From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c |  265 +++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 265 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c
new file mode 100644
index 0000000..14d9130
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q15_fast_nonsquare.c
@@ -0,0 +1,265 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_convolve_HWC_q15_fast.c
+ * Description:  Fast Q15 version of convolution
+ *
+ * $Date:        24. May 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+  /**
+   * @brief Fast Q15 convolution function (non-sqaure shape)
+   * @param[in]       Im_in        pointer to input tensor
+   * @param[in]       dim_im_in_x  input tensor dimention x
+   * @param[in]       dim_im_in_y  input tensor dimention y
+   * @param[in]       ch_im_in     number of input tensor channels
+   * @param[in]       wt           pointer to kernel weights
+   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
+   * @param[in]       dim_kernel_x filter kernel size x
+   * @param[in]       dim_kernel_y filter kernel size y
+   * @param[in]       padding_x    padding size x
+   * @param[in]       padding_y    padding size y
+   * @param[in]       stride_x     convolution stride x
+   * @param[in]       stride_y     convolution stride y
+   * @param[in]       bias         pointer to bias
+   * @param[in]       bias_shift   amount of left-shift for bias
+   * @param[in]       out_shift    amount of right-shift for output
+   * @param[in,out]   Im_out       pointer to output tensor
+   * @param[in]       dim_im_out_x output tensor dimension x
+   * @param[in]       dim_im_out_y output tensor dimension y
+   * @param[in,out]   bufferA      pointer to buffer space for input 
+   * @param[in,out]   bufferB      pointer to buffer space for output
+   * @return     The function returns either
+   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+   *
+   * @details
+   *
+   * <b>Buffer size:</b>
+   *
+   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
+   *
+   * bufferB size: 0
+   *
+   * <b>Input dimension constraints:</b>
+   *
+   * ch_im_in is multiple of 2 
+   *
+   * ch_im_out is multipe of 2
+   *
+   */
+
+arm_status
+arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
+                                    const uint16_t dim_im_in_x,
+                                    const uint16_t dim_im_in_y,
+                                    const uint16_t ch_im_in,
+                                    const q15_t * wt,
+                                    const uint16_t ch_im_out,
+                                    const uint16_t dim_kernel_x,
+                                    const uint16_t dim_kernel_y,
+                                    const uint16_t padding_x,
+                                    const uint16_t padding_y,
+                                    const uint16_t stride_x,
+                                    const uint16_t stride_y,
+                                    const q15_t * bias,
+                                    const uint16_t bias_shift,
+                                    const uint16_t out_shift,
+                                    q15_t * Im_out,
+                                    const uint16_t dim_im_out_x,
+                                    const uint16_t dim_im_out_y, 
+                                    q15_t * bufferA, 
+                                    q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+    q15_t    *pBuffer = bufferA;
+    q15_t    *im_buffer = bufferA;
+    q15_t    *pOut = Im_out;
+
+    if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+    /* This part implements the im2col function */
+    for (i_out_y = 0; i_out_y < dim_im_out_y; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y; i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x; i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        /* arm_copy_q15((q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, pBuffer, ch_im_in); */
+                        memcpy(pBuffer, (q15_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in, sizeof(q15_t)*ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (i_out_x & 0x1)
+            {
+                int       i;
+                /* initialize the matrix pointers for A */
+                const q15_t *pA = wt;
+
+                /* set up the second output pointers */
+                q15_t    *pOut2 = pOut + ch_im_out;
+
+                /* this loop over rows in A */
+                for (i = 0; i < ch_im_out; i += 2)
+                {
+                    /* setup pointers for B */
+                    q15_t    *pB = im_buffer;
+                    const q15_t *pB2 = pB + ch_im_in * dim_kernel_y * dim_kernel_x;
+
+                    /* aling the second pointer for A */
+                    const q15_t *pA2 = pA + ch_im_in * dim_kernel_y * dim_kernel_x;
+
+                    /* init the sum with bias */
+                    q31_t     sum =  ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                    q31_t     sum2 = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                    q31_t     sum3 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
+                    q31_t     sum4 = ((q31_t)bias[i + 1] << bias_shift) + NN_ROUND(out_shift);
+
+                    uint16_t  colCnt = ch_im_in * dim_kernel_y * dim_kernel_x >> 1;
+                    /* accumulate over the vector */
+                    while (colCnt)
+                    {
+                        q31_t     inA1 = *__SIMD32(pA)++;
+                        q31_t     inB1 = *__SIMD32(pB)++;
+                        q31_t     inA2 = *__SIMD32(pA2)++;
+                        q31_t     inB2 = *__SIMD32(pB2)++;
+
+                        sum = __SMLAD(inA1, inB1, sum);
+                        sum2 = __SMLAD(inA1, inB2, sum2);
+                        sum3 = __SMLAD(inA2, inB1, sum3);
+                        sum4 = __SMLAD(inA2, inB2, sum4);
+
+                        colCnt--;
+                    }           /* while over colCnt */
+                    colCnt = ch_im_in * dim_kernel_y * dim_kernel_x & 0x1;
+                    while (colCnt)
+                    {
+                        q15_t     inA1 = *pA++;
+                        q15_t     inB1 = *pB++;
+                        q15_t     inA2 = *pA2++;
+                        q15_t     inB2 = *pB2++;
+
+                        sum += inA1 * inB1;
+                        sum2 += inA1 * inB2;
+                        sum3 += inA2 * inB1;
+                        sum4 += inA2 * inB2;
+                        colCnt--;
+                    }           /* while over colCnt */
+                    *pOut++ = (q15_t) __SSAT(sum >> out_shift, 16);
+                    *pOut++ = (q15_t) __SSAT(sum3 >> out_shift, 16);
+                    *pOut2++ = (q15_t) __SSAT(sum2 >> out_shift, 16);
+                    *pOut2++ = (q15_t) __SSAT(sum4 >> out_shift, 16);
+
+                    /* skip the row computed with A2 */
+                    pA += ch_im_in * dim_kernel_y * dim_kernel_x;
+                }               /* for over ch_im_out */
+
+                pOut += ch_im_out;
+                /* counter reset */
+                pBuffer = im_buffer;
+            }
+        }
+    }
+
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+    uint16_t  i, j, k, l, m, n;
+    int       conv_out;
+    signed char in_row, in_col;
+
+    if (ch_im_in % 2 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i = 0; i < ch_im_out; i++)
+    {
+        for (j = 0; j < dim_im_out_y; j++)
+        {
+            for (k = 0; k < dim_im_out_x; k++)
+            {
+                conv_out = ((q31_t)bias[i] << bias_shift) + NN_ROUND(out_shift);
+                for (m = 0; m < dim_kernel_y; m++)
+                {
+                    for (n = 0; n < dim_kernel_x; n++)
+                    {
+                        in_row = stride_y * j + m - padding_y;
+                        in_col = stride_x * k + n - padding_x;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+                        {
+                            for (l = 0; l < ch_im_in; l++)
+                            {
+                                conv_out +=
+                                    Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in +
+                                          l] * wt[i * ch_im_in * dim_kernel_x * dim_kernel_y + (m * dim_kernel_x +
+                                                                                            n) * ch_im_in + l];
+                            }
+                        }
+                    }
+                }
+                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q15_t) __SSAT((conv_out >> out_shift), 16);
+            }
+        }
+    }
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */

--
Gitblit v1.9.1