From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c |  620 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 620 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c
new file mode 100644
index 0000000..2593202
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_f32.c
@@ -0,0 +1,620 @@
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS DSP Library
+ * Title:        arm_cfft_f32.c
+ * Description:  Combined Radix Decimation in Frequency CFFT Floating point processing function
+ *
+ * $Date:        27. January 2017
+ * $Revision:    V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+#include "arm_common_tables.h"
+
+extern void arm_radix8_butterfly_f32(
+    float32_t * pSrc,
+    uint16_t fftLen,
+    const float32_t * pCoef,
+    uint16_t twidCoefModifier);
+
+extern void arm_bitreversal_32(
+    uint32_t * pSrc,
+    const uint16_t bitRevLen,
+    const uint16_t * pBitRevTable);
+
+/**
+* @ingroup groupTransforms
+*/
+
+/**
+* @defgroup ComplexFFT Complex FFT Functions
+*
+* \par
+* The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
+* Discrete Fourier Transform (DFT).  The FFT can be orders of magnitude faster
+* than the DFT, especially for long lengths.
+* The algorithms described in this section
+* operate on complex data.  A separate set of functions is devoted to handling
+* of real sequences.
+* \par
+* There are separate algorithms for handling floating-point, Q15, and Q31 data
+* types.  The algorithms available for each data type are described next.
+* \par
+* The FFT functions operate in-place.  That is, the array holding the input data
+* will also be used to hold the corresponding result.  The input data is complex
+* and contains <code>2*fftLen</code> interleaved values as shown below.
+* <pre> {real[0], imag[0], real[1], imag[1],..} </pre>
+* The FFT result will be contained in the same array and the frequency domain
+* values will have the same interleaving.
+*
+* \par Floating-point
+* The floating-point complex FFT uses a mixed-radix algorithm.  Multiple radix-8
+* stages are performed along with a single radix-2 or radix-4 stage, as needed.
+* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
+* a different twiddle factor table.
+* \par
+* The function uses the standard FFT definition and output values may grow by a
+* factor of <code>fftLen</code> when computing the forward transform.  The
+* inverse transform includes a scale of <code>1/fftLen</code> as part of the
+* calculation and this matches the textbook definition of the inverse FFT.
+* \par
+* Pre-initialized data structures containing twiddle factors and bit reversal
+* tables are provided and defined in <code>arm_const_structs.h</code>.  Include
+* this header in your function and then pass one of the constant structures as
+* an argument to arm_cfft_f32.  For example:
+* \par
+* <code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
+* \par
+* computes a 64-point inverse complex FFT including bit reversal.
+* The data structures are treated as constant data and not modified during the
+* calculation.  The same data structure can be reused for multiple transforms
+* including mixing forward and inverse transforms.
+* \par
+* Earlier releases of the library provided separate radix-2 and radix-4
+* algorithms that operated on floating-point data.  These functions are still
+* provided but are deprecated.  The older functions are slower and less general
+* than the new functions.
+* \par
+* An example of initialization of the constants for the arm_cfft_f32 function follows:
+* \code
+* const static arm_cfft_instance_f32 *S;
+* ...
+*   switch (length) {
+*     case 16:
+*       S = &arm_cfft_sR_f32_len16;
+*       break;
+*     case 32:
+*       S = &arm_cfft_sR_f32_len32;
+*       break;
+*     case 64:
+*       S = &arm_cfft_sR_f32_len64;
+*       break;
+*     case 128:
+*       S = &arm_cfft_sR_f32_len128;
+*       break;
+*     case 256:
+*       S = &arm_cfft_sR_f32_len256;
+*       break;
+*     case 512:
+*       S = &arm_cfft_sR_f32_len512;
+*       break;
+*     case 1024:
+*       S = &arm_cfft_sR_f32_len1024;
+*       break;
+*     case 2048:
+*       S = &arm_cfft_sR_f32_len2048;
+*       break;
+*     case 4096:
+*       S = &arm_cfft_sR_f32_len4096;
+*       break;
+*   }
+* \endcode
+* \par Q15 and Q31
+* The floating-point complex FFT uses a mixed-radix algorithm.  Multiple radix-4
+* stages are performed along with a single radix-2 stage, as needed.
+* The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
+* a different twiddle factor table.
+* \par
+* The function uses the standard FFT definition and output values may grow by a
+* factor of <code>fftLen</code> when computing the forward transform.  The
+* inverse transform includes a scale of <code>1/fftLen</code> as part of the
+* calculation and this matches the textbook definition of the inverse FFT.
