par Restrictions
+ *  If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE
+ *	In this case input, output, scratch buffers should be aligned by 32-bit
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using a 64-bit internal accumulator. The inputs to the
+ * multiplications are in 1.15 format and multiplications yield a 2.30 result.
+ * The 2.30 intermediate
+ * results are accumulated in a 64-bit accumulator in 34.30 format. This approach
+ * provides 33 guard bits and there is no risk of overflow. The 34.30 result is then
+ * truncated to 34.15 format by discarding the low 15 bits and then saturated to
+ * 1.15 format.
+ *
+ * \par
+ * Refer to <code>arm_mat_mult_fast_q15()</code> for a faster but less precise version of this function.
+ *
+ */
+
+
+
+
+arm_status arm_mat_cmplx_mult_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst,
+  q15_t * pScratch)
+{
+  /* accumulator */
+  q15_t *pSrcBT = pScratch;                      /* input data matrix pointer for transpose */
+  q15_t *pInA = pSrcA->pData;                    /* input data matrix pointer A of Q15 type */
+  q15_t *pInB = pSrcB->pData;                    /* input data matrix pointer B of Q15 type */
+  q15_t *px;                                     /* Temporary output data matrix pointer */
+  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
+  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
+  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
+  uint16_t numRowsB = pSrcB->numRows;            /* number of rows of input matrix A    */
+  uint16_t col, i = 0U, row = numRowsB, colCnt;  /* loop counters */
+  arm_status status;                             /* status of matrix multiplication */
+  q63_t sumReal, sumImag;
+
+#ifdef UNALIGNED_SUPPORT_DISABLE
+  q15_t in;                                      /* Temporary variable to hold the input value */
+  q15_t a, b, c, d;
+#else
+  q31_t in;                                      /* Temporary variable to hold the input value */
+  q31_t prod1, prod2;
+  q31_t pSourceA, pSourceB;
+#endif
+
+#ifdef ARM_MATH_MATRIX_CHECK
+  /* Check for matrix mismatch condition */
+  if ((pSrcA->numCols != pSrcB->numRows) ||
+     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+  {
+    /* Set status as ARM_MATH_SIZE_MISMATCH */
+    status = ARM_MATH_SIZE_MISMATCH;
+  }
+  else
+#endif
+  {
+    /* Matrix transpose */
+    do
+    {
+      /* Apply loop unrolling and exchange the columns with row elements */
+      col = numColsB >> 2;
+
+      /* The pointer px is set to starting address of the column being processed */
+      px = pSrcBT + i;
+
+      /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
+       ** a second loop below computes the remaining 1 to 3 samples. */
+      while (col > 0U)
+      {
+#ifdef UNALIGNED_SUPPORT_DISABLE
+        /* Read two elements from the row */
+        in = *pInB++;
+        *px = in;
+        in = *pInB++;
+        px[1] = in;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB * 2;
+
+        /* Read two elements from the row */
+        in = *pInB++;
+        *px = in;
+        in = *pInB++;
+        px[1] = in;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB * 2;
+
+        /* Read two elements from the row */
+        in = *pInB++;
+        *px = in;
+        in = *pInB++;
+        px[1] = in;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB * 2;
+
+        /* Read two elements from the row */
+        in = *pInB++;
+        *px = in;
+        in = *pInB++;
+        px[1] = in;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB * 2;
+
+        /* Decrement the column loop counter */
+        col--;
+      }
+
+      /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
+       ** No loop unrolling is used. */
+      col = numColsB % 0x4U;
+
+      while (col > 0U)
+      {
+        /* Read two elements from the row */
+        in = *pInB++;
+        *px = in;
+        in = *pInB++;
+        px[1] = in;
+#else
+
+        /* Read two elements from the row */
+        in = *__SIMD32(pInB)++;
+
+        *__SIMD32(px) = in;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB * 2;
+
+
+        /* Read two elements from the row */
+        in = *__SIMD32(pInB)++;
+
+        *__SIMD32(px) = in;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB * 2;
+
+        /* Read two elements from the row */
+        in = *__SIMD32(pInB)++;
+
+        *__SIMD32(px) = in;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB * 2;
+
+        /* Read two elements from the row */
+        in = *__SIMD32(pInB)++;
+
+        *__SIMD32(px) = in;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB * 2;
+
+        /* Decrement the column loop counter */
+        col--;
+      }
+
+      /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
+       ** No loop unrolling is used. */
+      col = numColsB % 0x4U;
+
+      while (col > 0U)
+      {
+        /* Read two elements from the row */
+        in = *__SIMD32(pInB)++;
