From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_rfft_fast_f32.c |  317 ++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 317 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_rfft_fast_f32.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_rfft_fast_f32.c
new file mode 100644
index 0000000..08e06e0
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_rfft_fast_f32.c
@@ -0,0 +1,317 @@
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS DSP Library
+ * Title:        arm_rfft_f32.c
+ * Description:  RFFT & RIFFT Floating point process function
+ *
+ * $Date:        27. January 2017
+ * $Revision:    V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+void stage_rfft_f32(
+  arm_rfft_fast_instance_f32 * S,
+  float32_t * p, float32_t * pOut)
+{
+   uint32_t  k;								   /* Loop Counter                     */
+   float32_t twR, twI;						   /* RFFT Twiddle coefficients        */
+   float32_t * pCoeff = S->pTwiddleRFFT;  /* Points to RFFT Twiddle factors   */
+   float32_t *pA = p;						   /* increasing pointer               */
+   float32_t *pB = p;						   /* decreasing pointer               */
+   float32_t xAR, xAI, xBR, xBI;				/* temporary variables              */
+   float32_t t1a, t1b;				         /* temporary variables              */
+   float32_t p0, p1, p2, p3;				   /* temporary variables              */
+
+
+   k = (S->Sint).fftLen - 1;
+
+   /* Pack first and last sample of the frequency domain together */
+
+   xBR = pB[0];
+   xBI = pB[1];
+   xAR = pA[0];
+   xAI = pA[1];
+
+   twR = *pCoeff++ ;
+   twI = *pCoeff++ ;
+
+   // U1 = XA(1) + XB(1); % It is real
+   t1a = xBR + xAR  ;
+
+   // U2 = XB(1) - XA(1); % It is imaginary
+   t1b = xBI + xAI  ;
+
+   // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
+   // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
+   *pOut++ = 0.5f * ( t1a + t1b );
+   *pOut++ = 0.5f * ( t1a - t1b );
+
+   // XA(1) = 1/2*( U1 - imag(U2) +  i*( U1 +imag(U2) ));
+   pB  = p + 2*k;
+   pA += 2;
+
+   do
+   {
+      /*
+         function X = my_split_rfft(X, ifftFlag)
+         % X is a series of real numbers
+         L  = length(X);
+         XC = X(1:2:end) +i*X(2:2:end);
+         XA = fft(XC);
+         XB = conj(XA([1 end:-1:2]));
+         TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
+         for l = 2:L/2
+            XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
+         end
+         XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
+         X = XA;
+      */
+
+      xBI = pB[1];
+      xBR = pB[0];
+      xAR = pA[0];
+      xAI = pA[1];
+
+      twR = *pCoeff++;
+      twI = *pCoeff++;
+
+      t1a = xBR - xAR ;
+      t1b = xBI + xAI ;
+
+      // real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
+      // imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
+      p0 = twR * t1a;
+      p1 = twI * t1a;
+      p2 = twR * t1b;
+      p3 = twI * t1b;
+
+      *pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR
+      *pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI
+
+      pA += 2;
+      pB -= 2;
+      k--;
+   } while (k > 0U);
+}
+
+/* Prepares data for inverse cfft */
+void merge_rfft_f32(
+arm_rfft_fast_instance_f32 * S,
+float32_t * p, float32_t * pOut)
+{
+   uint32_t  k;								/* Loop Counter                     */
+   float32_t twR, twI;						/* RFFT Twiddle coefficients        */
+   float32_t *pCoeff = S->pTwiddleRFFT;		/* Points to RFFT Twiddle factors   */
+   float32_t *pA = p;						/* increasing pointer               */
+   float32_t *pB = p;						/* decreasing pointer               */
+   float32_t xAR, xAI, xBR, xBI;			/* temporary variables              */
+   float32_t t1a, t1b, r, s, t, u;			/* temporary variables              */
+
+   k = (S->Sint).fftLen - 1;
+
+   xAR = pA[0];
+   xAI = pA[1];
+
+   pCoeff += 2 ;
+
+   *pOut++ = 0.5f * ( xAR + xAI );
+   *pOut++ = 0.5f * ( xAR - xAI );
+
+   pB  =  p + 2*k ;
+   pA +=  2	   ;
+
+   while (k > 0U)
+   {
+      /* G is half of the frequency complex spectrum */
+      //for k = 2:N
+      //    Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
+      xBI =   pB[1]    ;
+      xBR =   pB[0]    ;
+      xAR =  pA[0];
+      xAI =  pA[1];
+
+      twR = *pCoeff++;
+      twI = *pCoeff++;
+
+      t1a = xAR - xBR ;
+      t1b = xAI + xBI ;
+
+      r = twR * t1a;
+      s = twI * t1b;
+      t = twI * t1a;
+      u = twR * t1b;
+
+      // real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);
+      // imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);
+      *pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR
+      *pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI
+
+      pA += 2;
+      pB -= 2;
+      k--;
+   }
+
+}
+
+/**
+* @ingroup groupTransforms
+*/
+
+/**
+ * @defgroup RealFFT Real FFT Functions
+ *
+ * \par
+ * The CMSIS DSP library includes specialized algorithms for computing the
+ * FFT of real data sequences.  The FFT is defined over complex data but
+ * in many applications the input is real.  Real FFT algorithms take advantage
+ * of the symmetry properties of the FFT and have a speed advantage over complex
+ * algorithms of the same length.
+ * \par
+ * The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage.