+* \par
+* Pre-initialized data structures containing twiddle factors and bit reversal
+* tables are provided and defined in <code>arm_const_structs.h</code>.  Include
+* this header in your function and then pass one of the constant structures as
+* an argument to arm_cfft_q31.  For example:
+* \par
+* <code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
+* \par
+* computes a 64-point inverse complex FFT including bit reversal.
+* The data structures are treated as constant data and not modified during the
+* calculation.  The same data structure can be reused for multiple transforms
+* including mixing forward and inverse transforms.
+* \par
+* Earlier releases of the library provided separate radix-2 and radix-4
+* algorithms that operated on floating-point data.  These functions are still
+* provided but are deprecated.  The older functions are slower and less general
+* than the new functions.
+* \par
+* An example of initialization of the constants for the arm_cfft_q31 function follows:
+* \code
+* const static arm_cfft_instance_q31 *S;
+* ...
+*   switch (length) {
+*     case 16:
+*       S = &arm_cfft_sR_q31_len16;
+*       break;
+*     case 32:
+*       S = &arm_cfft_sR_q31_len32;
+*       break;
+*     case 64:
+*       S = &arm_cfft_sR_q31_len64;
+*       break;
+*     case 128:
+*       S = &arm_cfft_sR_q31_len128;
+*       break;
+*     case 256:
+*       S = &arm_cfft_sR_q31_len256;
+*       break;
+*     case 512:
+*       S = &arm_cfft_sR_q31_len512;
+*       break;
+*     case 1024:
+*       S = &arm_cfft_sR_q31_len1024;
+*       break;
+*     case 2048:
+*       S = &arm_cfft_sR_q31_len2048;
+*       break;
+*     case 4096:
+*       S = &arm_cfft_sR_q31_len4096;
+*       break;
+*   }
+* \endcode
+*
+*/
+
+void arm_cfft_radix8by2_f32( arm_cfft_instance_f32 * S, float32_t * p1)
+{
+    uint32_t    L  = S->fftLen;
+    float32_t * pCol1, * pCol2, * pMid1, * pMid2;
+    float32_t * p2 = p1 + L;
+    const float32_t * tw = (float32_t *) S->pTwiddle;
+    float32_t t1[4], t2[4], t3[4], t4[4], twR, twI;
+    float32_t m0, m1, m2, m3;
+    uint32_t l;
+
+    pCol1 = p1;
+    pCol2 = p2;
+
+    //    Define new length
+    L >>= 1;
+    //    Initialize mid pointers
+    pMid1 = p1 + L;
+    pMid2 = p2 + L;
+
+    // do two dot Fourier transform
+    for ( l = L >> 2; l > 0; l-- )
+    {
+        t1[0] = p1[0];
+        t1[1] = p1[1];
+        t1[2] = p1[2];
+        t1[3] = p1[3];
+
+        t2[0] = p2[0];
+        t2[1] = p2[1];
+        t2[2] = p2[2];
+        t2[3] = p2[3];
+
+        t3[0] = pMid1[0];
+        t3[1] = pMid1[1];
+        t3[2] = pMid1[2];
+        t3[3] = pMid1[3];
+
+        t4[0] = pMid2[0];
+        t4[1] = pMid2[1];
+        t4[2] = pMid2[2];
+        t4[3] = pMid2[3];
+
+        *p1++ = t1[0] + t2[0];
+        *p1++ = t1[1] + t2[1];
+        *p1++ = t1[2] + t2[2];
+        *p1++ = t1[3] + t2[3];    // col 1
+
+        t2[0] = t1[0] - t2[0];
+        t2[1] = t1[1] - t2[1];
+        t2[2] = t1[2] - t2[2];
+        t2[3] = t1[3] - t2[3];    // for col 2
+
+        *pMid1++ = t3[0] + t4[0];
+        *pMid1++ = t3[1] + t4[1];
