From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Examples/ARM/arm_nn_examples/cifar10/arm_nnexamples_cifar10.cpp |  196 +++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 196 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Examples/ARM/arm_nn_examples/cifar10/arm_nnexamples_cifar10.cpp b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Examples/ARM/arm_nn_examples/cifar10/arm_nnexamples_cifar10.cpp
new file mode 100644
index 0000000..ee1083b
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Examples/ARM/arm_nn_examples/cifar10/arm_nnexamples_cifar10.cpp
@@ -0,0 +1,196 @@
+/* ----------------------------------------------------------------------
+* Copyright (C) 2010-2018 Arm Limited. All rights reserved.
+*
+*
+* Project:       CMSIS NN Library
+* Title:         arm_nnexamples_cifar10.cpp
+*
+* Description:   Convolutional Neural Network Example
+*
+* Target Processor: Cortex-M4/Cortex-M7
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions
+* are met:
+*   - Redistributions of source code must retain the above copyright
+*     notice, this list of conditions and the following disclaimer.
+*   - Redistributions in binary form must reproduce the above copyright
+*     notice, this list of conditions and the following disclaimer in
+*     the documentation and/or other materials provided with the
+*     distribution.
+*   - Neither the name of Arm LIMITED nor the names of its contributors
+*     may be used to endorse or promote products derived from this
+*     software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
+* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
+* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
+* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
+* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
+* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+* POSSIBILITY OF SUCH DAMAGE.
+* -------------------------------------------------------------------- */
+
+/**
+ * @ingroup groupExamples
+ */
+
+/**
+ * @defgroup CNNExample Convolutional Neural Network Example
+ *
+ * \par Description:
+ * \par
+ * Demonstrates a convolutional neural network (CNN) example with the use of convolution,
+ * ReLU activation, pooling and fully-connected functions.
+ *
+ * \par Model definition:
+ * \par
+ * The CNN used in this example is based on CIFAR-10 example from Caffe [1]. 
+ * The neural network consists
+ * of 3 convolution layers interspersed by ReLU activation and max pooling layers, followed by a 
+ * fully-connected layer at the end. The input to the network is a 32x32 pixel color image, which will 
+ * be classified into one of the 10 output classes. 
+ * This example model implementation needs 32.3 KB to store weights, 40 KB for activations and 
+ * 3.1 KB for storing the \c im2col data.
+ *
+ * \image html CIFAR10_CNN.gif "Neural Network model definition"
+ *
+ * \par Variables Description:
+ * \par
+ * \li \c conv1_wt, \c conv2_wt, \c conv3_wt are convolution layer weight matrices
+ * \li \c conv1_bias, \c conv2_bias, \c conv3_bias are convolution layer bias arrays
+ * \li \c ip1_wt, ip1_bias point to fully-connected layer weights and biases
+ * \li \c input_data points to the input image data
+ * \li \c output_data points to the classification output
+ * \li \c col_buffer is a buffer to store the \c im2col output
+ * \li \c scratch_buffer is used to store the activation data (intermediate layer outputs)
+ *
+ * \par CMSIS DSP Software Library Functions Used:
+ * \par
+ * - arm_convolve_HWC_q7_RGB()
+ * - arm_convolve_HWC_q7_fast()
+ * - arm_relu_q7()
+ * - arm_maxpool_q7_HWC()
+ * - arm_avepool_q7_HWC()
+ * - arm_fully_connected_q7_opt()
+ * - arm_fully_connected_q7()
+ *
+ * <b> Refer  </b>
+ * \link arm_nnexamples_cifar10.cpp \endlink
+ *
+ * \par [1] https://github.com/BVLC/caffe
+ */
+
+#include <stdint.h>
+#include <stdio.h>
+#include "arm_math.h"
+#include "arm_nnexamples_cifar10_parameter.h"
+#include "arm_nnexamples_cifar10_weights.h"
+
+#include "arm_nnfunctions.h"
+#include "arm_nnexamples_cifar10_inputs.h"
+
+#ifdef _RTE_
+#include "RTE_Components.h"
+#ifdef RTE_Compiler_EventRecorder
+#include "EventRecorder.h"
