From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c |  525 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 525 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c
new file mode 100644
index 0000000..796df88
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q15.c
@@ -0,0 +1,525 @@
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS DSP Library
+ * Title:        arm_mat_mult_fast_q15.c
+ * Description:  Q15 matrix multiplication (fast variant)
+ *
+ * $Date:        27. January 2017
+ * $Revision:    V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupMatrix
+ */
+
+/**
+ * @addtogroup MatrixMult
+ * @{
+ */
+
+
+/**
+ * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in]       *pSrcA points to the first input matrix structure
+ * @param[in]       *pSrcB points to the second input matrix structure
+ * @param[out]      *pDst points to output matrix structure
+ * @param[in]       *pState points to the array for storing intermediate results
+ * @return          The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The difference between the function arm_mat_mult_q15() and this fast variant is that
+ * the fast variant use a 32-bit rather than a 64-bit accumulator.
+ * The result of each 1.15 x 1.15 multiplication is truncated to
+ * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
+ * format. Finally, the accumulator is saturated and converted to a 1.15 result.
+ *
+ * \par
+ * The fast version has the same overflow behavior as the standard version but provides
+ * less precision since it discards the low 16 bits of each multiplication result.
+ * In order to avoid overflows completely the input signals must be scaled down.
+ * Scale down one of the input matrices by log2(numColsA) bits to
+ * avoid overflows, as a total of numColsA additions are computed internally for each
+ * output element.
+ *
+ * \par
+ * See <code>arm_mat_mult_q15()</code> for a slower implementation of this function
+ * which uses 64-bit accumulation to provide higher precision.
+ */
+
+arm_status arm_mat_mult_fast_q15(
+  const arm_matrix_instance_q15 * pSrcA,
+  const arm_matrix_instance_q15 * pSrcB,
+  arm_matrix_instance_q15 * pDst,
+  q15_t * pState)
+{
+  q31_t sum;                                     /* accumulator */
+  q15_t *pSrcBT = pState;                        /* input data matrix pointer for transpose */
+  q15_t *pInA = pSrcA->pData;                    /* input data matrix pointer A of Q15 type */
+  q15_t *pInB = pSrcB->pData;                    /* input data matrix pointer B of Q15 type */
+  q15_t *px;                                     /* Temporary output data matrix pointer */
+  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
+  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
+  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
+  uint16_t numRowsB = pSrcB->numRows;            /* number of rows of input matrix A    */
+  uint32_t col, i = 0U, row = numRowsB, colCnt;  /* loop counters */
+  arm_status status;                             /* status of matrix multiplication */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+  q31_t in;                                      /* Temporary variable to hold the input value */
+  q31_t inA1, inA2, inB1, inB2;
+  q31_t sum2, sum3, sum4;
+  q15_t *pInA2, *pInB2, *px2;
+  uint32_t j = 0;
+
+#else
+
+  q15_t in;                                      /* Temporary variable to hold the input value */
+  q15_t inA1, inA2, inB1, inB2;
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+#ifdef ARM_MATH_MATRIX_CHECK
+  /* Check for matrix mismatch condition */
+  if ((pSrcA->numCols != pSrcB->numRows) ||
+     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+  {
+    /* Set status as ARM_MATH_SIZE_MISMATCH */
+    status = ARM_MATH_SIZE_MISMATCH;
+  }
+  else
+#endif
+  {
+    /* Matrix transpose */
+    do
+    {
+      /* Apply loop unrolling and exchange the columns with row elements */
+      col = numColsB >> 2;
+
+      /* The pointer px is set to starting address of the column being processed */
+      px = pSrcBT + i;
+
+      /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.
