From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c |  282 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 282 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c
new file mode 100644
index 0000000..a05440e
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_q31.c
@@ -0,0 +1,282 @@
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS DSP Library
+ * Title:        arm_mat_cmplx_mult_q31.c
+ * Description:  Floating-point matrix multiplication
+ *
+ * $Date:        27. January 2017
+ * $Revision:    V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupMatrix
+ */
+
+/**
+ * @addtogroup CmplxMatrixMult
+ * @{
+ */
+
+/**
+ * @brief Q31 Complex matrix multiplication
+ * @param[in]       *pSrcA points to the first input complex matrix structure
+ * @param[in]       *pSrcB points to the second input complex matrix structure
+ * @param[out]      *pDst points to output complex matrix structure
+ * @return     		The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The function is implemented using an internal 64-bit accumulator.
+ * The accumulator has a 2.62 format and maintains full precision of the intermediate
+ * multiplication results but provides only a single guard bit. There is no saturation
+ * on intermediate additions. Thus, if the accumulator overflows it wraps around and
+ * distorts the result. The input signals should be scaled down to avoid intermediate
+ * overflows. The input is thus scaled down by log2(numColsA) bits
+ * to avoid overflows, as a total of numColsA additions are performed internally.
+ * The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
+ *
+ *
+ */
+
+arm_status arm_mat_cmplx_mult_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst)
+{
+  q31_t *pIn1 = pSrcA->pData;                    /* input data matrix pointer A */
+  q31_t *pIn2 = pSrcB->pData;                    /* input data matrix pointer B */
+  q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A  */
+  q31_t *pOut = pDst->pData;                     /* output data matrix pointer */
+  q31_t *px;                                     /* Temporary output data matrix pointer */
+  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A */
+  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
+  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
+  q63_t sumReal1, sumImag1;                      /* accumulator */
+  q31_t a0, b0, c0, d0;
+  q31_t a1, b1, c1, d1;
+
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+  uint16_t col, i = 0U, j, row = numRowsA, colCnt;      /* loop counters */
+  arm_status status;                             /* status of matrix multiplication */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+
+  /* Check for matrix mismatch condition */
+  if ((pSrcA->numCols != pSrcB->numRows) ||
+     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+  {
+
+    /* Set status as ARM_MATH_SIZE_MISMATCH */
+    status = ARM_MATH_SIZE_MISMATCH;
+  }
+  else
+#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
+
+  {
+    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+    /* row loop */
+    do
+    {
+      /* Output pointer is set to starting address of the row being processed */
+      px = pOut + 2 * i;
+
+      /* For every row wise process, the column loop counter is to be initiated */
+      col = numColsB;
+
+      /* For every row wise process, the pIn2 pointer is set
+       ** to the starting address of the pSrcB data */
+      pIn2 = pSrcB->pData;
+
+      j = 0U;
+
+      /* column loop */
+      do
+      {
+        /* Set the variable sum, that acts as accumulator, to zero */
+        sumReal1 = 0.0;
+        sumImag1 = 0.0;
+
+        /* Initiate the pointer pIn1 to point to the starting address of the column being processed */
+        pIn1 = pInA;
+
+        /* Apply loop unrolling and compute 4 MACs simultaneously. */
+        colCnt = numColsA >> 2;
+
