From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c |  379 ++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 379 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c
new file mode 100644
index 0000000..6dc6f0b
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/CMSIS/NN/Source/ConvolutionFunctions/arm_convolve_HWC_q7_fast_nonsquare.c
@@ -0,0 +1,379 @@
+/*
+ * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
+ *
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the License); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an AS IS BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/* ----------------------------------------------------------------------
+ * Project:      CMSIS NN Library
+ * Title:        arm_convolve_HWC_q7_fast_nonsquare.c
+ * Description:  Fast Q7 version of convolution (non-sqaure shape)
+ *
+ * $Date:        17. January 2018
+ * $Revision:    V.1.0.0
+ *
+ * Target Processor:  Cortex-M cores
+ *
+ * -------------------------------------------------------------------- */
+
+#include "arm_math.h"
+#include "arm_nnfunctions.h"
+
+/**
+ *  @ingroup groupNN
+ */
+
+/**
+ * @addtogroup NNConv
+ * @{
+ */
+
+/**
+ * @brief Fast Q7 convolution function (non-sqaure shape)
+ * @param[in]       Im_in        pointer to input tensor
+ * @param[in]       dim_im_in_x  input tensor dimention x
+ * @param[in]       dim_im_in_y  input tensor dimention y
+ * @param[in]       ch_im_in     number of input tensor channels
+ * @param[in]       wt           pointer to kernel weights
+ * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
+ * @param[in]       dim_kernel_x filter kernel size x
+ * @param[in]       dim_kernel_y filter kernel size y
+ * @param[in]       padding_x    padding size x
+ * @param[in]       padding_y    padding size y
+ * @param[in]       stride_x     convolution stride x
+ * @param[in]       stride_y     convolution stride y
+ * @param[in]       bias         pointer to bias
+ * @param[in]       bias_shift   amount of left-shift for bias
+ * @param[in]       out_shift    amount of right-shift for output
+ * @param[in,out]   Im_out       pointer to output tensor
+ * @param[in]       dim_im_out_x output tensor dimension x
+ * @param[in]       dim_im_out_y output tensor dimension y
+ * @param[in,out]   bufferA      pointer to buffer space for input 
+ * @param[in,out]   bufferB      pointer to buffer space for output
+ * @return     The function returns either
+ * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
+ *
+ * This function is the version with full list of optimization tricks, but with
+ * some contraints:
+ *   ch_im_in is multiple of 4
+ *   ch_im_out is multiple of 2
+ */
+
+arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
+                                              const uint16_t dim_im_in_x,
+                                              const uint16_t dim_im_in_y,
+                                              const uint16_t ch_im_in,
+                                              const q7_t * wt,
+                                              const uint16_t ch_im_out,
+                                              const uint16_t dim_kernel_x,
+                                              const uint16_t dim_kernel_y,
+                                              const uint16_t padding_x,
+                                              const uint16_t padding_y,
+                                              const uint16_t stride_x,
+                                              const uint16_t stride_y,
+                                              const q7_t * bias,
+                                              const uint16_t bias_shift,
+                                              const uint16_t out_shift,
+                                              q7_t * Im_out,
+                                              const uint16_t dim_im_out_x,
+                                              const uint16_t dim_im_out_y, 
+                                              q15_t * bufferA, 
+                                              q7_t * bufferB)
+{
+
+#if defined (ARM_MATH_DSP)
+    /* Run the following code for Cortex-M4 and Cortex-M7 */
+
+    int16_t   i_out_y, i_out_x, i_ker_y, i_ker_x;
+
+    /* -----------------------
+     *  Here we use bufferA as q15_t internally as computation are done with q15_t level
+     *  im2col are done to output in q15_t format from q7_t input
+     */
+
+    q15_t    *pBuffer = bufferA;
+    q7_t     *pOut = Im_out;
+
+    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    /*
+     *  Here we split the entire matrix into three regions depending on the padding situation
+     *    Top: i_out_y from 0 to padding - 1
+     * Middle: i_out_y from padding to dim_im_out-padding-1
+     * Bottom: i_out_y from dim_im_out-padding to dim_im_out-1
+     */
+
+    /* top part */
+    for (i_out_y = 0; i_out_y < padding_y; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+                 i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+                     i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+                                                         pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+                                                  bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    /* middle part, here we also divide the x into left, mid and right */
+    for (; i_out_y < dim_im_out_y - padding_y; i_out_y++)
+    {
+
+        /* left part */
+        for (i_out_x = 0; i_out_x < padding_x; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+                 i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+                     i_ker_x++)
+                {
+                    if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+                                                         pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+                                                  bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+