+        *pMid1++ = t3[2] + t4[2];
+        *pMid1++ = t3[3] + t4[3]; // col 1
+
+        t4[0] = t4[0] - t3[0];
+        t4[1] = t4[1] - t3[1];
+        t4[2] = t4[2] - t3[2];
+        t4[3] = t4[3] - t3[3];    // for col 2
+
+        twR = *tw++;
+        twI = *tw++;
+
+        // multiply by twiddle factors
+        m0 = t2[0] * twR;
+        m1 = t2[1] * twI;
+        m2 = t2[1] * twR;
+        m3 = t2[0] * twI;
+
+        // R  =  R  *  Tr - I * Ti
+        *p2++ = m0 + m1;
+        // I  =  I  *  Tr + R * Ti
+        *p2++ = m2 - m3;
+
+        // use vertical symmetry
+        //  0.9988 - 0.0491i <==> -0.0491 - 0.9988i
+        m0 = t4[0] * twI;
+        m1 = t4[1] * twR;
+        m2 = t4[1] * twI;
+        m3 = t4[0] * twR;
+
+        *pMid2++ = m0 - m1;
+        *pMid2++ = m2 + m3;
+
+        twR = *tw++;
+        twI = *tw++;
+
+        m0 = t2[2] * twR;
+        m1 = t2[3] * twI;
+        m2 = t2[3] * twR;
+        m3 = t2[2] * twI;
+
+        *p2++ = m0 + m1;
+        *p2++ = m2 - m3;
+
+        m0 = t4[2] * twI;
+        m1 = t4[3] * twR;
+        m2 = t4[3] * twI;
+        m3 = t4[2] * twR;
+
+        *pMid2++ = m0 - m1;
+        *pMid2++ = m2 + m3;
+    }
+
+    // first col
+    arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 2U);
+    // second col
+    arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 2U);
+}
+
+void arm_cfft_radix8by4_f32( arm_cfft_instance_f32 * S, float32_t * p1)
+{
+    uint32_t    L  = S->fftLen >> 1;
+    float32_t * pCol1, *pCol2, *pCol3, *pCol4, *pEnd1, *pEnd2, *pEnd3, *pEnd4;
+    const float32_t *tw2, *tw3, *tw4;
+    float32_t * p2 = p1 + L;
+    float32_t * p3 = p2 + L;
+    float32_t * p4 = p3 + L;
+    float32_t t2[4], t3[4], t4[4], twR, twI;
+    float32_t p1ap3_0, p1sp3_0, p1ap3_1, p1sp3_1;
+    float32_t m0, m1, m2, m3;
+    uint32_t l, twMod2, twMod3, twMod4;
+
+    pCol1 = p1;         // points to real values by default
+    pCol2 = p2;
+    pCol3 = p3;
+    pCol4 = p4;
+    pEnd1 = p2 - 1;     // points to imaginary values by default
+    pEnd2 = p3 - 1;
+    pEnd3 = p4 - 1;
+    pEnd4 = pEnd3 + L;
+
+    tw2 = tw3 = tw4 = (float32_t *) S->pTwiddle;
+
+    L >>= 1;
+
+    // do four dot Fourier transform
+
+    twMod2 = 2;
+    twMod3 = 4;
+    twMod4 = 6;
+
+    // TOP
+    p1ap3_0 = p1[0] + p3[0];
+    p1sp3_0 = p1[0] - p3[0];
+    p1ap3_1 = p1[1] + p3[1];
+    p1sp3_1 = p1[1] - p3[1];
+
+    // col 2
+    t2[0] = p1sp3_0 + p2[1] - p4[1];
+    t2[1] = p1sp3_1 - p2[0] + p4[0];
+    // col 3
+    t3[0] = p1ap3_0 - p2[0] - p4[0];
+    t3[1] = p1ap3_1 - p2[1] - p4[1];
+    // col 4
+    t4[0] = p1sp3_0 - p2[1] + p4[1];
+    t4[1] = p1sp3_1 + p2[0] - p4[0];
+    // col 1
+    *p1++ = p1ap3_0 + p2[0] + p4[0];
+    *p1++ = p1ap3_1 + p2[1] + p4[1];
+
+    // Twiddle factors are ones
+    *p2++ = t2[0];
+    *p2++ = t2[1];
+    *p3++ = t3[0];
+    *p3++ = t3[1];
+    *p4++ = t4[0];
+    *p4++ = t4[1];
+
+    tw2 += twMod2;
+    tw3 += twMod3;
+    tw4 += twMod4;
+
+    for (l = (L - 2) >> 1; l > 0; l-- )
+    {
+        // TOP
+        p1ap3_0 = p1[0] + p3[0];
+        p1sp3_0 = p1[0] - p3[0];
