From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c |  345 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 345 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c
new file mode 100644
index 0000000..0f5096e
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_q15.c
@@ -0,0 +1,345 @@
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS DSP Library
+ * Title:        arm_cfft_q15.c
+ * Description:  Combined Radix Decimation in Q15 Frequency CFFT processing function
+ *
+ * $Date:        27. January 2017
+ * $Revision:    V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+extern void arm_radix4_butterfly_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    q15_t * pCoef,
+    uint32_t twidCoefModifier);
+
+extern void arm_radix4_butterfly_inverse_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    q15_t * pCoef,
+    uint32_t twidCoefModifier);
+
+extern void arm_bitreversal_16(
+    uint16_t * pSrc,
+    const uint16_t bitRevLen,
+    const uint16_t * pBitRevTable);
+
+void arm_cfft_radix4by2_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    const q15_t * pCoef);
+
+void arm_cfft_radix4by2_inverse_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    const q15_t * pCoef);
+
+/**
+* @ingroup groupTransforms
+*/
+
+/**
+* @addtogroup ComplexFFT
+* @{
+*/
+
+/**
+* @details
+* @brief       Processing function for the Q15 complex FFT.
+* @param[in]      *S    points to an instance of the Q15 CFFT structure.
+* @param[in, out] *p1   points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.
+* @param[in]     ifftFlag       flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
+* @param[in]     bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
+* @return none.
+*/
+
+void arm_cfft_q15(
+    const arm_cfft_instance_q15 * S,
+    q15_t * p1,
+    uint8_t ifftFlag,
+    uint8_t bitReverseFlag)
+{
+    uint32_t L = S->fftLen;
+
+    if (ifftFlag == 1U)
+    {
+        switch (L)
+        {
+        case 16:
+        case 64:
+        case 256:
+        case 1024:
+        case 4096:
+            arm_radix4_butterfly_inverse_q15  ( p1, L, (q15_t*)S->pTwiddle, 1 );
+            break;
+
+        case 32:
+        case 128:
+        case 512:
+        case 2048:
+            arm_cfft_radix4by2_inverse_q15  ( p1, L, S->pTwiddle );
+            break;
+        }
+    }
+    else
+    {
+        switch (L)
+        {
+        case 16:
+        case 64:
+        case 256:
+        case 1024:
+        case 4096:
+            arm_radix4_butterfly_q15  ( p1, L, (q15_t*)S->pTwiddle, 1 );
+            break;
+
+        case 32:
+        case 128:
+        case 512:
+        case 2048:
+            arm_cfft_radix4by2_q15  ( p1, L, S->pTwiddle );
+            break;
+        }
+    }
+
+    if ( bitReverseFlag )
+        arm_bitreversal_16((uint16_t*)p1,S->bitRevLength,S->pBitRevTable);
+}
+
+/**
+* @} end of ComplexFFT group
+*/
+
+void arm_cfft_radix4by2_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    const q15_t * pCoef)
+{
+    uint32_t i;
+    uint32_t n2;
+    q15_t p0, p1, p2, p3;
+#if defined (ARM_MATH_DSP)
+    q31_t T, S, R;
+    q31_t coeff, out1, out2;
+    const q15_t *pC = pCoef;
+    q15_t *pSi = pSrc;
+    q15_t *pSl = pSrc + fftLen;
+#else
+    uint32_t ia, l;
+    q15_t xt, yt, cosVal, sinVal;
+#endif
+
+    n2 = fftLen >> 1;
+
+#if defined (ARM_MATH_DSP)
+
+    for (i = n2; i > 0; i--)
+    {
+        coeff = _SIMD32_OFFSET(pC);
+        pC += 2;
+
+        T = _SIMD32_OFFSET(pSi);
+        T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1
+
+        S = _SIMD32_OFFSET(pSl);
+        S = __SHADD16(S, 0); // this is just a SIMD arithmetic shift right by 1
+
+        R = __QSUB16(T, S);
+
+        _SIMD32_OFFSET(pSi) = __SHADD16(T, S);
+        pSi += 2;
+
+    #ifndef ARM_MATH_BIG_ENDIAN
+
+        out1 = __SMUAD(coeff, R) >> 16;
+        out2 = __SMUSDX(coeff, R);
+
+    #else
+
+        out1 = __SMUSDX(R, coeff) >> 16U;
+        out2 = __SMUAD(coeff, R);
+
+    #endif //     #ifndef ARM_MATH_BIG_ENDIAN
+
+        _SIMD32_OFFSET(pSl) =
