From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c |  384 ++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 384 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c
new file mode 100644
index 0000000..bff3177
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/MatrixFunctions/arm_mat_mult_fast_q31.c
@@ -0,0 +1,384 @@
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS DSP Library
+ * Title:        arm_mat_mult_fast_q31.c
+ * Description:  Q31 matrix multiplication (fast variant)
+ *
+ * $Date:        27. January 2017
+ * $Revision:    V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/**
+ * @ingroup groupMatrix
+ */
+
+/**
+ * @addtogroup MatrixMult
+ * @{
+ */
+
+/**
+ * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
+ * @param[in]       *pSrcA points to the first input matrix structure
+ * @param[in]       *pSrcB points to the second input matrix structure
+ * @param[out]      *pDst points to output matrix structure
+ * @return          The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * @details
+ * <b>Scaling and Overflow Behavior:</b>
+ *
+ * \par
+ * The difference between the function arm_mat_mult_q31() and this fast variant is that
+ * the fast variant use a 32-bit rather than a 64-bit accumulator.
+ * The result of each 1.31 x 1.31 multiplication is truncated to
+ * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30
+ * format. Finally, the accumulator is saturated and converted to a 1.31 result.
+ *
+ * \par
+ * The fast version has the same overflow behavior as the standard version but provides
+ * less precision since it discards the low 32 bits of each multiplication result.
+ * In order to avoid overflows completely the input signals must be scaled down.
+ * Scale down one of the input matrices by log2(numColsA) bits to
+ * avoid overflows, as a total of numColsA additions are computed internally for each
+ * output element.
+ *
+ * \par
+ * See <code>arm_mat_mult_q31()</code> for a slower implementation of this function
+ * which uses 64-bit accumulation to provide higher precision.
+ */
+
+arm_status arm_mat_mult_fast_q31(
+  const arm_matrix_instance_q31 * pSrcA,
+  const arm_matrix_instance_q31 * pSrcB,
+  arm_matrix_instance_q31 * pDst)
+{
+  q31_t *pInA = pSrcA->pData;                    /* input data matrix pointer A */
+  q31_t *pInB = pSrcB->pData;                    /* input data matrix pointer B */
+  q31_t *px;                                     /* Temporary output data matrix pointer */
+  q31_t sum;                                     /* Accumulator */
+  uint16_t numRowsA = pSrcA->numRows;            /* number of rows of input matrix A    */
+  uint16_t numColsB = pSrcB->numCols;            /* number of columns of input matrix B */
+  uint16_t numColsA = pSrcA->numCols;            /* number of columns of input matrix A */
+  uint32_t col, i = 0U, j, row = numRowsA, colCnt;  /* loop counters */
+  arm_status status;                             /* status of matrix multiplication */
+  q31_t inA1, inB1;
+
+#if defined (ARM_MATH_DSP)
+
+  q31_t sum2, sum3, sum4;
+  q31_t inA2, inB2;
+  q31_t *pInA2;
+  q31_t *px2;
+
+#endif
+
+#ifdef ARM_MATH_MATRIX_CHECK
+
+  /* Check for matrix mismatch condition */
+  if ((pSrcA->numCols != pSrcB->numRows) ||
+     (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols))
+  {
+    /* Set status as ARM_MATH_SIZE_MISMATCH */
+    status = ARM_MATH_SIZE_MISMATCH;
+  }
+  else
+#endif /*      #ifdef ARM_MATH_MATRIX_CHECK    */
+
+  {
+
+    px = pDst->pData;
+
+#if defined (ARM_MATH_DSP)
+    row = row >> 1;
+    px2 = px + numColsB;
+#endif
+
+    /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
+    /* row loop */
+    while (row > 0U)
+    {
+
+      /* For every row wise process, the column loop counter is to be initiated */
+      col = numColsB;
+
+      /* For every row wise process, the pIn2 pointer is set
+       ** to the starting address of the pSrcB data */
+      pInB = pSrcB->pData;
+
+      j = 0U;
+
+#if defined (ARM_MATH_DSP)
+      col = col >> 1;
+#endif
+
+      /* column loop */
+      while (col > 0U)
+      {
+        /* Set the variable sum, that acts as accumulator, to zero */
+        sum = 0;
+
+        /* Initiate data pointers */
+        pInA = pSrcA->pData + i;
+        pInB  = pSrcB->pData + j;
+
+#if defined (ARM_MATH_DSP)
+        sum2 = 0;
+        sum3 = 0;
+        sum4 = 0;
+        pInA2 = pInA + numColsA;
+        colCnt = numColsA;
+#else
+        colCnt = numColsA >> 2;
+#endif
+
+        /* matrix multiplication */
+        while (colCnt > 0U)
+        {
+
+#if defined (ARM_MATH_DSP)
+          inA1 = *pInA++;
+          inB1 = pInB[0];
+          inA2 = *pInA2++;
+          inB2 = pInB[1];
+          pInB += numColsB;
+
+          sum  = __SMMLA(inA1, inB1, sum);
+          sum2 = __SMMLA(inA1, inB2, sum2);
+          sum3 = __SMMLA(inA2, inB1, sum3);
+          sum4 = __SMMLA(inA2, inB2, sum4);
+#else
+          /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */
+          /* Perform the multiply-accumulates */
+          inB1 = *pInB;
+          pInB += numColsB;
+          inA1 = pInA[0];
+          sum = __SMMLA(inA1, inB1, sum);
+
+          inB1 = *pInB;
+          pInB += numColsB;
+          inA1 = pInA[1];
+          sum = __SMMLA(inA1, inB1, sum);
+
+          inB1 = *pInB;
+          pInB += numColsB;
+          inA1 = pInA[2];
+          sum = __SMMLA(inA1, inB1, sum);
+
+          inB1 = *pInB;
+          pInB += numColsB;
+          inA1 = pInA[3];
+          sum = __SMMLA(inA1, inB1, sum);
+
+          pInA += 4U;
+#endif
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+#ifdef ARM_MATH_CM0_FAMILY
+        /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. */
+        colCnt = numColsA % 0x4U;
+        while (colCnt > 0U)
+        {
+          sum = __SMMLA(*pInA++, *pInB, sum);
+          pInB += numColsB;
+          colCnt--;
+        }
+        j++;
+#endif
+
+        /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
+        *px++  = sum << 1;
+
+#if defined (ARM_MATH_DSP)
+        *px++  = sum2 << 1;
+        *px2++ = sum3 << 1;
+        *px2++ = sum4 << 1;
+        j += 2;
+#endif
+
+        /* Decrement the column loop counter */
+        col--;
+
+      }
+
+      i = i + numColsA;
+
+#if defined (ARM_MATH_DSP)
+      i = i + numColsA;
+      px = px2 + (numColsB & 1U);
+      px2 = px + numColsB;
+#endif
+
+      /* Decrement the row loop counter */
+      row--;
+
+    }
+
+    /* Compute any remaining odd row/column below */
+
+#if defined (ARM_MATH_DSP)
+
+    /* Compute remaining output column */
+    if (numColsB & 1U) {
+
+      /* Avoid redundant computation of last element */
+      row = numRowsA & (~0x1);
+
+      /* Point to remaining unfilled column in output matrix */
+      px = pDst->pData+numColsB-1;
+      pInA = pSrcA->pData;
+
+      /* row loop */
+      while (row > 0)
+      {
+
+        /* point to last column in matrix B */
+        pInB  = pSrcB->pData + numColsB-1;
+
+        /* Set the variable sum, that acts as accumulator, to zero */
+        sum  = 0;
+
+        /* Compute 4 columns at once */
+        colCnt = numColsA >> 2;
+
+        /* matrix multiplication */
+        while (colCnt > 0U)
+        {
+          inA1 = *pInA++;
+          inA2 = *pInA++;
+          inB1 = *pInB;
+          pInB += numColsB;
+          inB2 = *pInB;
+          pInB += numColsB;
+          sum = __SMMLA(inA1, inB1, sum);
+          sum = __SMMLA(inA2, inB2, sum);
+
+          inA1 = *pInA++;
+          inA2 = *pInA++;
+          inB1 = *pInB;
+          pInB += numColsB;
+          inB2 = *pInB;
+          pInB += numColsB;
+          sum = __SMMLA(inA1, inB1, sum);
+          sum = __SMMLA(inA2, inB2, sum);
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+        colCnt = numColsA & 3U;
+        while (colCnt > 0U) {
+          sum = __SMMLA(*pInA++, *pInB, sum);
+          pInB += numColsB;
+          colCnt--;
+        }
+
+        /* Convert the result from 2.30 to 1.31 format and store in destination buffer */
+        *px = sum << 1;
+        px += numColsB;
+
+        /* Decrement the row loop counter */
+        row--;
+      }
+    }
+
+    /* Compute remaining output row */
+    if (numRowsA & 1U) {
+
+      /* point to last row in output matrix */
+      px = pDst->pData+(numColsB)*(numRowsA-1);
+
+      col = numColsB;
+      i = 0U;
+
+      /* col loop */
+      while (col > 0)
+      {
+
+        /* point to last row in matrix A */
+        pInA = pSrcA->pData + (numRowsA-1)*numColsA;
+        pInB  = pSrcB->pData + i;
+
+        /* Set the variable sum, that acts as accumulator, to zero */
+        sum  = 0;
+
+        /* Compute 4 columns at once */
+        colCnt = numColsA >> 2;
+
+        /* matrix multiplication */
+        while (colCnt > 0U)
+        {
+          inA1 = *pInA++;
+          inA2 = *pInA++;
+          inB1 = *pInB;
+          pInB += numColsB;
+          inB2 = *pInB;
+          pInB += numColsB;
+          sum = __SMMLA(inA1, inB1, sum);
+          sum = __SMMLA(inA2, inB2, sum);
+
+          inA1 = *pInA++;
+          inA2 = *pInA++;
+          inB1 = *pInB;
+          pInB += numColsB;
+          inB2 = *pInB;
+          pInB += numColsB;
+          sum = __SMMLA(inA1, inB1, sum);
+          sum = __SMMLA(inA2, inB2, sum);
+
+          /* Decrement the loop counter */
+          colCnt--;
+        }
+
+        colCnt = numColsA & 3U;
+        while (colCnt > 0U) {
+          sum = __SMMLA(*pInA++, *pInB, sum);
+          pInB += numColsB;
+          colCnt--;
+        }
+
+        /* Saturate and store the result in the destination buffer */
+        *px++ = sum << 1;
+        i++;
+
+        /* Decrement the col loop counter */
+        col--;
+      }
+    }
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+    /* set status as ARM_MATH_SUCCESS */
+    status = ARM_MATH_SUCCESS;
+  }
+
+  /* Return to application */
+  return (status);
+}
+
+/**
+ * @} end of MatrixMult group
+ */

--
Gitblit v1.9.1