From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_radix4_q15.c | 1910 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 1,910 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_radix4_q15.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_radix4_q15.c
new file mode 100644
index 0000000..140fa53
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_cfft_radix4_q15.c
@@ -0,0 +1,1910 @@
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS DSP Library
+ * Title:        arm_cfft_radix4_q15.c
+ * Description:  This file has function definition of Radix-4 FFT & IFFT function and
+ *               In-place bit reversal using bit reversal table
+ *
+ * $Date:        27. January 2017
+ * $Revision:    V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+
+void arm_radix4_butterfly_q15(
+  q15_t * pSrc16,
+  uint32_t fftLen,
+  q15_t * pCoef16,
+  uint32_t twidCoefModifier);
+
+void arm_radix4_butterfly_inverse_q15(
+  q15_t * pSrc16,
+  uint32_t fftLen,
+  q15_t * pCoef16,
+  uint32_t twidCoefModifier);
+
+void arm_bitreversal_q15(
+  q15_t * pSrc,
+  uint32_t fftLen,
+  uint16_t bitRevFactor,
+  uint16_t * pBitRevTab);
+
+/**
+ * @ingroup groupTransforms
+ */
+
+/**
+ * @addtogroup ComplexFFT
+ * @{
+ */
+
+
+/**
+ * @details
+ * @brief Processing function for the Q15 CFFT/CIFFT.
+ * @deprecated Do not use this function.  It has been superseded by \ref arm_cfft_q15 and will be removed
+ * @param[in]      *S    points to an instance of the Q15 CFFT/CIFFT structure.
+ * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
+ * @return none.
+ *
+ * \par Input and output formats:
+ * \par
+ * Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
+ * Hence the output format is different for different FFT sizes.
+ * The input and output formats for different FFT sizes and number of bits to upscale are mentioned in the tables below for CFFT and CIFFT:
+ * \par
+ * \image html CFFTQ15.gif "Input and Output Formats for Q15 CFFT"
+ * \image html CIFFTQ15.gif "Input and Output Formats for Q15 CIFFT"
+ */
+
+void arm_cfft_radix4_q15(
+  const arm_cfft_radix4_instance_q15 * S,
+  q15_t * pSrc)
+{
+  if (S->ifftFlag == 1U)
+  {
+    /*  Complex IFFT radix-4  */
+    arm_radix4_butterfly_inverse_q15(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier);
+  }
+  else
+  {
+    /*  Complex FFT radix-4  */
+    arm_radix4_butterfly_q15(pSrc, S->fftLen, S->pTwiddle, S->twidCoefModifier);
+  }
+
+  if (S->bitReverseFlag == 1U)
+  {
+    /*  Bit Reversal */
+    arm_bitreversal_q15(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
+  }
+
+}
+
+/**
+ * @} end of ComplexFFT group
+ */
+
+/*
+* Radix-4 FFT algorithm used is :
+*
+* Input real and imaginary data:
+* x(n) = xa + j * ya
+* x(n+N/4 ) = xb + j * yb
+* x(n+N/2 ) = xc + j * yc
+* x(n+3N 4) = xd + j * yd
+*
+*
+* Output real and imaginary data:
+* x(4r) = xa'+ j * ya'
+* x(4r+1) = xb'+ j * yb'
+* x(4r+2) = xc'+ j * yc'
+* x(4r+3) = xd'+ j * yd'
+*
+*
+* Twiddle factors for radix-4 FFT:
+* Wn = co1 + j * (- si1)
+* W2n = co2 + j * (- si2)
+* W3n = co3 + j * (- si3)
+
+* The real and imaginary output values for the radix-4 butterfly are
+* xa' = xa + xb + xc + xd
+* ya' = ya + yb + yc + yd
+* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1)
+* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1)
+* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2)
+* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2)
+* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3)
+* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3)
+*
+*/
+
+/**
+ * @brief  Core function for the Q15 CFFT butterfly process.
+ * @param[in, out] *pSrc16          points to the in-place buffer of Q15 data type.
+ * @param[in]      fftLen           length of the FFT.
+ * @param[in]      *pCoef16         points to twiddle coefficient buffer.
+ * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+void arm_radix4_butterfly_q15(
+  q15_t * pSrc16,
+  uint32_t fftLen,
+  q15_t * pCoef16,
+  uint32_t twidCoefModifier)
+{
+
+#if defined (ARM_MATH_DSP)
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+  q31_t R, S, T, U;
+  q31_t C1, C2, C3, out1, out2;
+  uint32_t n1, n2, ic, i0, j, k;
+
+  q15_t *ptr1;
+  q15_t *pSi0;
+  q15_t *pSi1;
+  q15_t *pSi2;
+  q15_t *pSi3;
+
+  q31_t xaya, xbyb, xcyc, xdyd;
+
+  /* Total process is divided into three stages */
+
+  /* process first stage, middle stages, & last stage */
+
+  /*  Initializations for the first stage */
+  n2 = fftLen;
+  n1 = n2;
+
+  /* n2 = fftLen/4 */
+  n2 >>= 2U;
+
+  /* Index for twiddle coefficient */
+  ic = 0U;
+
+  /* Index for input read and output write */
+  j = n2;
+
+  pSi0 = pSrc16;
+  pSi1 = pSi0 + 2 * n2;
+  pSi2 = pSi1 + 2 * n2;
+  pSi3 = pSi2 + 2 * n2;
+
+  /* Input is in 1.15(q15) format */
+
+  /*  start of first stage process */
+  do
+  {
+    /*  Butterfly implementation */
+
+    /*  Reading i0, i0+fftLen/2 inputs */
+    /* Read ya (real), xa(imag) input */
+    T = _SIMD32_OFFSET(pSi0);
+    T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1
+    T = __SHADD16(T, 0); // it turns out doing this twice is 2 cycles, the alternative takes 3 cycles
+    //in = ((int16_t) (T & 0xFFFF)) >> 2;       // alternative code that takes 3 cycles
+    //T = ((T >> 2) & 0xFFFF0000) | (in & 0xFFFF);
+
+    /* Read yc (real), xc(imag) input */
+    S = _SIMD32_OFFSET(pSi2);
+    S = __SHADD16(S, 0);
+    S = __SHADD16(S, 0);
+
+    /* R = packed((ya + yc), (xa + xc) ) */
+    R = __QADD16(T, S);
+
+    /* S = packed((ya - yc), (xa - xc) ) */
+    S = __QSUB16(T, S);
+
+    /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
+    /* Read yb (real), xb(imag) input */
+    T = _SIMD32_OFFSET(pSi1);
+    T = __SHADD16(T, 0);
+    T = __SHADD16(T, 0);
+
+    /* Read yd (real), xd(imag) input */
+    U = _SIMD32_OFFSET(pSi3);
+    U = __SHADD16(U, 0);
+    U = __SHADD16(U, 0);
+
+    /* T = packed((yb + yd), (xb + xd) ) */
+    T = __QADD16(T, U);
+
+    /*  writing the butterfly processed i0 sample */
+    /* xa' = xa + xb + xc + xd */
+    /* ya' = ya + yb + yc + yd */
+    _SIMD32_OFFSET(pSi0) = __SHADD16(R, T);
+    pSi0 += 2;
+
+    /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */
+    R = __QSUB16(R, T);
+
+    /* co2 & si2 are read from SIMD Coefficient pointer */
+    C2 = _SIMD32_OFFSET(pCoef16 + (4U * ic));
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
+    out1 = __SMUAD(C2, R) >> 16U;
+    /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+    out2 = __SMUSDX(C2, R);
+
+#else
+
+    /* xc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+    out1 = __SMUSDX(R, C2) >> 16U;
+    /* yc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
+    out2 = __SMUAD(C2, R);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /*  Reading i0+fftLen/4 */
+    /* T = packed(yb, xb) */
+    T = _SIMD32_OFFSET(pSi1);
+    T = __SHADD16(T, 0);
+    T = __SHADD16(T, 0);
+
+    /* writing the butterfly processed i0 + fftLen/4 sample */
+    /* writing output(xc', yc') in little endian format */
+    _SIMD32_OFFSET(pSi1) =
+      (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+    pSi1 += 2;
+
+    /*  Butterfly calculations */
+    /* U = packed(yd, xd) */
+    U = _SIMD32_OFFSET(pSi3);