+        /* matrix multiplication        */
+        while (colCnt > 0U)
+        {
+
+          /* Reading real part of complex matrix A */
+          a0 = *pIn1;
+
+          /* Reading real part of complex matrix B */
+          c0 = *pIn2;
+
+          /* Reading imaginary part of complex matrix A */
+          b0 = *(pIn1 + 1U);
+
+          /* Reading imaginary part of complex matrix B */
+          d0 = *(pIn2 + 1U);
+
+          /* Multiply and Accumlates */
+          sumReal1 += (q63_t) a0 *c0;
+          sumImag1 += (q63_t) b0 *c0;
+
+          /* update pointers */
+          pIn1 += 2U;
+          pIn2 += 2 * numColsB;
+
+          /* Multiply and Accumlates */
+          sumReal1 -= (q63_t) b0 *d0;
+          sumImag1 += (q63_t) a0 *d0;
+
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+
+          /* read real and imag values from pSrcA and pSrcB buffer */
+          a1 = *pIn1;
+          c1 = *pIn2;
+          b1 = *(pIn1 + 1U);
+          d1 = *(pIn2 + 1U);
+
+          /* Multiply and Accumlates */
+          sumReal1 += (q63_t) a1 *c1;
+          sumImag1 += (q63_t) b1 *c1;
+
+          /* update pointers */
+          pIn1 += 2U;
+          pIn2 += 2 * numColsB;
+
+          /* Multiply and Accumlates */
+          sumReal1 -= (q63_t) b1 *d1;
+          sumImag1 += (q63_t) a1 *d1;
+
+          a0 = *pIn1;
+          c0 = *pIn2;
+
+          b0 = *(pIn1 + 1U);
+          d0 = *(pIn2 + 1U);
+
+          /* Multiply and Accumlates */
+          sumReal1 += (q63_t) a0 *c0;
+          sumImag1 += (q63_t) b0 *c0;
+
+          /* update pointers */
+          pIn1 += 2U;
+          pIn2 += 2 * numColsB;
+
+          /* Multiply and Accumlates */
+          sumReal1 -= (q63_t) b0 *d0;
+          sumImag1 += (q63_t) a0 *d0;
+
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+
+          a1 = *pIn1;
+          c1 = *pIn2;
+
+          b1 = *(pIn1 + 1U);
+          d1 = *(pIn2 + 1U);
+
+          /* Multiply and Accumlates */
+          sumReal1 += (q63_t) a1 *c1;
+          sumImag1 += (q63_t) b1 *c1;
+
+          /* update pointers */
+          pIn1 += 2U;
+          pIn2 += 2 * numColsB;
+
+          /* Multiply and Accumlates */
+          sumReal1 -= (q63_t) b1 *d1;
+          sumImag1 += (q63_t) a1 *d1;
+
+          /* Decrement the loop count */
+          colCnt--;
+        }
+
+        /* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
+         ** No loop unrolling is used. */
+        colCnt = numColsA % 0x4U;
+
+        while (colCnt > 0U)
+        {
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+          a1 = *pIn1;
+          c1 = *pIn2;
+
+          b1 = *(pIn1 + 1U);
+          d1 = *(pIn2 + 1U);
+
+          /* Multiply and Accumlates */
+          sumReal1 += (q63_t) a1 *c1;
+          sumImag1 += (q63_t) b1 *c1;
+
+          /* update pointers */
+          pIn1 += 2U;
+          pIn2 += 2 * numColsB;
+
+          /* Multiply and Accumlates */
+          sumReal1 -= (q63_t) b1 *d1;
+          sumImag1 += (q63_t) a1 *d1;
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+        /* Store the result in the destination buffer */
+        *px++ = (q31_t) clip_q63_to_q31(sumReal1 >> 31);
+        *px++ = (q31_t) clip_q63_to_q31(sumImag1 >> 31);
+
+        /* Update the pointer pIn2 to point to the  starting address of the next column */
+        j++;
+        pIn2 = pSrcB->pData + 2U * j;
+
+        /* Decrement the column loop counter */
+        col--;
+
+      } while (col > 0U);
+
+      /* Update the pointer pInA to point to the  starting address of the next row */
+      i = i + numColsB;
+      pInA = pInA + 2 * numColsA;
+
+      /* Decrement the row loop counter */
+      row--;
+
+    } while (row > 0U);
+
+    /* Set status as ARM_MATH_SUCCESS */
+    status = ARM_MATH_SUCCESS;
+  }
+
+  /* Return to application */
+  return (status);
+}
+
+/**
+ * @} end of MatrixMult group
+ */

--
Gitblit v1.9.1