+       ** a second loop below computes the remaining 1 to 3 samples. */
+      while (col > 0U)
+      {
+#ifndef UNALIGNED_SUPPORT_DISABLE
+        /* Read two elements from the row */
+        in = *__SIMD32(pInB)++;
+
+        /* Unpack and store one element in the destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        *px = (q15_t) in;
+
+#else
+
+        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+
+#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Unpack and store the second element in the destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+
+#else
+
+        *px = (q15_t) in;
+
+#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Read two elements from the row */
+        in = *__SIMD32(pInB)++;
+
+        /* Unpack and store one element in the destination */
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        *px = (q15_t) in;
+
+#else
+
+        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+
+#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Unpack and store the second element in the destination */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        *px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
+
+#else
+
+        *px = (q15_t) in;
+
+#endif /*    #ifndef ARM_MATH_BIG_ENDIAN    */
+
+#else
+
+        /* Read one element from the row */
+        in = *pInB++;
+
+        /* Store one element in the destination */
+        *px = in;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Read one element from the row */
+        in = *pInB++;
+
+        /* Store one element in the destination */
+        *px = in;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Read one element from the row */
+        in = *pInB++;
+
+        /* Store one element in the destination */
+        *px = in;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Read one element from the row */
+        in = *pInB++;
+
+        /* Store one element in the destination */
+        *px = in;
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Decrement the column loop counter */
+        col--;
+      }
+
+      /* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
+       ** No loop unrolling is used. */
+      col = numColsB % 0x4U;
+
+      while (col > 0U)
+      {
+        /* Read and store the input element in the destination */
+        *px = *pInB++;
+
+        /* Update the pointer px to point to the next row of the transposed matrix */
+        px += numRowsB;
+
+        /* Decrement the column loop counter */
+        col--;
+      }
+
+      i++;
+
+      /* Decrement the row loop counter */
+      row--;
+
+    } while (row > 0U);
+
+    /* Reset the variables for the usage in the following multiplication process */
+    row = numRowsA;
+    i = 0U;
+    px = pDst->pData;
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+    /* Process two rows from matrix A at a time and output two rows at a time */
+    row = row >> 1;
+    px2 = px + numColsB;
+#endif
+
+    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+    /* row loop */
+    while (row > 0U)
+    {
+      /* For every row wise process, the column loop counter is to be initiated */
+      col = numColsB;
+
+      /* For every row wise process, the pIn2 pointer is set
+       ** to the starting address of the transposed pSrcB data */
+      pInB = pSrcBT;
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+      /* Process two (transposed) columns from matrix B at a time */
+      col = col >> 1;
+      j = 0;
+#endif
+
+      /* column loop */
+      while (col > 0U)
+      {
+        /* Set the variable sum, that acts as accumulator, to zero */
+        sum = 0;
+
+        /* Initiate the pointer pInA to point to the starting address of the column being processed */
+        pInA = pSrcA->pData + i;
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+        sum2 = 0;
+        sum3 = 0;
+        sum4 = 0;
+        pInB  = pSrcBT + j;
+        pInA2 = pInA + numColsA;
+        pInB2 = pInB + numRowsB;
+
+        /* Read in two elements at once - alows dual MAC instruction */
+        colCnt = numColsA >> 1;
+#else
+        colCnt = numColsA >> 2;
+#endif
+
+        /* matrix multiplication */
+        while (colCnt > 0U)
+        {
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+          inA1 = *__SIMD32(pInA)++;
+          inB1 = *__SIMD32(pInB)++;
+          inA2 = *__SIMD32(pInA2)++;
+          inB2 = *__SIMD32(pInB2)++;
+
+          sum  = __SMLAD(inA1, inB1, sum);
+          sum2 = __SMLAD(inA1, inB2, sum2);
+          sum3 = __SMLAD(inA2, inB1, sum3);
+          sum4 = __SMLAD(inA2, inB2, sum4);