+    U = __SHADD16(U, 0);
+    U = __SHADD16(U, 0);
+
+    /* T = packed(yb-yd, xb-xd) */
+    T = __QSUB16(T, U);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
+    R = __QASX(S, T);
+    /* S = packed((ya-yc) - (xb- xd),  (xa-xc) + (yb-yd)) */
+    S = __QSAX(S, T);
+
+#else
+
+    /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
+    R = __QSAX(S, T);
+    /* S = packed((ya-yc) - (xb- xd),  (xa-xc) + (yb-yd)) */
+    S = __QASX(S, T);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /* co1 & si1 are read from SIMD Coefficient pointer */
+    C1 = _SIMD32_OFFSET(pCoef16 + (2U * ic));
+    /*  Butterfly process for the i0+fftLen/2 sample */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
+    out1 = __SMUAD(C1, S) >> 16U;
+    /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
+    out2 = __SMUSDX(C1, S);
+
+#else
+
+    /* xb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
+    out1 = __SMUSDX(S, C1) >> 16U;
+    /* yb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
+    out2 = __SMUAD(C1, S);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /* writing output(xb', yb') in little endian format */
+    _SIMD32_OFFSET(pSi2) =
+      ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF);
+    pSi2 += 2;
+
+
+    /* co3 & si3 are read from SIMD Coefficient pointer */
+    C3 = _SIMD32_OFFSET(pCoef16 + (6U * ic));
+    /*  Butterfly process for the i0+3fftLen/4 sample */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
+    out1 = __SMUAD(C3, R) >> 16U;
+    /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
+    out2 = __SMUSDX(C3, R);
+
+#else
+
+    /* xd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
+    out1 = __SMUSDX(R, C3) >> 16U;
+    /* yd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
+    out2 = __SMUAD(C3, R);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /* writing output(xd', yd') in little endian format */
+    _SIMD32_OFFSET(pSi3) =
+      ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+    pSi3 += 2;
+
+    /*  Twiddle coefficients index modifier */
+    ic = ic + twidCoefModifier;
+
+  } while (--j);
+  /* data is in 4.11(q11) format */
+
+  /* end of first stage process */
+
+
+  /* start of middle stage process */
+
+  /*  Twiddle coefficients index modifier */
+  twidCoefModifier <<= 2U;
+
+  /*  Calculation of Middle stage */
+  for (k = fftLen / 4U; k > 4U; k >>= 2U)
+  {
+    /*  Initializations for the middle stage */
+    n1 = n2;
+    n2 >>= 2U;
+    ic = 0U;
+
+    for (j = 0U; j <= (n2 - 1U); j++)
+    {
+      /*  index calculation for the coefficients */
+      C1 = _SIMD32_OFFSET(pCoef16 + (2U * ic));
+      C2 = _SIMD32_OFFSET(pCoef16 + (4U * ic));
+      C3 = _SIMD32_OFFSET(pCoef16 + (6U * ic));
+
+      /*  Twiddle coefficients index modifier */
+      ic = ic + twidCoefModifier;
+
+      pSi0 = pSrc16 + 2 * j;
+      pSi1 = pSi0 + 2 * n2;
+      pSi2 = pSi1 + 2 * n2;
+      pSi3 = pSi2 + 2 * n2;
+
+      /*  Butterfly implementation */
+      for (i0 = j; i0 < fftLen; i0 += n1)
+      {
+        /*  Reading i0, i0+fftLen/2 inputs */
+        /* Read ya (real), xa(imag) input */
+        T = _SIMD32_OFFSET(pSi0);
+
+        /* Read yc (real), xc(imag) input */
+        S = _SIMD32_OFFSET(pSi2);
+
+        /* R = packed( (ya + yc), (xa + xc)) */
+        R = __QADD16(T, S);
+
+        /* S = packed((ya - yc), (xa - xc)) */
+        S = __QSUB16(T, S);
+
+        /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
+        /* Read yb (real), xb(imag) input */
+        T = _SIMD32_OFFSET(pSi1);
+
+        /* Read yd (real), xd(imag) input */
+        U = _SIMD32_OFFSET(pSi3);
+
+        /* T = packed( (yb + yd), (xb + xd)) */
+        T = __QADD16(T, U);
+
+        /*  writing the butterfly processed i0 sample */
+
+        /* xa' = xa + xb + xc + xd */
+        /* ya' = ya + yb + yc + yd */
+        out1 = __SHADD16(R, T);
+        out1 = __SHADD16(out1, 0);
+        _SIMD32_OFFSET(pSi0) = out1;
+        pSi0 += 2 * n1;
+
+        /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */
+        R = __SHSUB16(R, T);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
+        out1 = __SMUAD(C2, R) >> 16U;
+
+        /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+        out2 = __SMUSDX(C2, R);
+
+#else
+
+        /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+        out1 = __SMUSDX(R, C2) >> 16U;
+
+        /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
+        out2 = __SMUAD(C2, R);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+        /*  Reading i0+3fftLen/4 */
+        /* Read yb (real), xb(imag) input */
+        T = _SIMD32_OFFSET(pSi1);
+
+        /*  writing the butterfly processed i0 + fftLen/4 sample */
+        /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
+        /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+        _SIMD32_OFFSET(pSi1) =
+          ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+        pSi1 += 2 * n1;
+
+        /*  Butterfly calculations */
+
+        /* Read yd (real), xd(imag) input */
+        U = _SIMD32_OFFSET(pSi3);
+
+        /* T = packed(yb-yd, xb-xd) */
+        T = __QSUB16(T, U);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
+        R = __SHASX(S, T);
+
+        /* S = packed((ya-yc) - (xb- xd),  (xa-xc) + (yb-yd)) */
+        S = __SHSAX(S, T);
+
+
+        /*  Butterfly process for the i0+fftLen/2 sample */
+        out1 = __SMUAD(C1, S) >> 16U;
+        out2 = __SMUSDX(C1, S);
+
+#else
+
+        /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
+        R = __SHSAX(S, T);
+
+        /* S = packed((ya-yc) - (xb- xd),  (xa-xc) + (yb-yd)) */
+        S = __SHASX(S, T);
+
+
+        /*  Butterfly process for the i0+fftLen/2 sample */
+        out1 = __SMUSDX(S, C1) >> 16U;
+        out2 = __SMUAD(C1, S);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+        /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
+        /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
+        _SIMD32_OFFSET(pSi2) =
+          ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+        pSi2 += 2 * n1;
+
+        /*  Butterfly process for the i0+3fftLen/4 sample */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        out1 = __SMUAD(C3, R) >> 16U;
+        out2 = __SMUSDX(C3, R);
+
+#else
+
+        out1 = __SMUSDX(R, C3) >> 16U;
+        out2 = __SMUAD(C3, R);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+        /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
+        /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
+        _SIMD32_OFFSET(pSi3) =
+          ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+        pSi3 += 2 * n1;
+      }
+    }
+    /*  Twiddle coefficients index modifier */
+    twidCoefModifier <<= 2U;
+  }
+  /* end of middle stage process */
+
+
+  /* data is in 10.6(q6) format for the 1024 point */
+  /* data is in 8.8(q8) format for the 256 point */
+  /* data is in 6.10(q10) format for the 64 point */
+  /* data is in 4.12(q12) format for the 16 point */
+
+  /*  Initializations for the last stage */
+  j = fftLen >> 2;
+
+  ptr1 = &pSrc16[0];
+
+  /* start of last stage process */
+
+  /*  Butterfly implementation */
+  do
+  {