+        /* mid part */
+        for (; i_out_x < dim_im_out_x - padding_x; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+                 i_ker_y++)
+            {
+                arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in +
+                                                 (i_ker_y * dim_im_in_x + i_out_x * stride_x - padding_x) * ch_im_in,
+                                                 pBuffer, ch_im_in * dim_kernel_x);
+                pBuffer += ch_im_in * dim_kernel_x;
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+                                                  bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+
+        /* right part */
+        for (; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+                 i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+                     i_ker_x++)
+                {
+                    if (i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+                                                         pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+                                                  bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    for (; i_out_y < dim_im_out_y; i_out_y++)
+    {
+        for (i_out_x = 0; i_out_x < dim_im_out_x; i_out_x++)
+        {
+            /* This part implements the im2col function */
+            for (i_ker_y = i_out_y * stride_y - padding_y; i_ker_y < i_out_y * stride_y - padding_y + dim_kernel_y;
+                 i_ker_y++)
+            {
+                for (i_ker_x = i_out_x * stride_x - padding_x; i_ker_x < i_out_x * stride_x - padding_x + dim_kernel_x;
+                     i_ker_x++)
+                {
+                    if (i_ker_y < 0 || i_ker_y >= dim_im_in_y || i_ker_x < 0 || i_ker_x >= dim_im_in_x)
+                    {
+                        /* arm_fill_q15(0, pBuffer, ch_im_in); */
+                        memset(pBuffer, 0, sizeof(q15_t)*ch_im_in);
+                    } else
+                    {
+                        arm_q7_to_q15_reordered_no_shift((q7_t *) Im_in + (i_ker_y * dim_im_in_x + i_ker_x) * ch_im_in,
+                                                         pBuffer, ch_im_in);
+                    }
+                    pBuffer += ch_im_in;
+                }
+            }
+
+            if (pBuffer == bufferA + 2 * ch_im_in * dim_kernel_x * dim_kernel_y)
+            {
+                pOut =
+                    arm_nn_mat_mult_kernel_q7_q15_reordered(wt, bufferA, ch_im_out, ch_im_in * dim_kernel_x * dim_kernel_y,
+                                                  bias_shift, out_shift, bias, pOut);
+                /* counter reset */
+                pBuffer = bufferA;
+            }
+        }
+    }
+
+    /* check if there is left-over for compute */
+    if (pBuffer != bufferA)
+    {
+        const q7_t *pA = wt;
+        int       i;
+        for (i = 0; i < ch_im_out; i++)
+        {
+            q31_t     sum = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+            q15_t    *pB = bufferA;
+            /* basically each time it process 4 entries */
+            uint16_t  colCnt = ch_im_in * dim_kernel_x * dim_kernel_y >> 2;
+
+            while (colCnt)
+            {
+
+                q31_t     inA1, inA2;
+                q31_t     inB1, inB2;
+
+                pA = (const q7_t *)read_and_pad_reordered((void *)pA, &inA1, &inA2);
+
+                inB1 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA1, inB1, sum);
+                inB2 = *__SIMD32(pB)++;
+                sum = __SMLAD(inA2, inB2, sum);
+
+                colCnt--;
+            }
+            colCnt = (ch_im_in * dim_kernel_y * dim_kernel_x) & 0x3;
+            while (colCnt)
+            {
+                q7_t      inA1 = *pA++;
+                q15_t     inB1 = *pB++;
+                sum += inA1 * inB1;
+                colCnt--;
+            }
+            *pOut = (q7_t) __SSAT((sum >> out_shift), 8);
+            pOut++;
+
+        }
+
+    }
+
+#else
+    /* Run the following code as reference implementation for Cortex-M0 and Cortex-M3 */
+    int       i, j, k, l, m, n;
+    int       conv_out;
+    int       in_row, in_col;
+
+    if (ch_im_in % 4 != 0 || ch_im_out % 2 != 0)
+    {
+        /* check if the input dimension meets the constraints */
+        return ARM_MATH_SIZE_MISMATCH;
+    }
+
+    for (i = 0; i < ch_im_out; i++)
+    {
+        for (j = 0; j < dim_im_out_y; j++)
+        {
+            for (k = 0; k < dim_im_out_x; k++)
+            {
+                conv_out = ((q31_t)(bias[i]) << bias_shift) + NN_ROUND(out_shift);
+                for (m = 0; m < dim_kernel_y; m++)
+                {
+                    for (n = 0; n < dim_kernel_x; n++)
+                    {
+                        /* if-for implementation */
+                        in_row = stride_y * j + m - padding_y;
+                        in_col = stride_x * k + n - padding_x;
+                        if (in_row >= 0 && in_col >= 0 && in_row < dim_im_in_y && in_col < dim_im_in_x)
+                        {
+                            for (l = 0; l < ch_im_in; l++)
+                            {
+                                conv_out += Im_in[(in_row * dim_im_in_x + in_col) * ch_im_in + l] *
+                                    wt[i * ch_im_in * dim_kernel_y * dim_kernel_x + (m * dim_kernel_x + n) * ch_im_in + l];      
+                            }
+                        }
+                    }
+                }
+                Im_out[i + (j * dim_im_out_x + k) * ch_im_out] = (q7_t) __SSAT((conv_out >> out_shift), 8);
+            }
+        }
+    }
+
+
+#endif                          /* ARM_MATH_DSP */
+
+    /* Return to application */
+    return ARM_MATH_SUCCESS;
+}
+
+/**
+ * @} end of NNConv group
+ */

--
Gitblit v1.9.1