+        (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+        pSl += 2;
+    }
+
+#else //    #if defined (ARM_MATH_DSP)
+
+    ia = 0;
+    for (i = 0; i < n2; i++)
+    {
+        cosVal = pCoef[ia * 2];
+        sinVal = pCoef[(ia * 2) + 1];
+        ia++;
+
+        l = i + n2;
+
+        xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
+        pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
+
+        yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
+        pSrc[2 * i + 1] =
+        ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
+
+        pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) +
+                  ((int16_t) (((q31_t) yt * sinVal) >> 16)));
+
+        pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) -
+                       ((int16_t) (((q31_t) xt * sinVal) >> 16)));
+    }
+
+#endif //    #if defined (ARM_MATH_DSP)
+
+    // first col
+    arm_radix4_butterfly_q15( pSrc, n2, (q15_t*)pCoef, 2U);
+    // second col
+    arm_radix4_butterfly_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U);
+
+    for (i = 0; i < fftLen >> 1; i++)
+    {
+        p0 = pSrc[4*i+0];
+        p1 = pSrc[4*i+1];
+        p2 = pSrc[4*i+2];
+        p3 = pSrc[4*i+3];
+
+        p0 <<= 1;
+        p1 <<= 1;
+        p2 <<= 1;
+        p3 <<= 1;
+
+        pSrc[4*i+0] = p0;
+        pSrc[4*i+1] = p1;
+        pSrc[4*i+2] = p2;
+        pSrc[4*i+3] = p3;
+    }
+}
+
+void arm_cfft_radix4by2_inverse_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    const q15_t * pCoef)
+{
+    uint32_t i;
+    uint32_t n2;
+    q15_t p0, p1, p2, p3;
+#if defined (ARM_MATH_DSP)
+    q31_t T, S, R;
+    q31_t coeff, out1, out2;
+    const q15_t *pC = pCoef;
+    q15_t *pSi = pSrc;
+    q15_t *pSl = pSrc + fftLen;
+#else
+    uint32_t ia, l;
+    q15_t xt, yt, cosVal, sinVal;
+#endif
+
+    n2 = fftLen >> 1;
+
+#if defined (ARM_MATH_DSP)
+
+    for (i = n2; i > 0; i--)
+    {
+        coeff = _SIMD32_OFFSET(pC);
+        pC += 2;
+
+        T = _SIMD32_OFFSET(pSi);
+        T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1
+
+        S = _SIMD32_OFFSET(pSl);
+        S = __SHADD16(S, 0); // this is just a SIMD arithmetic shift right by 1
+
+        R = __QSUB16(T, S);
+
+        _SIMD32_OFFSET(pSi) = __SHADD16(T, S);
+        pSi += 2;
+
+    #ifndef ARM_MATH_BIG_ENDIAN
+
+        out1 = __SMUSD(coeff, R) >> 16;
+        out2 = __SMUADX(coeff, R);
+    #else
+
+        out1 = __SMUADX(R, coeff) >> 16U;
+        out2 = __SMUSD(__QSUB(0, coeff), R);
+
+    #endif //     #ifndef ARM_MATH_BIG_ENDIAN
+
+        _SIMD32_OFFSET(pSl) =
+        (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+        pSl += 2;
+    }
+
+#else //    #if defined (ARM_MATH_DSP)
+
+    ia = 0;
+    for (i = 0; i < n2; i++)
+    {
+        cosVal = pCoef[ia * 2];
+        sinVal = pCoef[(ia * 2) + 1];
+        ia++;
+
+        l = i + n2;
+        xt = (pSrc[2 * i] >> 1U) - (pSrc[2 * l] >> 1U);
+        pSrc[2 * i] = ((pSrc[2 * i] >> 1U) + (pSrc[2 * l] >> 1U)) >> 1U;
+
+        yt = (pSrc[2 * i + 1] >> 1U) - (pSrc[2 * l + 1] >> 1U);
+        pSrc[2 * i + 1] =
+          ((pSrc[2 * l + 1] >> 1U) + (pSrc[2 * i + 1] >> 1U)) >> 1U;
+
+        pSrc[2U * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) -
+                        ((int16_t) (((q31_t) yt * sinVal) >> 16)));
+
+        pSrc[2U * l + 1U] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) +
+                           ((int16_t) (((q31_t) xt * sinVal) >> 16)));
+    }
+
+#endif //    #if defined (ARM_MATH_DSP)
+
+    // first col
+    arm_radix4_butterfly_inverse_q15( pSrc, n2, (q15_t*)pCoef, 2U);
+    // second col
+    arm_radix4_butterfly_inverse_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2U);
+
+    for (i = 0; i < fftLen >> 1; i++)
+    {
+        p0 = pSrc[4*i+0];
+        p1 = pSrc[4*i+1];
+        p2 = pSrc[4*i+2];
+        p3 = pSrc[4*i+3];
+
+        p0 <<= 1;
+        p1 <<= 1;
+        p2 <<= 1;
+        p3 <<= 1;
+
+        pSrc[4*i+0] = p0;
+        pSrc[4*i+1] = p1;
+        pSrc[4*i+2] = p2;
+        pSrc[4*i+3] = p3;
+    }
+}
+

--
Gitblit v1.9.1