+    /* Read xa (real), ya(imag) input */
+    xaya = *__SIMD32(ptr1)++;
+
+    /* Read xb (real), yb(imag) input */
+    xbyb = *__SIMD32(ptr1)++;
+
+    /* Read xc (real), yc(imag) input */
+    xcyc = *__SIMD32(ptr1)++;
+
+    /* Read xd (real), yd(imag) input */
+    xdyd = *__SIMD32(ptr1)++;
+
+    /* R = packed((ya + yc), (xa + xc)) */
+    R = __QADD16(xaya, xcyc);
+
+    /* T = packed((yb + yd), (xb + xd)) */
+    T = __QADD16(xbyb, xdyd);
+
+    /* pointer updation for writing */
+    ptr1 = ptr1 - 8U;
+
+
+    /* xa' = xa + xb + xc + xd */
+    /* ya' = ya + yb + yc + yd */
+    *__SIMD32(ptr1)++ = __SHADD16(R, T);
+
+    /* T = packed((yb + yd), (xb + xd)) */
+    T = __QADD16(xbyb, xdyd);
+
+    /* xc' = (xa-xb+xc-xd) */
+    /* yc' = (ya-yb+yc-yd) */
+    *__SIMD32(ptr1)++ = __SHSUB16(R, T);
+
+    /* S = packed((ya - yc), (xa - xc)) */
+    S = __QSUB16(xaya, xcyc);
+
+    /* Read yd (real), xd(imag) input */
+    /* T = packed( (yb - yd), (xb - xd))  */
+    U = __QSUB16(xbyb, xdyd);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* xb' = (xa+yb-xc-yd) */
+    /* yb' = (ya-xb-yc+xd) */
+    *__SIMD32(ptr1)++ = __SHSAX(S, U);
+
+
+    /* xd' = (xa-yb-xc+yd) */
+    /* yd' = (ya+xb-yc-xd) */
+    *__SIMD32(ptr1)++ = __SHASX(S, U);
+
+#else
+
+    /* xb' = (xa+yb-xc-yd) */
+    /* yb' = (ya-xb-yc+xd) */
+    *__SIMD32(ptr1)++ = __SHASX(S, U);
+
+
+    /* xd' = (xa-yb-xc+yd) */
+    /* yd' = (ya+xb-yc-xd) */
+    *__SIMD32(ptr1)++ = __SHSAX(S, U);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+  } while (--j);
+
+  /* end of last stage process */
+
+  /* output is in 11.5(q5) format for the 1024 point */
+  /* output is in 9.7(q7) format for the 256 point   */
+  /* output is in 7.9(q9) format for the 64 point  */
+  /* output is in 5.11(q11) format for the 16 point  */
+
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+
+  q15_t R0, R1, S0, S1, T0, T1, U0, U1;
+  q15_t Co1, Si1, Co2, Si2, Co3, Si3, out1, out2;
+  uint32_t n1, n2, ic, i0, i1, i2, i3, j, k;
+
+  /* Total process is divided into three stages */
+
+  /* process first stage, middle stages, & last stage */
+
+  /*  Initializations for the first stage */
+  n2 = fftLen;
+  n1 = n2;
+
+  /* n2 = fftLen/4 */
+  n2 >>= 2U;
+
+  /* Index for twiddle coefficient */
+  ic = 0U;
+
+  /* Index for input read and output write */
+  i0 = 0U;
+  j = n2;
+
+  /* Input is in 1.15(q15) format */
+
+  /*  start of first stage process */
+  do
+  {
+    /*  Butterfly implementation */
+
+    /*  index calculation for the input as, */
+    /*  pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
+    i1 = i0 + n2;
+    i2 = i1 + n2;
+    i3 = i2 + n2;
+
+    /*  Reading i0, i0+fftLen/2 inputs */
+
+    /* input is down scale by 4 to avoid overflow */
+    /* Read ya (real), xa(imag) input */
+    T0 = pSrc16[i0 * 2U] >> 2U;
+    T1 = pSrc16[(i0 * 2U) + 1U] >> 2U;
+
+    /* input is down scale by 4 to avoid overflow */
+    /* Read yc (real), xc(imag) input */
+    S0 = pSrc16[i2 * 2U] >> 2U;
+    S1 = pSrc16[(i2 * 2U) + 1U] >> 2U;
+
+    /* R0 = (ya + yc) */
+    R0 = __SSAT(T0 + S0, 16U);
+    /* R1 = (xa + xc) */
+    R1 = __SSAT(T1 + S1, 16U);
+
+    /* S0 = (ya - yc) */
+    S0 = __SSAT(T0 - S0, 16);
+    /* S1 = (xa - xc) */
+    S1 = __SSAT(T1 - S1, 16);
+
+    /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
+    /* input is down scale by 4 to avoid overflow */
+    /* Read yb (real), xb(imag) input */
+    T0 = pSrc16[i1 * 2U] >> 2U;
+    T1 = pSrc16[(i1 * 2U) + 1U] >> 2U;
+
+    /* input is down scale by 4 to avoid overflow */
+    /* Read yd (real), xd(imag) input */
+    U0 = pSrc16[i3 * 2U] >> 2U;
+    U1 = pSrc16[(i3 * 2U) + 1] >> 2U;
+
+    /* T0 = (yb + yd) */
+    T0 = __SSAT(T0 + U0, 16U);
+    /* T1 = (xb + xd) */
+    T1 = __SSAT(T1 + U1, 16U);
+
+    /*  writing the butterfly processed i0 sample */
+    /* ya' = ya + yb + yc + yd */
+    /* xa' = xa + xb + xc + xd */
+    pSrc16[i0 * 2U] = (R0 >> 1U) + (T0 >> 1U);
+    pSrc16[(i0 * 2U) + 1U] = (R1 >> 1U) + (T1 >> 1U);
+
+    /* R0 = (ya + yc) - (yb + yd) */
+    /* R1 = (xa + xc) - (xb + xd) */
+    R0 = __SSAT(R0 - T0, 16U);
+    R1 = __SSAT(R1 - T1, 16U);
+
+    /* co2 & si2 are read from Coefficient pointer */
+    Co2 = pCoef16[2U * ic * 2U];
+    Si2 = pCoef16[(2U * ic * 2U) + 1];
+
+    /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
+    out1 = (q15_t) ((Co2 * R0 + Si2 * R1) >> 16U);
+    /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+    out2 = (q15_t) ((-Si2 * R0 + Co2 * R1) >> 16U);
+
+    /*  Reading i0+fftLen/4 */
+    /* input is down scale by 4 to avoid overflow */
+    /* T0 = yb, T1 =  xb */
+    T0 = pSrc16[i1 * 2U] >> 2;
+    T1 = pSrc16[(i1 * 2U) + 1] >> 2;
+
+    /* writing the butterfly processed i0 + fftLen/4 sample */
+    /* writing output(xc', yc') in little endian format */
+    pSrc16[i1 * 2U] = out1;
+    pSrc16[(i1 * 2U) + 1] = out2;
+
+    /*  Butterfly calculations */
+    /* input is down scale by 4 to avoid overflow */
+    /* U0 = yd, U1 = xd */
+    U0 = pSrc16[i3 * 2U] >> 2;
+    U1 = pSrc16[(i3 * 2U) + 1] >> 2;
+    /* T0 = yb-yd */
+    T0 = __SSAT(T0 - U0, 16);
+    /* T1 = xb-xd */
+    T1 = __SSAT(T1 - U1, 16);
+
+    /* R1 = (ya-yc) + (xb- xd),  R0 = (xa-xc) - (yb-yd)) */
+    R0 = (q15_t) __SSAT((q31_t) (S0 - T1), 16);
+    R1 = (q15_t) __SSAT((q31_t) (S1 + T0), 16);
+
+    /* S1 = (ya-yc) - (xb- xd), S0 = (xa-xc) + (yb-yd)) */
+    S0 = (q15_t) __SSAT(((q31_t) S0 + T1), 16U);
+    S1 = (q15_t) __SSAT(((q31_t) S1 - T0), 16U);
+
+    /* co1 & si1 are read from Coefficient pointer */
+    Co1 = pCoef16[ic * 2U];
+    Si1 = pCoef16[(ic * 2U) + 1];
+    /*  Butterfly process for the i0+fftLen/2 sample */
+    /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
+    out1 = (q15_t) ((Si1 * S1 + Co1 * S0) >> 16);
+    /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
+    out2 = (q15_t) ((-Si1 * S0 + Co1 * S1) >> 16);
+
+    /* writing output(xb', yb') in little endian format */
+    pSrc16[i2 * 2U] = out1;
+    pSrc16[(i2 * 2U) + 1] = out2;
+
+    /* Co3 & si3 are read from Coefficient pointer */
+    Co3 = pCoef16[3U * (ic * 2U)];
+    Si3 = pCoef16[(3U * (ic * 2U)) + 1];
+    /*  Butterfly process for the i0+3fftLen/4 sample */
+    /* xd' = (xa-yb-xc+yd)* Co3 + (ya+xb-yc-xd)* (si3) */
+    out1 = (q15_t) ((Si3 * R1 + Co3 * R0) >> 16U);
+    /* yd' = (ya+xb-yc-xd)* Co3 - (xa-yb-xc+yd)* (si3) */
+    out2 = (q15_t) ((-Si3 * R0 + Co3 * R1) >> 16U);
+    /* writing output(xd', yd') in little endian format */
+    pSrc16[i3 * 2U] = out1;
+    pSrc16[(i3 * 2U) + 1] = out2;
+
+    /*  Twiddle coefficients index modifier */
+    ic = ic + twidCoefModifier;
+
+    /*  Updating input index */
+    i0 = i0 + 1U;
+
+  } while (--j);
+  /* data is in 4.11(q11) format */
+
+  /* end of first stage process */
+
+
+  /* start of middle stage process */
+
+  /*  Twiddle coefficients index modifier */
+  twidCoefModifier <<= 2U;
+
+  /*  Calculation of Middle stage */
+  for (k = fftLen / 4U; k > 4U; k >>= 2U)
+  {
+    /*  Initializations for the middle stage */
+    n1 = n2;
+    n2 >>= 2U;
+    ic = 0U;
+
+    for (j = 0U; j <= (n2 - 1U); j++)
+    {
+      /*  index calculation for the coefficients */
+      Co1 = pCoef16[ic * 2U];