+#endif
+#endif
+
+// include the input and weights
+
+static q7_t conv1_wt[CONV1_IM_CH * CONV1_KER_DIM * CONV1_KER_DIM * CONV1_OUT_CH] = CONV1_WT;
+static q7_t conv1_bias[CONV1_OUT_CH] = CONV1_BIAS;
+
+static q7_t conv2_wt[CONV2_IM_CH * CONV2_KER_DIM * CONV2_KER_DIM * CONV2_OUT_CH] = CONV2_WT;
+static q7_t conv2_bias[CONV2_OUT_CH] = CONV2_BIAS;
+
+static q7_t conv3_wt[CONV3_IM_CH * CONV3_KER_DIM * CONV3_KER_DIM * CONV3_OUT_CH] = CONV3_WT;
+static q7_t conv3_bias[CONV3_OUT_CH] = CONV3_BIAS;
+
+static q7_t ip1_wt[IP1_DIM * IP1_OUT] = IP1_WT;
+static q7_t ip1_bias[IP1_OUT] = IP1_BIAS;
+
+/* Here the image_data should be the raw uint8 type RGB image in [RGB, RGB, RGB ... RGB] format */
+uint8_t   image_data[CONV1_IM_CH * CONV1_IM_DIM * CONV1_IM_DIM] = IMG_DATA;
+q7_t      output_data[IP1_OUT];
+
+//vector buffer: max(im2col buffer,average pool buffer, fully connected buffer)
+q7_t      col_buffer[2 * 5 * 5 * 32 * 2];
+
+q7_t      scratch_buffer[32 * 32 * 10 * 4];
+
+int main()
+{
+  #ifdef RTE_Compiler_EventRecorder
+  EventRecorderInitialize (EventRecordAll, 1);  // initialize and start Event Recorder
+  #endif
+
+  printf("start execution\n");
+  /* start the execution */
+
+  q7_t     *img_buffer1 = scratch_buffer;
+  q7_t     *img_buffer2 = img_buffer1 + 32 * 32 * 32;
+
+  /* input pre-processing */
+  int mean_data[3] = INPUT_MEAN_SHIFT;
+  unsigned int scale_data[3] = INPUT_RIGHT_SHIFT;
+  for (int i=0;i<32*32*3; i+=3) {
+    img_buffer2[i] =   (q7_t)__SSAT( ((((int)image_data[i]   - mean_data[0])<<7) + (0x1<<(scale_data[0]-1)))
+                             >> scale_data[0], 8);
+    img_buffer2[i+1] = (q7_t)__SSAT( ((((int)image_data[i+1] - mean_data[1])<<7) + (0x1<<(scale_data[1]-1)))
+                             >> scale_data[1], 8);
+    img_buffer2[i+2] = (q7_t)__SSAT( ((((int)image_data[i+2] - mean_data[2])<<7) + (0x1<<(scale_data[2]-1)))
+                             >> scale_data[2], 8);
+  }
+  
+  // conv1 img_buffer2 -> img_buffer1
+  arm_convolve_HWC_q7_RGB(img_buffer2, CONV1_IM_DIM, CONV1_IM_CH, conv1_wt, CONV1_OUT_CH, CONV1_KER_DIM, CONV1_PADDING,
+                          CONV1_STRIDE, conv1_bias, CONV1_BIAS_LSHIFT, CONV1_OUT_RSHIFT, img_buffer1, CONV1_OUT_DIM,
+                          (q15_t *) col_buffer, NULL);
+
+  arm_relu_q7(img_buffer1, CONV1_OUT_DIM * CONV1_OUT_DIM * CONV1_OUT_CH);
+
+  // pool1 img_buffer1 -> img_buffer2
+  arm_maxpool_q7_HWC(img_buffer1, CONV1_OUT_DIM, CONV1_OUT_CH, POOL1_KER_DIM,
+                     POOL1_PADDING, POOL1_STRIDE, POOL1_OUT_DIM, NULL, img_buffer2);
+
+  // conv2 img_buffer2 -> img_buffer1
+  arm_convolve_HWC_q7_fast(img_buffer2, CONV2_IM_DIM, CONV2_IM_CH, conv2_wt, CONV2_OUT_CH, CONV2_KER_DIM,
+                           CONV2_PADDING, CONV2_STRIDE, conv2_bias, CONV2_BIAS_LSHIFT, CONV2_OUT_RSHIFT, img_buffer1,
+                           CONV2_OUT_DIM, (q15_t *) col_buffer, NULL);
+
+  arm_relu_q7(img_buffer1, CONV2_OUT_DIM * CONV2_OUT_DIM * CONV2_OUT_CH);
+
+  // pool2 img_buffer1 -> img_buffer2
+  arm_maxpool_q7_HWC(img_buffer1, CONV2_OUT_DIM, CONV2_OUT_CH, POOL2_KER_DIM,
+                     POOL2_PADDING, POOL2_STRIDE, POOL2_OUT_DIM, col_buffer, img_buffer2);
+
+// conv3 img_buffer2 -> img_buffer1
+  arm_convolve_HWC_q7_fast(img_buffer2, CONV3_IM_DIM, CONV3_IM_CH, conv3_wt, CONV3_OUT_CH, CONV3_KER_DIM,
+                           CONV3_PADDING, CONV3_STRIDE, conv3_bias, CONV3_BIAS_LSHIFT, CONV3_OUT_RSHIFT, img_buffer1,
+                           CONV3_OUT_DIM, (q15_t *) col_buffer, NULL);
+
+  arm_relu_q7(img_buffer1, CONV3_OUT_DIM * CONV3_OUT_DIM * CONV3_OUT_CH);
+
+  // pool3 img_buffer-> img_buffer2
+  arm_maxpool_q7_HWC(img_buffer1, CONV3_OUT_DIM, CONV3_OUT_CH, POOL3_KER_DIM,
+                     POOL3_PADDING, POOL3_STRIDE, POOL3_OUT_DIM, col_buffer, img_buffer2);
+
+  arm_fully_connected_q7_opt(img_buffer2, ip1_wt, IP1_DIM, IP1_OUT, IP1_BIAS_LSHIFT, IP1_OUT_RSHIFT, ip1_bias,
+                             output_data, (q15_t *) img_buffer1);
+
+  arm_softmax_q7(output_data, 10, output_data);
+
+  for (int i = 0; i < 10; i++)
+  {
+      printf("%d: %d\n", i, output_data[i]);
+  }
+
+  return 0;
+}

--
Gitblit v1.9.1