+        p1ap3_1 = p1[1] + p3[1];
+        p1sp3_1 = p1[1] - p3[1];
+        // col 2
+        t2[0] = p1sp3_0 + p2[1] - p4[1];
+        t2[1] = p1sp3_1 - p2[0] + p4[0];
+        // col 3
+        t3[0] = p1ap3_0 - p2[0] - p4[0];
+        t3[1] = p1ap3_1 - p2[1] - p4[1];
+        // col 4
+        t4[0] = p1sp3_0 - p2[1] + p4[1];
+        t4[1] = p1sp3_1 + p2[0] - p4[0];
+        // col 1 - top
+        *p1++ = p1ap3_0 + p2[0] + p4[0];
+        *p1++ = p1ap3_1 + p2[1] + p4[1];
+
+        // BOTTOM
+        p1ap3_1 = pEnd1[-1] + pEnd3[-1];
+        p1sp3_1 = pEnd1[-1] - pEnd3[-1];
+        p1ap3_0 = pEnd1[0] + pEnd3[0];
+        p1sp3_0 = pEnd1[0] - pEnd3[0];
+        // col 2
+        t2[2] = pEnd2[0]  - pEnd4[0] + p1sp3_1;
+        t2[3] = pEnd1[0] - pEnd3[0] - pEnd2[-1] + pEnd4[-1];
+        // col 3
+        t3[2] = p1ap3_1 - pEnd2[-1] - pEnd4[-1];
+        t3[3] = p1ap3_0 - pEnd2[0]  - pEnd4[0];
+        // col 4
+        t4[2] = pEnd2[0]  - pEnd4[0]  - p1sp3_1;
+        t4[3] = pEnd4[-1] - pEnd2[-1] - p1sp3_0;
+        // col 1 - Bottom
+        *pEnd1-- = p1ap3_0 + pEnd2[0] + pEnd4[0];
+        *pEnd1-- = p1ap3_1 + pEnd2[-1] + pEnd4[-1];
+
+        // COL 2
+        // read twiddle factors
+        twR = *tw2++;
+        twI = *tw2++;
+        // multiply by twiddle factors
+        //  let    Z1 = a + i(b),   Z2 = c + i(d)
+        //   =>  Z1 * Z2  =  (a*c - b*d) + i(b*c + a*d)
+
+        // Top
+        m0 = t2[0] * twR;
+        m1 = t2[1] * twI;
+        m2 = t2[1] * twR;
+        m3 = t2[0] * twI;
+
+        *p2++ = m0 + m1;
+        *p2++ = m2 - m3;
+        // use vertical symmetry col 2
+        // 0.9997 - 0.0245i  <==>  0.0245 - 0.9997i
+        // Bottom
+        m0 = t2[3] * twI;
+        m1 = t2[2] * twR;
+        m2 = t2[2] * twI;
+        m3 = t2[3] * twR;
+
+        *pEnd2-- = m0 - m1;
+        *pEnd2-- = m2 + m3;
+
+        // COL 3
+        twR = tw3[0];
+        twI = tw3[1];
+        tw3 += twMod3;
+        // Top
+        m0 = t3[0] * twR;
+        m1 = t3[1] * twI;
+        m2 = t3[1] * twR;
+        m3 = t3[0] * twI;
+
+        *p3++ = m0 + m1;
+        *p3++ = m2 - m3;
+        // use vertical symmetry col 3
+        // 0.9988 - 0.0491i  <==>  -0.9988 - 0.0491i
+        // Bottom
+        m0 = -t3[3] * twR;
+        m1 = t3[2] * twI;
+        m2 = t3[2] * twR;
+        m3 = t3[3] * twI;
+
+        *pEnd3-- = m0 - m1;
+        *pEnd3-- = m3 - m2;
+
+        // COL 4
+        twR = tw4[0];
+        twI = tw4[1];
+        tw4 += twMod4;
+        // Top
+        m0 = t4[0] * twR;
+        m1 = t4[1] * twI;
+        m2 = t4[1] * twR;
+        m3 = t4[0] * twI;
+
+        *p4++ = m0 + m1;
+        *p4++ = m2 - m3;
+        // use vertical symmetry col 4
+        // 0.9973 - 0.0736i  <==>  -0.0736 + 0.9973i
+        // Bottom
+        m0 = t4[3] * twI;
+        m1 = t4[2] * twR;
+        m2 = t4[2] * twI;
+        m3 = t4[3] * twR;
+
+        *pEnd4-- = m0 - m1;
+        *pEnd4-- = m2 + m3;
+    }
+
+    //MIDDLE
+    // Twiddle factors are
+    //  1.0000  0.7071-0.7071i  -1.0000i  -0.7071-0.7071i
+    p1ap3_0 = p1[0] + p3[0];