+      Si1 = pCoef16[(ic * 2U) + 1U];
+      Co2 = pCoef16[2U * (ic * 2U)];
+      Si2 = pCoef16[(2U * (ic * 2U)) + 1U];
+      Co3 = pCoef16[3U * (ic * 2U)];
+      Si3 = pCoef16[(3U * (ic * 2U)) + 1U];
+
+      /*  Twiddle coefficients index modifier */
+      ic = ic + twidCoefModifier;
+
+      /*  Butterfly implementation */
+      for (i0 = j; i0 < fftLen; i0 += n1)
+      {
+        /*  index calculation for the input as, */
+        /*  pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
+        i1 = i0 + n2;
+        i2 = i1 + n2;
+        i3 = i2 + n2;
+
+        /*  Reading i0, i0+fftLen/2 inputs */
+        /* Read ya (real), xa(imag) input */
+        T0 = pSrc16[i0 * 2U];
+        T1 = pSrc16[(i0 * 2U) + 1U];
+
+        /* Read yc (real), xc(imag) input */
+        S0 = pSrc16[i2 * 2U];
+        S1 = pSrc16[(i2 * 2U) + 1U];
+
+        /* R0 = (ya + yc), R1 = (xa + xc) */
+        R0 = __SSAT(T0 + S0, 16);
+        R1 = __SSAT(T1 + S1, 16);
+
+        /* S0 = (ya - yc), S1 =(xa - xc) */
+        S0 = __SSAT(T0 - S0, 16);
+        S1 = __SSAT(T1 - S1, 16);
+
+        /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
+        /* Read yb (real), xb(imag) input */
+        T0 = pSrc16[i1 * 2U];
+        T1 = pSrc16[(i1 * 2U) + 1U];
+
+        /* Read yd (real), xd(imag) input */
+        U0 = pSrc16[i3 * 2U];
+        U1 = pSrc16[(i3 * 2U) + 1U];
+
+
+        /* T0 = (yb + yd), T1 = (xb + xd) */
+        T0 = __SSAT(T0 + U0, 16);
+        T1 = __SSAT(T1 + U1, 16);
+
+        /*  writing the butterfly processed i0 sample */
+
+        /* xa' = xa + xb + xc + xd */
+        /* ya' = ya + yb + yc + yd */
+        out1 = ((R0 >> 1U) + (T0 >> 1U)) >> 1U;
+        out2 = ((R1 >> 1U) + (T1 >> 1U)) >> 1U;
+
+        pSrc16[i0 * 2U] = out1;
+        pSrc16[(2U * i0) + 1U] = out2;
+
+        /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
+        R0 = (R0 >> 1U) - (T0 >> 1U);
+        R1 = (R1 >> 1U) - (T1 >> 1U);
+
+        /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
+        out1 = (q15_t) ((Co2 * R0 + Si2 * R1) >> 16U);
+
+        /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+        out2 = (q15_t) ((-Si2 * R0 + Co2 * R1) >> 16U);
+
+        /*  Reading i0+3fftLen/4 */
+        /* Read yb (real), xb(imag) input */
+        T0 = pSrc16[i1 * 2U];
+        T1 = pSrc16[(i1 * 2U) + 1U];
+
+        /*  writing the butterfly processed i0 + fftLen/4 sample */
+        /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
+        /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+        pSrc16[i1 * 2U] = out1;
+        pSrc16[(i1 * 2U) + 1U] = out2;
+
+        /*  Butterfly calculations */
+
+        /* Read yd (real), xd(imag) input */
+        U0 = pSrc16[i3 * 2U];
+        U1 = pSrc16[(i3 * 2U) + 1U];
+
+        /* T0 = yb-yd, T1 = xb-xd */
+        T0 = __SSAT(T0 - U0, 16);
+        T1 = __SSAT(T1 - U1, 16);
+
+        /* R0 = (ya-yc) + (xb- xd), R1 = (xa-xc) - (yb-yd)) */
+        R0 = (S0 >> 1U) - (T1 >> 1U);
+        R1 = (S1 >> 1U) + (T0 >> 1U);
+
+        /* S0 = (ya-yc) - (xb- xd), S1 = (xa-xc) + (yb-yd)) */
+        S0 = (S0 >> 1U) + (T1 >> 1U);
+        S1 = (S1 >> 1U) - (T0 >> 1U);
+
+        /*  Butterfly process for the i0+fftLen/2 sample */
+        out1 = (q15_t) ((Co1 * S0 + Si1 * S1) >> 16U);
+
+        out2 = (q15_t) ((-Si1 * S0 + Co1 * S1) >> 16U);
+
+        /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
+        /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
+        pSrc16[i2 * 2U] = out1;
+        pSrc16[(i2 * 2U) + 1U] = out2;
+
+        /*  Butterfly process for the i0+3fftLen/4 sample */
+        out1 = (q15_t) ((Si3 * R1 + Co3 * R0) >> 16U);
+
+        out2 = (q15_t) ((-Si3 * R0 + Co3 * R1) >> 16U);
+        /* xd' = (xa-yb-xc+yd)* Co3 + (ya+xb-yc-xd)* (si3) */
+        /* yd' = (ya+xb-yc-xd)* Co3 - (xa-yb-xc+yd)* (si3) */
+        pSrc16[i3 * 2U] = out1;
+        pSrc16[(i3 * 2U) + 1U] = out2;
+      }
+    }
+    /*  Twiddle coefficients index modifier */
+    twidCoefModifier <<= 2U;
+  }
+  /* end of middle stage process */
+
+
+  /* data is in 10.6(q6) format for the 1024 point */
+  /* data is in 8.8(q8) format for the 256 point */
+  /* data is in 6.10(q10) format for the 64 point */
+  /* data is in 4.12(q12) format for the 16 point */
+
+  /*  Initializations for the last stage */
+  n1 = n2;
+  n2 >>= 2U;
+
+  /* start of last stage process */
+
+  /*  Butterfly implementation */
+  for (i0 = 0U; i0 <= (fftLen - n1); i0 += n1)
+  {
+    /*  index calculation for the input as, */
+    /*  pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
+    i1 = i0 + n2;
+    i2 = i1 + n2;
+    i3 = i2 + n2;
+
+    /*  Reading i0, i0+fftLen/2 inputs */
+    /* Read ya (real), xa(imag) input */
+    T0 = pSrc16[i0 * 2U];
+    T1 = pSrc16[(i0 * 2U) + 1U];
+
+    /* Read yc (real), xc(imag) input */
+    S0 = pSrc16[i2 * 2U];
+    S1 = pSrc16[(i2 * 2U) + 1U];
+
+    /* R0 = (ya + yc), R1 = (xa + xc) */
+    R0 = __SSAT(T0 + S0, 16U);
+    R1 = __SSAT(T1 + S1, 16U);
+
+    /* S0 = (ya - yc), S1 = (xa - xc) */
+    S0 = __SSAT(T0 - S0, 16U);
+    S1 = __SSAT(T1 - S1, 16U);
+
+    /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
+    /* Read yb (real), xb(imag) input */
+    T0 = pSrc16[i1 * 2U];
+    T1 = pSrc16[(i1 * 2U) + 1U];
+    /* Read yd (real), xd(imag) input */
+    U0 = pSrc16[i3 * 2U];
+    U1 = pSrc16[(i3 * 2U) + 1U];
+
+    /* T0 = (yb + yd), T1 = (xb + xd)) */
+    T0 = __SSAT(T0 + U0, 16U);
+    T1 = __SSAT(T1 + U1, 16U);
+
+    /*  writing the butterfly processed i0 sample */
+    /* xa' = xa + xb + xc + xd */
+    /* ya' = ya + yb + yc + yd */
+    pSrc16[i0 * 2U] = (R0 >> 1U) + (T0 >> 1U);
+    pSrc16[(i0 * 2U) + 1U] = (R1 >> 1U) + (T1 >> 1U);
+
+    /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
+    R0 = (R0 >> 1U) - (T0 >> 1U);
+    R1 = (R1 >> 1U) - (T1 >> 1U);
+    /* Read yb (real), xb(imag) input */
+    T0 = pSrc16[i1 * 2U];
+    T1 = pSrc16[(i1 * 2U) + 1U];
+
+    /*  writing the butterfly processed i0 + fftLen/4 sample */
+    /* xc' = (xa-xb+xc-xd) */
+    /* yc' = (ya-yb+yc-yd) */
+    pSrc16[i1 * 2U] = R0;
+    pSrc16[(i1 * 2U) + 1U] = R1;
+
+    /* Read yd (real), xd(imag) input */
+    U0 = pSrc16[i3 * 2U];
+    U1 = pSrc16[(i3 * 2U) + 1U];
+    /* T0 = (yb - yd), T1 = (xb - xd)  */
+    T0 = __SSAT(T0 - U0, 16U);
+    T1 = __SSAT(T1 - U1, 16U);
+
+    /*  writing the butterfly processed i0 + fftLen/2 sample */
+    /* xb' = (xa+yb-xc-yd) */
+    /* yb' = (ya-xb-yc+xd) */
+    pSrc16[i2 * 2U] = (S0 >> 1U) + (T1 >> 1U);
+    pSrc16[(i2 * 2U) + 1U] = (S1 >> 1U) - (T0 >> 1U);
+
+    /*  writing the butterfly processed i0 + 3fftLen/4 sample */
+    /* xd' = (xa-yb-xc+yd) */
+    /* yd' = (ya+xb-yc-xd) */
+    pSrc16[i3 * 2U] = (S0 >> 1U) - (T1 >> 1U);
+    pSrc16[(i3 * 2U) + 1U] = (S1 >> 1U) + (T0 >> 1U);
+
+  }
+
+  /* end of last stage process */
+
+  /* output is in 11.5(q5) format for the 1024 point */
+  /* output is in 9.7(q7) format for the 256 point   */
+  /* output is in 7.9(q9) format for the 64 point  */
+  /* output is in 5.11(q11) format for the 16 point  */
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}
+
+
+/**
+ * @brief  Core function for the Q15 CIFFT butterfly process.