+
+#else
+
+          inA1 = *pInA;
+          inB1 = *pInB;
+          sum += inA1 * inB1;
+
+          inA2 = pInA[1];
+          inB2 = pInB[1];
+          sum += inA2 * inB2;
+
+          inA1 = pInA[2];
+          inB1 = pInB[2];
+          sum += inA1 * inB1;
+
+          inA2 = pInA[3];
+          inB2 = pInB[3];
+          sum += inA2 * inB2;
+
+          pInA += 4;
+          pInB += 4;
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+        /* process odd column samples */
+#ifndef UNALIGNED_SUPPORT_DISABLE
+        if (numColsA & 1U) {
+          inA1 = *pInA++;
+          inB1 = *pInB++;
+          inA2 = *pInA2++;
+          inB2 = *pInB2++;
+          sum  += inA1 * inB1;
+          sum2 += inA1 * inB2;
+          sum3 += inA2 * inB1;
+          sum4 += inA2 * inB2;
+        }
+#else
+        colCnt = numColsA % 0x4U;
+
+        while (colCnt > 0U)
+        {
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+          sum += (q31_t) (*pInA++) * (*pInB++);
+
+          colCnt--;
+        }
+#endif
+
+        /* Saturate and store the result in the destination buffer */
+        *px++  = (q15_t) (sum >> 15);
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+        *px++  = (q15_t) (sum2 >> 15);
+        *px2++ = (q15_t) (sum3 >> 15);
+        *px2++ = (q15_t) (sum4 >> 15);
+        j += numRowsB * 2;
+#endif
+
+        /* Decrement the column loop counter */
+        col--;
+
+      }
+
+      i = i + numColsA;
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+      i = i + numColsA;
+      px = px2 + (numColsB & 1U);
+      px2 = px + numColsB;
+#endif
+
+      /* Decrement the row loop counter */
+      row--;
+
+    }
+
+    /* Compute any remaining odd row/column below */
+
+#ifndef UNALIGNED_SUPPORT_DISABLE
+
+    /* Compute remaining output column */
+    if (numColsB & 1U) {
+
+      /* Avoid redundant computation of last element */
+      row = numRowsA & (~0x1);
+
+      /* Point to remaining unfilled column in output matrix */
+      px = pDst->pData+numColsB-1;
+      pInA = pSrcA->pData;
+
+      /* row loop */
+      while (row > 0)
+      {
+
+        /* point to last column in matrix B */
+        pInB  = pSrcBT + numRowsB*(numColsB-1);
+
+        /* Set the variable sum, that acts as accumulator, to zero */
+        sum  = 0;
+
+        /* Compute 4 columns at once */
+        colCnt = numColsA >> 2;
+
+        /* matrix multiplication */
+        while (colCnt > 0U)
+        {
+          inA1 = *__SIMD32(pInA)++;
+          inA2 = *__SIMD32(pInA)++;
+          inB1 = *__SIMD32(pInB)++;
+          inB2 = *__SIMD32(pInB)++;
+
+          sum  = __SMLAD(inA1, inB1, sum);
+          sum  = __SMLAD(inA2, inB2, sum);
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+        colCnt = numColsA & 3U;
+        while (colCnt > 0U) {
+          sum += (q31_t) (*pInA++) * (*pInB++);
+          colCnt--;
+        }
+
+        /* Store the result in the destination buffer */
+        *px  = (q15_t) (sum  >> 15);
+        px += numColsB;
+
+        /* Decrement the row loop counter */
+        row--;
+      }
+    }
+
+    /* Compute remaining output row */
+    if (numRowsA & 1U) {
+
+      /* point to last row in output matrix */
+      px = pDst->pData+(numColsB)*(numRowsA-1);
+
+      pInB  = pSrcBT;
+      col = numColsB;
+      i = 0U;
+
+      /* col loop */
+      while (col > 0)
+      {
+
+        /* point to last row in matrix A */
+        pInA = pSrcA->pData + (numRowsA-1)*numColsA;
+
+        /* Set the variable sum, that acts as accumulator, to zero */
+        sum  = 0;
+
+        /* Compute 4 columns at once */
+        colCnt = numColsA >> 2;
+
+        /* matrix multiplication */
+        while (colCnt > 0U)
+        {
+          inA1 = *__SIMD32(pInA)++;
+          inA2 = *__SIMD32(pInA)++;
+          inB1 = *__SIMD32(pInB)++;
+          inB2 = *__SIMD32(pInB)++;
+
+          sum  = __SMLAD(inA1, inB1, sum);
+          sum  = __SMLAD(inA2, inB2, sum);
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+        colCnt = numColsA & 3U;
+        while (colCnt > 0U) {
+          sum += (q31_t) (*pInA++) * (*pInB++);
+          colCnt--;
+        }
+
+        /* Store the result in the destination buffer */
+        *px++  = (q15_t) (sum  >> 15);
+
+        /* Decrement the col loop counter */
+        col--;
+      }
+    }
+
+#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */
+
+    /* set status as ARM_MATH_SUCCESS */
+    status = ARM_MATH_SUCCESS;
+  }
+
+  /* Return to application */
+  return (status);
+}
+
+/**
+ * @} end of MatrixMult group
+ */

--
Gitblit v1.9.1