+    p1sp3_0 = p1[0] - p3[0];
+    p1ap3_1 = p1[1] + p3[1];
+    p1sp3_1 = p1[1] - p3[1];
+
+    // col 2
+    t2[0] = p1sp3_0 + p2[1] - p4[1];
+    t2[1] = p1sp3_1 - p2[0] + p4[0];
+    // col 3
+    t3[0] = p1ap3_0 - p2[0] - p4[0];
+    t3[1] = p1ap3_1 - p2[1] - p4[1];
+    // col 4
+    t4[0] = p1sp3_0 - p2[1] + p4[1];
+    t4[1] = p1sp3_1 + p2[0] - p4[0];
+    // col 1 - Top
+    *p1++ = p1ap3_0 + p2[0] + p4[0];
+    *p1++ = p1ap3_1 + p2[1] + p4[1];
+
+    // COL 2
+    twR = tw2[0];
+    twI = tw2[1];
+
+    m0 = t2[0] * twR;
+    m1 = t2[1] * twI;
+    m2 = t2[1] * twR;
+    m3 = t2[0] * twI;
+
+    *p2++ = m0 + m1;
+    *p2++ = m2 - m3;
+    // COL 3
+    twR = tw3[0];
+    twI = tw3[1];
+
+    m0 = t3[0] * twR;
+    m1 = t3[1] * twI;
+    m2 = t3[1] * twR;
+    m3 = t3[0] * twI;
+
+    *p3++ = m0 + m1;
+    *p3++ = m2 - m3;
+    // COL 4
+    twR = tw4[0];
+    twI = tw4[1];
+
+    m0 = t4[0] * twR;
+    m1 = t4[1] * twI;
+    m2 = t4[1] * twR;
+    m3 = t4[0] * twI;
+
+    *p4++ = m0 + m1;
+    *p4++ = m2 - m3;
+
+    // first col
+    arm_radix8_butterfly_f32( pCol1, L, (float32_t *) S->pTwiddle, 4U);
+    // second col
+    arm_radix8_butterfly_f32( pCol2, L, (float32_t *) S->pTwiddle, 4U);
+    // third col
+    arm_radix8_butterfly_f32( pCol3, L, (float32_t *) S->pTwiddle, 4U);
+    // fourth col
+    arm_radix8_butterfly_f32( pCol4, L, (float32_t *) S->pTwiddle, 4U);
+}
+
+/**
+* @addtogroup ComplexFFT
+* @{
+*/
+
+/**
+* @details
+* @brief       Processing function for the floating-point complex FFT.
+* @param[in]      *S    points to an instance of the floating-point CFFT structure.
+* @param[in, out] *p1   points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
+* @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
+* @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+* @return none.
+*/
+
+void arm_cfft_f32(
+    const arm_cfft_instance_f32 * S,
+    float32_t * p1,
+    uint8_t ifftFlag,
+    uint8_t bitReverseFlag)
+{
+    uint32_t  L = S->fftLen, l;
+    float32_t invL, * pSrc;
+
+    if (ifftFlag == 1U)
+    {
+        /*  Conjugate input data  */
+        pSrc = p1 + 1;
+        for(l=0; l<L; l++)
+        {
+            *pSrc = -*pSrc;
+            pSrc += 2;
+        }
+    }
+
+    switch (L)
+    {
+    case 16:
+    case 128:
+    case 1024:
+        arm_cfft_radix8by2_f32  ( (arm_cfft_instance_f32 *) S, p1);
+        break;
+    case 32:
+    case 256:
+    case 2048:
+        arm_cfft_radix8by4_f32  ( (arm_cfft_instance_f32 *) S, p1);
+        break;
+    case 64:
+    case 512:
+    case 4096:
+        arm_radix8_butterfly_f32( p1, L, (float32_t *) S->pTwiddle, 1);
+        break;
+    }
+
+    if ( bitReverseFlag )
+        arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable);
+
+    if (ifftFlag == 1U)
+    {
+        invL = 1.0f/(float32_t)L;
+        /*  Conjugate and scale output data */
+        pSrc = p1;
+        for(l=0; l<L; l++)
+        {
+            *pSrc++ *=   invL ;
+            *pSrc  = -(*pSrc) * invL;
+            pSrc++;
+        }
+    }
+}
+
+/**
+* @} end of ComplexFFT group
+*/

--
Gitblit v1.9.1