+ * @param[in, out] *pSrc16          points to the in-place buffer of Q15 data type.
+ * @param[in]      fftLen           length of the FFT.
+ * @param[in]      *pCoef16         points to twiddle coefficient buffer.
+ * @param[in]      twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+ * @return none.
+ */
+
+/*
+* Radix-4 IFFT algorithm used is :
+*
+* CIFFT uses same twiddle coefficients as CFFT function
+*  x[k] = x[n] + (j)k * x[n + fftLen/4] + (-1)k * x[n+fftLen/2] + (-j)k * x[n+3*fftLen/4]
+*
+*
+* IFFT is implemented with following changes in equations from FFT
+*
+* Input real and imaginary data:
+* x(n) = xa + j * ya
+* x(n+N/4 ) = xb + j * yb
+* x(n+N/2 ) = xc + j * yc
+* x(n+3N 4) = xd + j * yd
+*
+*
+* Output real and imaginary data:
+* x(4r) = xa'+ j * ya'
+* x(4r+1) = xb'+ j * yb'
+* x(4r+2) = xc'+ j * yc'
+* x(4r+3) = xd'+ j * yd'
+*
+*
+* Twiddle factors for radix-4 IFFT:
+* Wn = co1 + j * (si1)
+* W2n = co2 + j * (si2)
+* W3n = co3 + j * (si3)
+
+* The real and imaginary output values for the radix-4 butterfly are
+* xa' = xa + xb + xc + xd
+* ya' = ya + yb + yc + yd
+* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1)
+* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1)
+* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2)
+* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2)
+* xd' = (xa+yb-xc-yd)* co3 - (ya-xb-yc+xd)* (si3)
+* yd' = (ya-xb-yc+xd)* co3 + (xa+yb-xc-yd)* (si3)
+*
+*/
+
+void arm_radix4_butterfly_inverse_q15(
+  q15_t * pSrc16,
+  uint32_t fftLen,
+  q15_t * pCoef16,
+  uint32_t twidCoefModifier)
+{
+
+#if defined (ARM_MATH_DSP)
+
+  /* Run the below code for Cortex-M4 and Cortex-M3 */
+
+  q31_t R, S, T, U;
+  q31_t C1, C2, C3, out1, out2;
+  uint32_t n1, n2, ic, i0, j, k;
+
+  q15_t *ptr1;
+  q15_t *pSi0;
+  q15_t *pSi1;
+  q15_t *pSi2;
+  q15_t *pSi3;
+
+  q31_t xaya, xbyb, xcyc, xdyd;
+
+  /* Total process is divided into three stages */
+
+  /* process first stage, middle stages, & last stage */
+
+  /*  Initializations for the first stage */
+  n2 = fftLen;
+  n1 = n2;
+
+  /* n2 = fftLen/4 */
+  n2 >>= 2U;
+
+  /* Index for twiddle coefficient */
+  ic = 0U;
+
+  /* Index for input read and output write */
+  j = n2;
+
+  pSi0 = pSrc16;
+  pSi1 = pSi0 + 2 * n2;
+  pSi2 = pSi1 + 2 * n2;
+  pSi3 = pSi2 + 2 * n2;
+
+  /* Input is in 1.15(q15) format */
+
+  /*  start of first stage process */
+  do
+  {
+    /*  Butterfly implementation */
+
+    /*  Reading i0, i0+fftLen/2 inputs */
+    /* Read ya (real), xa(imag) input */
+    T = _SIMD32_OFFSET(pSi0);
+    T = __SHADD16(T, 0);
+    T = __SHADD16(T, 0);
+
+    /* Read yc (real), xc(imag) input */
+    S = _SIMD32_OFFSET(pSi2);
+    S = __SHADD16(S, 0);
+    S = __SHADD16(S, 0);
+
+    /* R = packed((ya + yc), (xa + xc) ) */
+    R = __QADD16(T, S);
+
+    /* S = packed((ya - yc), (xa - xc) ) */
+    S = __QSUB16(T, S);
+
+    /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
+    /* Read yb (real), xb(imag) input */
+    T = _SIMD32_OFFSET(pSi1);
+    T = __SHADD16(T, 0);
+    T = __SHADD16(T, 0);
+
+    /* Read yd (real), xd(imag) input */
+    U = _SIMD32_OFFSET(pSi3);
+    U = __SHADD16(U, 0);
+    U = __SHADD16(U, 0);
+
+    /* T = packed((yb + yd), (xb + xd) ) */
+    T = __QADD16(T, U);
+
+    /*  writing the butterfly processed i0 sample */
+    /* xa' = xa + xb + xc + xd */
+    /* ya' = ya + yb + yc + yd */
+    _SIMD32_OFFSET(pSi0) = __SHADD16(R, T);
+    pSi0 += 2;
+
+    /* R = packed((ya + yc) - (yb + yd), (xa + xc)- (xb + xd)) */
+    R = __QSUB16(R, T);
+
+    /* co2 & si2 are read from SIMD Coefficient pointer */
+    C2 = _SIMD32_OFFSET(pCoef16 + (4U * ic));
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
+    out1 = __SMUSD(C2, R) >> 16U;
+    /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+    out2 = __SMUADX(C2, R);
+
+#else
+
+    /* xc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+    out1 = __SMUADX(C2, R) >> 16U;
+    /* yc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
+    out2 = __SMUSD(__QSUB16(0, C2), R);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /*  Reading i0+fftLen/4 */
+    /* T = packed(yb, xb) */
+    T = _SIMD32_OFFSET(pSi1);
+    T = __SHADD16(T, 0);
+    T = __SHADD16(T, 0);
+
+    /* writing the butterfly processed i0 + fftLen/4 sample */
+    /* writing output(xc', yc') in little endian format */
+    _SIMD32_OFFSET(pSi1) =
+      (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+    pSi1 += 2;
+
+    /*  Butterfly calculations */
+    /* U = packed(yd, xd) */
+    U = _SIMD32_OFFSET(pSi3);
+    U = __SHADD16(U, 0);
+    U = __SHADD16(U, 0);
+
+    /* T = packed(yb-yd, xb-xd) */
+    T = __QSUB16(T, U);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
+    R = __QSAX(S, T);
+    /* S = packed((ya-yc) + (xb- xd),  (xa-xc) - (yb-yd)) */
+    S = __QASX(S, T);
+
+#else
+
+    /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
+    R = __QASX(S, T);
+    /* S = packed((ya-yc) - (xb- xd),  (xa-xc) + (yb-yd)) */
+    S = __QSAX(S, T);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /* co1 & si1 are read from SIMD Coefficient pointer */
+    C1 = _SIMD32_OFFSET(pCoef16 + (2U * ic));
+    /*  Butterfly process for the i0+fftLen/2 sample */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
+    out1 = __SMUSD(C1, S) >> 16U;
+    /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
+    out2 = __SMUADX(C1, S);
+
+#else
+
+    /* xb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
+    out1 = __SMUADX(C1, S) >> 16U;
+    /* yb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
+    out2 = __SMUSD(__QSUB16(0, C1), S);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /* writing output(xb', yb') in little endian format */
+    _SIMD32_OFFSET(pSi2) =
+      ((out2) & 0xFFFF0000) | ((out1) & 0x0000FFFF);
+    pSi2 += 2;
+
+
+    /* co3 & si3 are read from SIMD Coefficient pointer */
+    C3 = _SIMD32_OFFSET(pCoef16 + (6U * ic));
+    /*  Butterfly process for the i0+3fftLen/4 sample */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
+    out1 = __SMUSD(C3, R) >> 16U;
+    /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
+    out2 = __SMUADX(C3, R);
+
+#else
+
+    /* xd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
+    out1 = __SMUADX(C3, R) >> 16U;
+    /* yd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
+    out2 = __SMUSD(__QSUB16(0, C3), R);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+    /* writing output(xd', yd') in little endian format */
+    _SIMD32_OFFSET(pSi3) =
