From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_rfft_q15.c |  426 +++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 426 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_rfft_q15.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_rfft_q15.c
new file mode 100644
index 0000000..8a888f4
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/DSP/Source/TransformFunctions/arm_rfft_q15.c
@@ -0,0 +1,426 @@
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS DSP Library
+ * Title:        arm_rfft_q15.c
+ * Description:  RFFT & RIFFT Q15 process function
+ *
+ * $Date:        27. January 2017
+ * $Revision:    V.1.5.1
+ *
+ * Target Processor: Cortex-M cores
+ * -------------------------------------------------------------------- */
+/*
+ * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "arm_math.h"
+
+/* ----------------------------------------------------------------------
+ * Internal functions prototypes
+ * -------------------------------------------------------------------- */
+
+void arm_split_rfft_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    q15_t * pATable,
+    q15_t * pBTable,
+    q15_t * pDst,
+    uint32_t modifier);
+
+void arm_split_rifft_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    q15_t * pATable,
+    q15_t * pBTable,
+    q15_t * pDst,
+    uint32_t modifier);
+
+/**
+* @addtogroup RealFFT
+* @{
+*/
+
+/**
+* @brief Processing function for the Q15 RFFT/RIFFT.
+* @param[in]  *S    points to an instance of the Q15 RFFT/RIFFT structure.
+* @param[in]  *pSrc points to the input buffer.
+* @param[out] *pDst points to the output buffer.
+* @return none.
+*
+* \par Input an output formats:
+* \par
+* Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.
+* Hence the output format is different for different RFFT sizes.
+* The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:
+* \par
+* \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"
+* \par
+* \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"
+*/
+
+void arm_rfft_q15(
+    const arm_rfft_instance_q15 * S,
+    q15_t * pSrc,
+    q15_t * pDst)
+{
+    const arm_cfft_instance_q15 *S_CFFT = S->pCfft;
+    uint32_t i;
+    uint32_t L2 = S->fftLenReal >> 1;
+
+    /* Calculation of RIFFT of input */
+    if (S->ifftFlagR == 1U)
+    {
+        /*  Real IFFT core process */
+        arm_split_rifft_q15(pSrc, L2, S->pTwiddleAReal,
+                            S->pTwiddleBReal, pDst, S->twidCoefRModifier);
+
+        /* Complex IFFT process */
+        arm_cfft_q15(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
+
+        for(i=0;i<S->fftLenReal;i++)
+        {
+            pDst[i] = pDst[i] << 1;
+        }
+    }
+    else
+    {
+        /* Calculation of RFFT of input */
+
+        /* Complex FFT process */
+        arm_cfft_q15(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);
+
+        /*  Real FFT core process */
+        arm_split_rfft_q15(pSrc, L2, S->pTwiddleAReal,
+                            S->pTwiddleBReal, pDst, S->twidCoefRModifier);
+    }
+}
+
+/**
+* @} end of RealFFT group
+*/
+
+/**
+* @brief  Core Real FFT process
+* @param  *pSrc 				points to the input buffer.
+* @param  fftLen  				length of FFT.
+* @param  *pATable 			points to the A twiddle Coef buffer.
+* @param  *pBTable 			points to the B twiddle Coef buffer.
+* @param  *pDst 				points to the output buffer.
+* @param  modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+* @return none.
+* The function implements a Real FFT
+*/
+
+void arm_split_rfft_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    q15_t * pATable,
+    q15_t * pBTable,
+    q15_t * pDst,
+    uint32_t modifier)
+{
+    uint32_t i;                                    /* Loop Counter */
+    q31_t outR, outI;                              /* Temporary variables for output */
+    q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
+    q15_t *pSrc1, *pSrc2;
+#if defined (ARM_MATH_DSP)
+    q15_t *pD1, *pD2;
+#endif
+
+    //  pSrc[2U * fftLen] = pSrc[0];
+    //  pSrc[(2U * fftLen) + 1U] = pSrc[1];
+
+    pCoefA = &pATable[modifier * 2U];
+    pCoefB = &pBTable[modifier * 2U];
+
+    pSrc1 = &pSrc[2];
+    pSrc2 = &pSrc[(2U * fftLen) - 2U];
+
+#if defined (ARM_MATH_DSP)
+
+    /* Run the below code for Cortex-M4 and Cortex-M3 */
+    i = 1U;
+    pD1 = pDst + 2;
+    pD2 = pDst + (4U * fftLen) - 2;
+
+    for(i = fftLen - 1; i > 0; i--)
+    {
+        /*
+        outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
+        + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
+        pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
+        */
+
+        /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
+        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
+        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */
+
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
+        outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));
+
+#else
+
+        /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
+        outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+        /* pSrc[2 * n - 2 * i] * pBTable[2 * i] +
+        pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
+        outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 16U;
+
+        /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
+        pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
+
+#else
+
+        outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+        /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
+        outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);
+
+        /* write output */
+        *pD1++ = (q15_t) outR;
+        *pD1++ = outI >> 16U;
+
+        /* write complex conjugate output */
+        pD2[0] = (q15_t) outR;
+        pD2[1] = -(outI >> 16U);
+        pD2 -= 2;
+
+        /* update coefficient pointer */
+        pCoefB = pCoefB + (2U * modifier);
+        pCoefA = pCoefA + (2U * modifier);
+    }
+
+    pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