+ * \par
+ * The real length N forward FFT of a sequence is computed using the steps shown below.
+ * \par
+ * \image html RFFT.gif "Real Fast Fourier Transform"
+ * \par
+ * The real sequence is initially treated as if it were complex to perform a CFFT.
+ * Later, a processing stage reshapes the data to obtain half of the frequency spectrum
+ * in complex format. Except the first complex number that contains the two real numbers
+ * X[0] and X[N/2] all the data is complex. In other words, the first complex sample
+ * contains two real values packed.
+ * \par
+ * The input for the inverse RFFT should keep the same format as the output of the
+ * forward RFFT. A first processing stage pre-process the data to later perform an
+ * inverse CFFT.
+ * \par
+ * \image html RIFFT.gif "Real Inverse Fast Fourier Transform"
+ * \par
+ * The algorithms for floating-point, Q15, and Q31 data are slightly different
+ * and we describe each algorithm in turn.
+ * \par Floating-point
+ * The main functions are arm_rfft_fast_f32() and arm_rfft_fast_init_f32().
+ * The older functions arm_rfft_f32() and arm_rfft_init_f32() have been
+ * deprecated but are still documented.
+ * \par
+ * The FFT of a real N-point sequence has even symmetry in the frequency
+ * domain. The second half of the data equals the conjugate of the first
+ * half flipped in frequency. Looking at the data, we see that we can
+ * uniquely represent the FFT using only N/2 complex numbers. These are
+ * packed into the output array in alternating real and imaginary
+ * components:
+ * \par
+ * X = { real[0], imag[0], real[1], imag[1], real[2], imag[2] ...
+ * real[(N/2)-1], imag[(N/2)-1 }
+ * \par
+ * It happens that the first complex number (real[0], imag[0]) is actually
+ * all real. real[0] represents the DC offset, and imag[0] should be 0.
+ * (real[1], imag[1]) is the fundamental frequency, (real[2], imag[2]) is
+ * the first harmonic and so on.
+ * \par
+ * The real FFT functions pack the frequency domain data in this fashion.
+ * The forward transform outputs the data in this form and the inverse
+ * transform expects input data in this form. The function always performs
+ * the needed bitreversal so that the input and output data is always in
+ * normal order. The functions support lengths of [32, 64, 128, ..., 4096]
+ * samples.
+ * \par Q15 and Q31
+ * The real algorithms are defined in a similar manner and utilize N/2 complex
+ * transforms behind the scenes.
+ * \par
+ * The complex transforms used internally include scaling to prevent fixed-point
+ * overflows.  The overall scaling equals 1/(fftLen/2).
+ * \par
+ * A separate instance structure must be defined for each transform used but
+ * twiddle factor and bit reversal tables can be reused.
+ * \par
+ * There is also an associated initialization function for each data type.
+ * The initialization function performs the following operations:
+ * - Sets the values of the internal structure fields.
+ * - Initializes twiddle factor table and bit reversal table pointers.
+ * - Initializes the internal complex FFT data structure.
+ * \par
+ * Use of the initialization function is optional.
+ * However, if the initialization function is used, then the instance structure
+ * cannot be placed into a const data section. To place an instance structure
+ * into a const data section, the instance structure should be manually
+ * initialized as follows:
+ * <pre>
+ *arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
+ *arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
+ * </pre>
+ * where <code>fftLenReal</code> is the length of the real transform;
+ * <code>fftLenBy2</code> length of  the internal complex transform.
+ * <code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform.
+ * <code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order
+ * output (=1).
+ * <code>twidCoefRModifier</code> stride modifier for the twiddle factor table.
+ * The value is based on the FFT length;
+ * <code>pTwiddleAReal</code>points to the A array of twiddle coefficients;
+ * <code>pTwiddleBReal</code>points to the B array of twiddle coefficients;
+ * <code>pCfft</code> points to the CFFT Instance structure. The CFFT structure
+ * must also be initialized.  Refer to arm_cfft_radix4_f32() for details regarding
+ * static initialization of the complex FFT instance structure.
+ */
+
+/**
+* @addtogroup RealFFT
+* @{
+*/
+
+/**
+* @brief Processing function for the floating-point real FFT.
+* @param[in]  *S              points to an arm_rfft_fast_instance_f32 structure.
+* @param[in]  *p              points to the input buffer.
+* @param[in]  *pOut           points to the output buffer.
+* @param[in]  ifftFlag        RFFT if flag is 0, RIFFT if flag is 1
+* @return none.
+*/
+
+void arm_rfft_fast_f32(
+arm_rfft_fast_instance_f32 * S,
+float32_t * p, float32_t * pOut,
+uint8_t ifftFlag)
+{
+   arm_cfft_instance_f32 * Sint = &(S->Sint);
+   Sint->fftLen = S->fftLenRFFT / 2;
+
+   /* Calculation of Real FFT */
+   if (ifftFlag)
+   {
+      /*  Real FFT compression */
+      merge_rfft_f32(S, p, pOut);
+
+      /* Complex radix-4 IFFT process */
+      arm_cfft_f32( Sint, pOut, ifftFlag, 1);
+   }
+   else
+   {
+      /* Calculation of RFFT of input */
+      arm_cfft_f32( Sint, p, ifftFlag, 1);
+
+      /*  Real FFT extraction */
+      stage_rfft_f32(S, p, pOut);
+   }
+}
+
+/**
+* @} end of RealFFT group
+*/

--
Gitblit v1.9.1