+      ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+    pSi3 += 2;
+
+    /*  Twiddle coefficients index modifier */
+    ic = ic + twidCoefModifier;
+
+  } while (--j);
+  /* data is in 4.11(q11) format */
+
+  /* end of first stage process */
+
+
+  /* start of middle stage process */
+
+  /*  Twiddle coefficients index modifier */
+  twidCoefModifier <<= 2U;
+
+  /*  Calculation of Middle stage */
+  for (k = fftLen / 4U; k > 4U; k >>= 2U)
+  {
+    /*  Initializations for the middle stage */
+    n1 = n2;
+    n2 >>= 2U;
+    ic = 0U;
+
+    for (j = 0U; j <= (n2 - 1U); j++)
+    {
+      /*  index calculation for the coefficients */
+      C1 = _SIMD32_OFFSET(pCoef16 + (2U * ic));
+      C2 = _SIMD32_OFFSET(pCoef16 + (4U * ic));
+      C3 = _SIMD32_OFFSET(pCoef16 + (6U * ic));
+
+      /*  Twiddle coefficients index modifier */
+      ic = ic + twidCoefModifier;
+
+      pSi0 = pSrc16 + 2 * j;
+      pSi1 = pSi0 + 2 * n2;
+      pSi2 = pSi1 + 2 * n2;
+      pSi3 = pSi2 + 2 * n2;
+
+      /*  Butterfly implementation */
+      for (i0 = j; i0 < fftLen; i0 += n1)
+      {
+        /*  Reading i0, i0+fftLen/2 inputs */
+        /* Read ya (real), xa(imag) input */
+        T = _SIMD32_OFFSET(pSi0);
+
+        /* Read yc (real), xc(imag) input */
+        S = _SIMD32_OFFSET(pSi2);
+
+        /* R = packed( (ya + yc), (xa + xc)) */
+        R = __QADD16(T, S);
+
+        /* S = packed((ya - yc), (xa - xc)) */
+        S = __QSUB16(T, S);
+
+        /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
+        /* Read yb (real), xb(imag) input */
+        T = _SIMD32_OFFSET(pSi1);
+
+        /* Read yd (real), xd(imag) input */
+        U = _SIMD32_OFFSET(pSi3);
+
+        /* T = packed( (yb + yd), (xb + xd)) */
+        T = __QADD16(T, U);
+
+        /*  writing the butterfly processed i0 sample */
+
+        /* xa' = xa + xb + xc + xd */
+        /* ya' = ya + yb + yc + yd */
+        out1 = __SHADD16(R, T);
+        out1 = __SHADD16(out1, 0);
+        _SIMD32_OFFSET(pSi0) = out1;
+        pSi0 += 2 * n1;
+
+        /* R = packed( (ya + yc) - (yb + yd), (xa + xc) - (xb + xd)) */
+        R = __SHSUB16(R, T);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
+        out1 = __SMUSD(C2, R) >> 16U;
+
+        /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+        out2 = __SMUADX(C2, R);
+
+#else
+
+        /* (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+        out1 = __SMUADX(R, C2) >> 16U;
+
+        /* (ya-yb+yc-yd)* (si2) + (xa-xb+xc-xd)* co2 */
+        out2 = __SMUSD(__QSUB16(0, C2), R);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+        /*  Reading i0+3fftLen/4 */
+        /* Read yb (real), xb(imag) input */
+        T = _SIMD32_OFFSET(pSi1);
+
+        /*  writing the butterfly processed i0 + fftLen/4 sample */
+        /* xc' = (xa-xb+xc-xd)* co2 + (ya-yb+yc-yd)* (si2) */
+        /* yc' = (ya-yb+yc-yd)* co2 - (xa-xb+xc-xd)* (si2) */
+        _SIMD32_OFFSET(pSi1) =
+          ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+        pSi1 += 2 * n1;
+
+        /*  Butterfly calculations */
+
+        /* Read yd (real), xd(imag) input */
+        U = _SIMD32_OFFSET(pSi3);
+
+        /* T = packed(yb-yd, xb-xd) */
+        T = __QSUB16(T, U);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
+        R = __SHSAX(S, T);
+
+        /* S = packed((ya-yc) - (xb- xd),  (xa-xc) + (yb-yd)) */
+        S = __SHASX(S, T);
+
+
+        /*  Butterfly process for the i0+fftLen/2 sample */
+        out1 = __SMUSD(C1, S) >> 16U;
+        out2 = __SMUADX(C1, S);
+
+#else
+
+        /* R = packed((ya-yc) + (xb- xd) , (xa-xc) - (yb-yd)) */
+        R = __SHASX(S, T);
+
+        /* S = packed((ya-yc) - (xb- xd),  (xa-xc) + (yb-yd)) */
+        S = __SHSAX(S, T);
+
+
+        /*  Butterfly process for the i0+fftLen/2 sample */
+        out1 = __SMUADX(S, C1) >> 16U;
+        out2 = __SMUSD(__QSUB16(0, C1), S);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+        /* xb' = (xa+yb-xc-yd)* co1 + (ya-xb-yc+xd)* (si1) */
+        /* yb' = (ya-xb-yc+xd)* co1 - (xa+yb-xc-yd)* (si1) */
+        _SIMD32_OFFSET(pSi2) =
+          ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+        pSi2 += 2 * n1;
+
+        /*  Butterfly process for the i0+3fftLen/4 sample */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        out1 = __SMUSD(C3, R) >> 16U;
+        out2 = __SMUADX(C3, R);
+
+#else
+
+        out1 = __SMUADX(C3, R) >> 16U;
+        out2 = __SMUSD(__QSUB16(0, C3), R);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+        /* xd' = (xa-yb-xc+yd)* co3 + (ya+xb-yc-xd)* (si3) */
+        /* yd' = (ya+xb-yc-xd)* co3 - (xa-yb-xc+yd)* (si3) */
+        _SIMD32_OFFSET(pSi3) =
+          ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF);
+        pSi3 += 2 * n1;
+      }
+    }
+    /*  Twiddle coefficients index modifier */
+    twidCoefModifier <<= 2U;
+  }
+  /* end of middle stage process */
+
+  /* data is in 10.6(q6) format for the 1024 point */
+  /* data is in 8.8(q8) format for the 256 point */
+  /* data is in 6.10(q10) format for the 64 point */
+  /* data is in 4.12(q12) format for the 16 point */
+
+  /*  Initializations for the last stage */
+  j = fftLen >> 2;
+
+  ptr1 = &pSrc16[0];
+
+  /* start of last stage process */
+
+  /*  Butterfly implementation */
+  do
+  {
+    /* Read xa (real), ya(imag) input */
+    xaya = *__SIMD32(ptr1)++;
+
+    /* Read xb (real), yb(imag) input */
+    xbyb = *__SIMD32(ptr1)++;
+
+    /* Read xc (real), yc(imag) input */
+    xcyc = *__SIMD32(ptr1)++;
+
+    /* Read xd (real), yd(imag) input */
+    xdyd = *__SIMD32(ptr1)++;
+
+    /* R = packed((ya + yc), (xa + xc)) */
+    R = __QADD16(xaya, xcyc);
+
+    /* T = packed((yb + yd), (xb + xd)) */
+    T = __QADD16(xbyb, xdyd);
+
+    /* pointer updation for writing */
+    ptr1 = ptr1 - 8U;
+
+
+    /* xa' = xa + xb + xc + xd */
+    /* ya' = ya + yb + yc + yd */
+    *__SIMD32(ptr1)++ = __SHADD16(R, T);
+
+    /* T = packed((yb + yd), (xb + xd)) */
+    T = __QADD16(xbyb, xdyd);
+
+    /* xc' = (xa-xb+xc-xd) */
+    /* yc' = (ya-yb+yc-yd) */
+    *__SIMD32(ptr1)++ = __SHSUB16(R, T);
+
+    /* S = packed((ya - yc), (xa - xc)) */
+    S = __QSUB16(xaya, xcyc);
+
+    /* Read yd (real), xd(imag) input */
+    /* T = packed( (yb - yd), (xb - xd))  */
+    U = __QSUB16(xbyb, xdyd);
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+    /* xb' = (xa+yb-xc-yd) */
+    /* yb' = (ya-xb-yc+xd) */
+    *__SIMD32(ptr1)++ = __SHASX(S, U);
+
+
+    /* xd' = (xa-yb-xc+yd) */
+    /* yd' = (ya+xb-yc-xd) */
+    *__SIMD32(ptr1)++ = __SHSAX(S, U);