+    pDst[(2U * fftLen) + 1U] = 0;
+
+    pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
+    pDst[1] = 0;
+
+#else
+
+    /* Run the below code for Cortex-M0 */
+    i = 1U;
+
+    while (i < fftLen)
+    {
+        /*
+        outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]
+        + pSrc[2 * n - 2 * i] * pBTable[2 * i] +
+        pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
+        */
+
+        outR = *pSrc1 * *pCoefA;
+        outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
+        outR = outR + (*pSrc2 * *pCoefB);
+        outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16;
+
+
+        /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +
+        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
+        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
+        */
+
+        outI = *pSrc2 * *(pCoefB + 1);
+        outI = outI - (*(pSrc2 + 1) * *pCoefB);
+        outI = outI + (*(pSrc1 + 1) * *pCoefA);
+        outI = outI + (*pSrc1 * *(pCoefA + 1));
+
+        /* update input pointers */
+        pSrc1 += 2U;
+        pSrc2 -= 2U;
+
+        /* write output */
+        pDst[2U * i] = (q15_t) outR;
+        pDst[(2U * i) + 1U] = outI >> 16U;
+
+        /* write complex conjugate output */
+        pDst[(4U * fftLen) - (2U * i)] = (q15_t) outR;
+        pDst[((4U * fftLen) - (2U * i)) + 1U] = -(outI >> 16U);
+
+        /* update coefficient pointer */
+        pCoefB = pCoefB + (2U * modifier);
+        pCoefA = pCoefA + (2U * modifier);
+
+        i++;
+    }
+
+    pDst[2U * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
+    pDst[(2U * fftLen) + 1U] = 0;
+
+    pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
+    pDst[1] = 0;
+
+#endif /* #if defined (ARM_MATH_DSP) */
+}
+
+
+/**
+* @brief  Core Real IFFT process
+* @param[in]   *pSrc 				points to the input buffer.
+* @param[in]   fftLen  		    length of FFT.
+* @param[in]   *pATable 			points to the twiddle Coef A buffer.
+* @param[in]   *pBTable 			points to the twiddle Coef B buffer.
+* @param[out]  *pDst 				points to the output buffer.
+* @param[in]   modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
+* @return none.
+* The function implements a Real IFFT
+*/
+void arm_split_rifft_q15(
+    q15_t * pSrc,
+    uint32_t fftLen,
+    q15_t * pATable,
+    q15_t * pBTable,
+    q15_t * pDst,
+    uint32_t modifier)
+{
+    uint32_t i;                                    /* Loop Counter */
+    q31_t outR, outI;                              /* Temporary variables for output */
+    q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
+    q15_t *pSrc1, *pSrc2;
+    q15_t *pDst1 = &pDst[0];
+
+    pCoefA = &pATable[0];
+    pCoefB = &pBTable[0];
+
+    pSrc1 = &pSrc[0];
+    pSrc2 = &pSrc[2U * fftLen];
+
+#if defined (ARM_MATH_DSP)
+
+    /* Run the below code for Cortex-M4 and Cortex-M3 */
+    i = fftLen;
+
+    while (i > 0U)
+    {
+        /*
+        outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
+        pIn[2 * n - 2 * i] * pBTable[2 * i] -
+        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
+
+        outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
+        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
+        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
+        */
+
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        /* pIn[2 * n - 2 * i] * pBTable[2 * i] -
+        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
+        outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));
+
+#else
+
+        /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +
+        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
+        outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+        /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
+        pIn[2 * n - 2 * i] * pBTable[2 * i] */
+        outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 16U;
+
+        /*
+        -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +
+        pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
+        outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));
+
+        /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);
+
+#else
+
+        outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+        /* write output */
+
+#ifndef ARM_MATH_BIG_ENDIAN
+
+        *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 16U), 16);
+
+#else
+
+        *__SIMD32(pDst1)++ = __PKHBT((outI >> 16U), outR, 16);
+
+#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
+
+        /* update coefficient pointer */
+        pCoefB = pCoefB + (2U * modifier);
+        pCoefA = pCoefA + (2U * modifier);
+
+        i--;
+    }
+#else
+    /* Run the below code for Cortex-M0 */
+    i = fftLen;
+
+    while (i > 0U)
+    {
+        /*
+        outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +
+        pIn[2 * n - 2 * i] * pBTable[2 * i] -
+        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);
+        */
+
+        outR = *pSrc2 * *pCoefB;
+        outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
+        outR = outR + (*pSrc1 * *pCoefA);
+        outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16;
+
+        /*
+        outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -
+        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -
+        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);
+        */
+
+        outI = *(pSrc1 + 1) * *pCoefA;
+        outI = outI - (*pSrc1 * *(pCoefA + 1));
+        outI = outI - (*pSrc2 * *(pCoefB + 1));
+        outI = outI - (*(pSrc2 + 1) * *(pCoefB));
+
+        /* update input pointers */
+        pSrc1 += 2U;
+        pSrc2 -= 2U;
+
+        /* write output */
+        *pDst1++ = (q15_t) outR;
+        *pDst1++ = (q15_t) (outI >> 16);
+
+        /* update coefficient pointer */
+        pCoefB = pCoefB + (2U * modifier);
+        pCoefA = pCoefA + (2U * modifier);
+
+        i--;
+    }
+#endif /* #if defined (ARM_MATH_DSP) */
+}

--
Gitblit v1.9.1