+
+        *__SIMD32(px) = in;
+#endif
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB * 2;
+
+        /* Decrement the column loop counter */
+        col--;
+      }
+
+      i = i + 2U;
+
+      /* Decrement the row loop counter */
+      row--;
+
+    } while (row > 0U);
+
+    /* Reset the variables for the usage in the following multiplication process */
+    row = numRowsA;
+    i = 0U;
+    px = pDst->pData;
+
+    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+    /* row loop */
+    do
+    {
+      /* For every row wise process, the column loop counter is to be initiated */
+      col = numColsB;
+
+      /* For every row wise process, the pIn2 pointer is set
+       ** to the starting address of the transposed pSrcB data */
+      pInB = pSrcBT;
+
+      /* column loop */
+      do
+      {
+        /* Set the variable sum, that acts as accumulator, to zero */
+        sumReal = 0;
+        sumImag = 0;
+
+        /* Apply loop unrolling and compute 2 MACs simultaneously. */
+        colCnt = numColsA >> 1;
+
+        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+        pInA = pSrcA->pData + i * 2;
+
+
+        /* matrix multiplication */
+        while (colCnt > 0U)
+        {
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+
+#ifdef UNALIGNED_SUPPORT_DISABLE
+
+          /* read real and imag values from pSrcA buffer */
+          a = *pInA;
+          b = *(pInA + 1U);
+          /* read real and imag values from pSrcB buffer */
+          c = *pInB;
+          d = *(pInB + 1U);
+
+          /* Multiply and Accumlates */
+          sumReal += (q31_t) a *c;
+          sumImag += (q31_t) a *d;
+          sumReal -= (q31_t) b *d;
+          sumImag += (q31_t) b *c;
+
+          /* read next real and imag values from pSrcA buffer */
+          a = *(pInA + 2U);
+          b = *(pInA + 3U);
+          /* read next real and imag values from pSrcB buffer */
+          c = *(pInB + 2U);
+          d = *(pInB + 3U);
+
+          /* update pointer */
+          pInA += 4U;
+
+          /* Multiply and Accumlates */
+          sumReal += (q31_t) a *c;
+          sumImag += (q31_t) a *d;
+          sumReal -= (q31_t) b *d;
+          sumImag += (q31_t) b *c;
+          /* update pointer */
+          pInB += 4U;
+#else
+          /* read real and imag values from pSrcA and pSrcB buffer */
+          pSourceA = *__SIMD32(pInA)++;
+          pSourceB = *__SIMD32(pInB)++;
+
+          /* Multiply and Accumlates */
+#ifdef ARM_MATH_BIG_ENDIAN
+          prod1 = -__SMUSD(pSourceA, pSourceB);
+#else
+          prod1 = __SMUSD(pSourceA, pSourceB);
+#endif
+          prod2 = __SMUADX(pSourceA, pSourceB);
+          sumReal += (q63_t) prod1;
+          sumImag += (q63_t) prod2;
+
+          /* read real and imag values from pSrcA and pSrcB buffer */
+          pSourceA = *__SIMD32(pInA)++;
+          pSourceB = *__SIMD32(pInB)++;
+
+          /* Multiply and Accumlates */
+#ifdef ARM_MATH_BIG_ENDIAN
+          prod1 = -__SMUSD(pSourceA, pSourceB);
+#else
+          prod1 = __SMUSD(pSourceA, pSourceB);
+#endif
+          prod2 = __SMUADX(pSourceA, pSourceB);
+          sumReal += (q63_t) prod1;
+          sumImag += (q63_t) prod2;
+
+#endif /*      #ifdef UNALIGNED_SUPPORT_DISABLE */
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+        /* process odd column samples */
+        if ((numColsA & 0x1U) > 0U)
+        {
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+
+#ifdef UNALIGNED_SUPPORT_DISABLE
+
+          /* read real and imag values from pSrcA and pSrcB buffer */
+          a = *pInA++;
+          b = *pInA++;
+          c = *pInB++;
+          d = *pInB++;
+
+          /* Multiply and Accumlates */
+          sumReal += (q31_t) a *c;
+          sumImag += (q31_t) a *d;
+          sumReal -= (q31_t) b *d;
+          sumImag += (q31_t) b *c;
+
+#else
+          /* read real and imag values from pSrcA and pSrcB buffer */
+          pSourceA = *__SIMD32(pInA)++;
+          pSourceB = *__SIMD32(pInB)++;
+
+          /* Multiply and Accumlates */
+#ifdef ARM_MATH_BIG_ENDIAN
+          prod1 = -__SMUSD(pSourceA, pSourceB);
+#else
+          prod1 = __SMUSD(pSourceA, pSourceB);
+#endif
+          prod2 = __SMUADX(pSourceA, pSourceB);
+          sumReal += (q63_t) prod1;
+          sumImag += (q63_t) prod2;
+
+#endif /*      #ifdef UNALIGNED_SUPPORT_DISABLE */
+
+        }
+
+        /* Saturate and store the result in the destination buffer */
+
+        *px++ = (q15_t) (__SSAT(sumReal >> 15, 16));
+        *px++ = (q15_t) (__SSAT(sumImag >> 15, 16));
+
+        /* Decrement the column loop counter */
+        col--;
+
+      } while (col > 0U);
+
+      i = i + numColsA;
+
+      /* Decrement the row loop counter */
+      row--;
+
+    } while (row > 0U);
+
+    /* set status as ARM_MATH_SUCCESS */
+    status = ARM_MATH_SUCCESS;
+  }
+
+  /* Return to application */
+  return (status);
+}
+
+/**
+ * @} end of MatrixMult group
+ */

--
Gitblit v1.9.1