+
+#else
+
+    /* xb' = (xa+yb-xc-yd) */
+    /* yb' = (ya-xb-yc+xd) */
+    *__SIMD32(ptr1)++ = __SHSAX(S, U);
+
+
+    /* xd' = (xa-yb-xc+yd) */
+    /* yd' = (ya+xb-yc-xd) */
+    *__SIMD32(ptr1)++ = __SHASX(S, U);
+
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+  } while (--j);
+
+  /* end of last stage  process */
+
+  /* output is in 11.5(q5) format for the 1024 point */
+  /* output is in 9.7(q7) format for the 256 point   */
+  /* output is in 7.9(q9) format for the 64 point  */
+  /* output is in 5.11(q11) format for the 16 point  */
+
+
+#else
+
+  /* Run the below code for Cortex-M0 */
+
+  q15_t R0, R1, S0, S1, T0, T1, U0, U1;
+  q15_t Co1, Si1, Co2, Si2, Co3, Si3, out1, out2;
+  uint32_t n1, n2, ic, i0, i1, i2, i3, j, k;
+
+  /* Total process is divided into three stages */
+
+  /* process first stage, middle stages, & last stage */
+
+  /*  Initializations for the first stage */
+  n2 = fftLen;
+  n1 = n2;
+
+  /* n2 = fftLen/4 */
+  n2 >>= 2U;
+
+  /* Index for twiddle coefficient */
+  ic = 0U;
+
+  /* Index for input read and output write */
+  i0 = 0U;
+
+  j = n2;
+
+  /* Input is in 1.15(q15) format */
+
+  /*  Start of first stage process */
+  do
+  {
+    /*  Butterfly implementation */
+
+    /*  index calculation for the input as, */
+    /*  pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
+    i1 = i0 + n2;
+    i2 = i1 + n2;
+    i3 = i2 + n2;
+
+    /*  Reading i0, i0+fftLen/2 inputs */
+    /* input is down scale by 4 to avoid overflow */
+    /* Read ya (real), xa(imag) input */
+    T0 = pSrc16[i0 * 2U] >> 2U;
+    T1 = pSrc16[(i0 * 2U) + 1U] >> 2U;
+    /* input is down scale by 4 to avoid overflow */
+    /* Read yc (real), xc(imag) input */
+    S0 = pSrc16[i2 * 2U] >> 2U;
+    S1 = pSrc16[(i2 * 2U) + 1U] >> 2U;
+
+    /* R0 = (ya + yc), R1 = (xa + xc) */
+    R0 = __SSAT(T0 + S0, 16U);
+    R1 = __SSAT(T1 + S1, 16U);
+    /* S0 = (ya - yc), S1 = (xa - xc) */
+    S0 = __SSAT(T0 - S0, 16U);
+    S1 = __SSAT(T1 - S1, 16U);
+
+    /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
+    /* input is down scale by 4 to avoid overflow */
+    /* Read yb (real), xb(imag) input */
+    T0 = pSrc16[i1 * 2U] >> 2U;
+    T1 = pSrc16[(i1 * 2U) + 1U] >> 2U;
+    /* Read yd (real), xd(imag) input */
+    /* input is down scale by 4 to avoid overflow */
+    U0 = pSrc16[i3 * 2U] >> 2U;
+    U1 = pSrc16[(i3 * 2U) + 1U] >> 2U;
+
+    /* T0 = (yb + yd), T1 = (xb + xd) */
+    T0 = __SSAT(T0 + U0, 16U);
+    T1 = __SSAT(T1 + U1, 16U);
+
+    /*  writing the butterfly processed i0 sample */
+    /* xa' = xa + xb + xc + xd */
+    /* ya' = ya + yb + yc + yd */
+    pSrc16[i0 * 2U] = (R0 >> 1U) + (T0 >> 1U);
+    pSrc16[(i0 * 2U) + 1U] = (R1 >> 1U) + (T1 >> 1U);
+
+    /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc)- (xb + xd) */
+    R0 = __SSAT(R0 - T0, 16U);
+    R1 = __SSAT(R1 - T1, 16U);
+    /* co2 & si2 are read from Coefficient pointer */
+    Co2 = pCoef16[2U * ic * 2U];
+    Si2 = pCoef16[(2U * ic * 2U) + 1U];
+    /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */
+    out1 = (q15_t) ((Co2 * R0 - Si2 * R1) >> 16U);
+    /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
+    out2 = (q15_t) ((Si2 * R0 + Co2 * R1) >> 16U);
+
+    /*  Reading i0+fftLen/4 */
+    /* input is down scale by 4 to avoid overflow */
+    /* T0 = yb, T1 = xb */
+    T0 = pSrc16[i1 * 2U] >> 2U;
+    T1 = pSrc16[(i1 * 2U) + 1U] >> 2U;
+
+    /* writing the butterfly processed i0 + fftLen/4 sample */
+    /* writing output(xc', yc') in little endian format */
+    pSrc16[i1 * 2U] = out1;
+    pSrc16[(i1 * 2U) + 1U] = out2;
+
+    /*  Butterfly calculations */
+    /* input is down scale by 4 to avoid overflow */
+    /* U0 = yd, U1 = xd) */
+    U0 = pSrc16[i3 * 2U] >> 2U;
+    U1 = pSrc16[(i3 * 2U) + 1U] >> 2U;
+
+    /* T0 = yb-yd, T1 = xb-xd) */
+    T0 = __SSAT(T0 - U0, 16U);
+    T1 = __SSAT(T1 - U1, 16U);
+    /* R0 = (ya-yc) - (xb- xd) , R1 = (xa-xc) + (yb-yd) */
+    R0 = (q15_t) __SSAT((q31_t) (S0 + T1), 16);
+    R1 = (q15_t) __SSAT((q31_t) (S1 - T0), 16);
+    /* S = (ya-yc) + (xb- xd), S1 = (xa-xc) - (yb-yd) */
+    S0 = (q15_t) __SSAT((q31_t) (S0 - T1), 16);
+    S1 = (q15_t) __SSAT((q31_t) (S1 + T0), 16);
+
+    /* co1 & si1 are read from Coefficient pointer */
+    Co1 = pCoef16[ic * 2U];
+    Si1 = pCoef16[(ic * 2U) + 1U];
+    /*  Butterfly process for the i0+fftLen/2 sample */
+    /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */
+    out1 = (q15_t) ((Co1 * S0 - Si1 * S1) >> 16U);
+    /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */
+    out2 = (q15_t) ((Si1 * S0 + Co1 * S1) >> 16U);
+    /* writing output(xb', yb') in little endian format */
+    pSrc16[i2 * 2U] = out1;
+    pSrc16[(i2 * 2U) + 1U] = out2;
+
+    /* Co3 & si3 are read from Coefficient pointer */
+    Co3 = pCoef16[3U * ic * 2U];
+    Si3 = pCoef16[(3U * ic * 2U) + 1U];
+    /*  Butterfly process for the i0+3fftLen/4 sample */
+    /* xd' = (xa+yb-xc-yd)* Co3 - (ya-xb-yc+xd)* (si3) */
+    out1 = (q15_t) ((Co3 * R0 - Si3 * R1) >> 16U);
+    /* yd' = (ya-xb-yc+xd)* Co3 + (xa+yb-xc-yd)* (si3) */
+    out2 = (q15_t) ((Si3 * R0 + Co3 * R1) >> 16U);
+    /* writing output(xd', yd') in little endian format */
+    pSrc16[i3 * 2U] = out1;
+    pSrc16[(i3 * 2U) + 1U] = out2;
+
+    /*  Twiddle coefficients index modifier */
+    ic = ic + twidCoefModifier;
+
+    /*  Updating input index */
+    i0 = i0 + 1U;
+
+  } while (--j);
+
+  /*  End of first stage process */
+
+  /* data is in 4.11(q11) format */
+
+
+  /*  Start of Middle stage process */
+
+  /*  Twiddle coefficients index modifier */
+  twidCoefModifier <<= 2U;
+
+  /*  Calculation of Middle stage */
+  for (k = fftLen / 4U; k > 4U; k >>= 2U)
+  {
+    /*  Initializations for the middle stage */
+    n1 = n2;
+    n2 >>= 2U;
+    ic = 0U;
+
+    for (j = 0U; j <= (n2 - 1U); j++)
+    {
+      /*  index calculation for the coefficients */
+      Co1 = pCoef16[ic * 2U];
+      Si1 = pCoef16[(ic * 2U) + 1U];
+      Co2 = pCoef16[2U * ic * 2U];
+      Si2 = pCoef16[2U * ic * 2U + 1U];
+      Co3 = pCoef16[3U * ic * 2U];
+      Si3 = pCoef16[(3U * ic * 2U) + 1U];
+
+      /*  Twiddle coefficients index modifier */
+      ic = ic + twidCoefModifier;
+
+      /*  Butterfly implementation */
+      for (i0 = j; i0 < fftLen; i0 += n1)
+      {
+        /*  index calculation for the input as, */
+        /*  pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
+        i1 = i0 + n2;
+        i2 = i1 + n2;
+        i3 = i2 + n2;
+
+        /*  Reading i0, i0+fftLen/2 inputs */
+        /* Read ya (real), xa(imag) input */
+        T0 = pSrc16[i0 * 2U];
+        T1 = pSrc16[(i0 * 2U) + 1U];
+
+        /* Read yc (real), xc(imag) input */
+        S0 = pSrc16[i2 * 2U];
+        S1 = pSrc16[(i2 * 2U) + 1U];
+
+
+        /* R0 = (ya + yc), R1 = (xa + xc) */
+        R0 = __SSAT(T0 + S0, 16U);
+        R1 = __SSAT(T1 + S1, 16U);
+        /* S0 = (ya - yc), S1 = (xa - xc) */
+        S0 = __SSAT(T0 - S0, 16U);
+        S1 = __SSAT(T1 - S1, 16U);
+
+        /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
+        /* Read yb (real), xb(imag) input */
+        T0 = pSrc16[i1 * 2U];
+        T1 = pSrc16[(i1 * 2U) + 1U];
+
+        /* Read yd (real), xd(imag) input */
+        U0 = pSrc16[i3 * 2U];
+        U1 = pSrc16[(i3 * 2U) + 1U];
+
+        /* T0 = (yb + yd), T1 = (xb + xd) */
+        T0 = __SSAT(T0 + U0, 16U);
+        T1 = __SSAT(T1 + U1, 16U);
+
+        /*  writing the butterfly processed i0 sample */
+        /* xa' = xa + xb + xc + xd */
+        /* ya' = ya + yb + yc + yd */
+        pSrc16[i0 * 2U] = ((R0 >> 1U) + (T0 >> 1U)) >> 1U;
+        pSrc16[(i0 * 2U) + 1U] = ((R1 >> 1U) + (T1 >> 1U)) >> 1U;
+
+        /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
+        R0 = (R0 >> 1U) - (T0 >> 1U);
+        R1 = (R1 >> 1U) - (T1 >> 1U);
+
+        /* (ya-yb+yc-yd)* (si2) - (xa-xb+xc-xd)* co2 */
+        out1 = (q15_t) ((Co2 * R0 - Si2 * R1) >> 16);
+        /* (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
+        out2 = (q15_t) ((Si2 * R0 + Co2 * R1) >> 16);
+
+        /*  Reading i0+3fftLen/4 */
+        /* Read yb (real), xb(imag) input */
+        T0 = pSrc16[i1 * 2U];
+        T1 = pSrc16[(i1 * 2U) + 1U];
+
+        /*  writing the butterfly processed i0 + fftLen/4 sample */
+        /* xc' = (xa-xb+xc-xd)* co2 - (ya-yb+yc-yd)* (si2) */
+        /* yc' = (ya-yb+yc-yd)* co2 + (xa-xb+xc-xd)* (si2) */
+        pSrc16[i1 * 2U] = out1;
+        pSrc16[(i1 * 2U) + 1U] = out2;
+
+        /*  Butterfly calculations */
+        /* Read yd (real), xd(imag) input */
+        U0 = pSrc16[i3 * 2U];
+        U1 = pSrc16[(i3 * 2U) + 1U];
+
+        /* T0 = yb-yd, T1 = xb-xd) */
+        T0 = __SSAT(T0 - U0, 16U);
+        T1 = __SSAT(T1 - U1, 16U);
+
+        /* R0 = (ya-yc) - (xb- xd) , R1 = (xa-xc) + (yb-yd) */
+        R0 = (S0 >> 1U) + (T1 >> 1U);
+        R1 = (S1 >> 1U) - (T0 >> 1U);
+
+        /* S1 = (ya-yc) + (xb- xd), S1 = (xa-xc) - (yb-yd) */
+        S0 = (S0 >> 1U) - (T1 >> 1U);
+        S1 = (S1 >> 1U) + (T0 >> 1U);
+
+        /*  Butterfly process for the i0+fftLen/2 sample */
+        out1 = (q15_t) ((Co1 * S0 - Si1 * S1) >> 16U);
+        out2 = (q15_t) ((Si1 * S0 + Co1 * S1) >> 16U);
+        /* xb' = (xa-yb-xc+yd)* co1 - (ya+xb-yc-xd)* (si1) */
+        /* yb' = (ya+xb-yc-xd)* co1 + (xa-yb-xc+yd)* (si1) */
+        pSrc16[i2 * 2U] = out1;
+        pSrc16[(i2 * 2U) + 1U] = out2;
+
+        /*  Butterfly process for the i0+3fftLen/4 sample */
+        out1 = (q15_t) ((Co3 * R0 - Si3 * R1) >> 16U);
+
+        out2 = (q15_t) ((Si3 * R0 + Co3 * R1) >> 16U);
+        /* xd' = (xa+yb-xc-yd)* Co3 - (ya-xb-yc+xd)* (si3) */
+        /* yd' = (ya-xb-yc+xd)* Co3 + (xa+yb-xc-yd)* (si3) */
+        pSrc16[i3 * 2U] = out1;
+        pSrc16[(i3 * 2U) + 1U] = out2;
+
+
+      }
+    }
+    /*  Twiddle coefficients index modifier */
+    twidCoefModifier <<= 2U;
+  }
+  /*  End of Middle stages process */
+
+
+  /* data is in 10.6(q6) format for the 1024 point */
+  /* data is in 8.8(q8) format for the 256 point   */
+  /* data is in 6.10(q10) format for the 64 point  */
+  /* data is in 4.12(q12) format for the 16 point  */
+
+  /* start of last stage process */
+
+
+  /*  Initializations for the last stage */
+  n1 = n2;
+  n2 >>= 2U;
+
+  /*  Butterfly implementation */
+  for (i0 = 0U; i0 <= (fftLen - n1); i0 += n1)
+  {
+    /*  index calculation for the input as, */
+    /*  pSrc16[i0 + 0], pSrc16[i0 + fftLen/4], pSrc16[i0 + fftLen/2], pSrc16[i0 + 3fftLen/4] */
+    i1 = i0 + n2;
+    i2 = i1 + n2;
+    i3 = i2 + n2;
+
+    /*  Reading i0, i0+fftLen/2 inputs */
+    /* Read ya (real), xa(imag) input */
+    T0 = pSrc16[i0 * 2U];
+    T1 = pSrc16[(i0 * 2U) + 1U];
+    /* Read yc (real), xc(imag) input */
+    S0 = pSrc16[i2 * 2U];
+    S1 = pSrc16[(i2 * 2U) + 1U];
+
+    /* R0 = (ya + yc), R1 = (xa + xc) */
+    R0 = __SSAT(T0 + S0, 16U);
+    R1 = __SSAT(T1 + S1, 16U);
+    /* S0 = (ya - yc), S1 = (xa - xc) */
+    S0 = __SSAT(T0 - S0, 16U);
+    S1 = __SSAT(T1 - S1, 16U);
+
+    /*  Reading i0+fftLen/4 , i0+3fftLen/4 inputs */
+    /* Read yb (real), xb(imag) input */
+    T0 = pSrc16[i1 * 2U];
+    T1 = pSrc16[(i1 * 2U) + 1U];
+    /* Read yd (real), xd(imag) input */
+    U0 = pSrc16[i3 * 2U];
+    U1 = pSrc16[(i3 * 2U) + 1U];
+
+    /* T0 = (yb + yd), T1 = (xb + xd) */
+    T0 = __SSAT(T0 + U0, 16U);
+    T1 = __SSAT(T1 + U1, 16U);
+
+    /*  writing the butterfly processed i0 sample */
+    /* xa' = xa + xb + xc + xd */
+    /* ya' = ya + yb + yc + yd */
+    pSrc16[i0 * 2U] = (R0 >> 1U) + (T0 >> 1U);
+    pSrc16[(i0 * 2U) + 1U] = (R1 >> 1U) + (T1 >> 1U);
+
+    /* R0 = (ya + yc) - (yb + yd), R1 = (xa + xc) - (xb + xd) */
+    R0 = (R0 >> 1U) - (T0 >> 1U);
+    R1 = (R1 >> 1U) - (T1 >> 1U);
+
+    /* Read yb (real), xb(imag) input */
+    T0 = pSrc16[i1 * 2U];
+    T1 = pSrc16[(i1 * 2U) + 1U];
+
+    /*  writing the butterfly processed i0 + fftLen/4 sample */
+    /* xc' = (xa-xb+xc-xd) */
+    /* yc' = (ya-yb+yc-yd) */
+    pSrc16[i1 * 2U] = R0;
+    pSrc16[(i1 * 2U) + 1U] = R1;
+
+    /* Read yd (real), xd(imag) input */
+    U0 = pSrc16[i3 * 2U];
+    U1 = pSrc16[(i3 * 2U) + 1U];
+    /* T0 = (yb - yd), T1 = (xb - xd) */
+    T0 = __SSAT(T0 - U0, 16U);
+    T1 = __SSAT(T1 - U1, 16U);
+
+    /*  writing the butterfly processed i0 + fftLen/2 sample */
+    /* xb' = (xa-yb-xc+yd) */
+    /* yb' = (ya+xb-yc-xd) */
+    pSrc16[i2 * 2U] = (S0 >> 1U) - (T1 >> 1U);
+    pSrc16[(i2 * 2U) + 1U] = (S1 >> 1U) + (T0 >> 1U);
+
+
+    /*  writing the butterfly processed i0 + 3fftLen/4 sample */
+    /* xd' = (xa+yb-xc-yd) */
+    /* yd' = (ya-xb-yc+xd) */
+    pSrc16[i3 * 2U] = (S0 >> 1U) + (T1 >> 1U);
+    pSrc16[(i3 * 2U) + 1U] = (S1 >> 1U) - (T0 >> 1U);
+  }
+  /* end of last stage  process */
+
+  /* output is in 11.5(q5) format for the 1024 point */
+  /* output is in 9.7(q7) format for the 256 point   */
+  /* output is in 7.9(q9) format for the 64 point  */
+  /* output is in 5.11(q11) format for the 16 point  */
+
+#endif /* #if defined (ARM_MATH_DSP) */
+
+}

--
Gitblit v1.9.1