From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001 From: android <android@lingyun.com> Date: Tue, 25 Jun 2024 21:49:39 +0800 Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code --- mcu_sdk/gd32f103/rk_eFire/Board/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_irda.c | 2658 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 2,658 insertions(+), 0 deletions(-) diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_irda.c b/mcu_sdk/gd32f103/rk_eFire/Board/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_irda.c new file mode 100644 index 0000000..7ab0138 --- /dev/null +++ b/mcu_sdk/gd32f103/rk_eFire/Board/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_irda.c @@ -0,0 +1,2658 @@ +/** + ****************************************************************************** + * @file stm32f1xx_hal_irda.c + * @author MCD Application Team + * @brief IRDA HAL module driver. + * This file provides firmware functions to manage the following + * functionalities of the IrDA SIR ENDEC block (IrDA): + * + Initialization and de-initialization functions + * + IO operation functions + * + Peripheral Control functions + * + Peripheral State and Errors functions + @verbatim + ============================================================================== + ##### How to use this driver ##### + ============================================================================== + [..] + The IRDA HAL driver can be used as follows: + + (#) Declare a IRDA_HandleTypeDef handle structure (eg. IRDA_HandleTypeDef hirda). + (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API: + (##) Enable the USARTx interface clock. + (##) IRDA pins configuration: + (+++) Enable the clock for the IRDA GPIOs. + (+++) Configure IRDA pins as alternate function pull-up. + (##) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT() + and HAL_IRDA_Receive_IT() APIs): + (+++) Configure the USARTx interrupt priority. + (+++) Enable the NVIC USART IRQ handle. + (##) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA() + and HAL_IRDA_Receive_DMA() APIs): + (+++) Declare a DMA handle structure for the Tx/Rx channel. + (+++) Enable the DMAx interface clock. + (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters. + (+++) Configure the DMA Tx/Rx channel. + (+++) Associate the initialized DMA handle to the IRDA DMA Tx/Rx handle. + (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel. + (+++) Configure the IRDAx interrupt priority and enable the NVIC USART IRQ handle + (used for last byte sending completion detection in DMA non circular mode) + + (#) Program the Baud Rate, Word Length, Parity, IrDA Mode, Prescaler + and Mode(Receiver/Transmitter) in the hirda Init structure. + + (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API: + (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc) + by calling the customized HAL_IRDA_MspInit() API. + + -@@- The specific IRDA interrupts (Transmission complete interrupt, + RXNE interrupt and Error Interrupts) will be managed using the macros + __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process. + + (#) Three operation modes are available within this driver : + + *** Polling mode IO operation *** + ================================= + [..] + (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit() + (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive() + + *** Interrupt mode IO operation *** + =================================== + [..] + (+) Send an amount of data in non blocking mode using HAL_IRDA_Transmit_IT() + (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_TxCpltCallback + (+) Receive an amount of data in non blocking mode using HAL_IRDA_Receive_IT() + (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_RxCpltCallback + (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_IRDA_ErrorCallback + + *** DMA mode IO operation *** + ============================= + [..] + (+) Send an amount of data in non blocking mode (DMA) using HAL_IRDA_Transmit_DMA() + (+) At transmission end of half transfer HAL_IRDA_TxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_TxHalfCpltCallback + (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_TxCpltCallback + (+) Receive an amount of data in non blocking mode (DMA) using HAL_IRDA_Receive_DMA() + (+) At reception end of half transfer HAL_IRDA_RxHalfCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_RxHalfCpltCallback + (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can + add his own code by customization of function pointer HAL_IRDA_RxCpltCallback + (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can + add his own code by customization of function pointer HAL_IRDA_ErrorCallback + (+) Pause the DMA Transfer using HAL_IRDA_DMAPause() + (+) Resume the DMA Transfer using HAL_IRDA_DMAResume() + (+) Stop the DMA Transfer using HAL_IRDA_DMAStop() + + *** IRDA HAL driver macros list *** + =================================== + [..] + Below the list of most used macros in IRDA HAL driver. + + (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral + (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral + (+) __HAL_IRDA_GET_FLAG : Check whether the specified IRDA flag is set or not + (+) __HAL_IRDA_CLEAR_FLAG : Clear the specified IRDA pending flag + (+) __HAL_IRDA_ENABLE_IT: Enable the specified IRDA interrupt + (+) __HAL_IRDA_DISABLE_IT: Disable the specified IRDA interrupt + (+) __HAL_IRDA_GET_IT_SOURCE: Check whether the specified IRDA interrupt has occurred or not + + [..] + (@) You can refer to the IRDA HAL driver header file for more useful macros + + ##### Callback registration ##### + ================================== + + [..] + The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS when set to 1 + allows the user to configure dynamically the driver callbacks. + + [..] + Use Function @ref HAL_IRDA_RegisterCallback() to register a user callback. + Function @ref HAL_IRDA_RegisterCallback() allows to register following callbacks: + (+) TxHalfCpltCallback : Tx Half Complete Callback. + (+) TxCpltCallback : Tx Complete Callback. + (+) RxHalfCpltCallback : Rx Half Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) ErrorCallback : Error Callback. + (+) AbortCpltCallback : Abort Complete Callback. + (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. + (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. + (+) MspInitCallback : IRDA MspInit. + (+) MspDeInitCallback : IRDA MspDeInit. + This function takes as parameters the HAL peripheral handle, the Callback ID + and a pointer to the user callback function. + + [..] + Use function @ref HAL_IRDA_UnRegisterCallback() to reset a callback to the default + weak (surcharged) function. + @ref HAL_IRDA_UnRegisterCallback() takes as parameters the HAL peripheral handle, + and the Callback ID. + This function allows to reset following callbacks: + (+) TxHalfCpltCallback : Tx Half Complete Callback. + (+) TxCpltCallback : Tx Complete Callback. + (+) RxHalfCpltCallback : Rx Half Complete Callback. + (+) RxCpltCallback : Rx Complete Callback. + (+) ErrorCallback : Error Callback. + (+) AbortCpltCallback : Abort Complete Callback. + (+) AbortTransmitCpltCallback : Abort Transmit Complete Callback. + (+) AbortReceiveCpltCallback : Abort Receive Complete Callback. + (+) MspInitCallback : IRDA MspInit. + (+) MspDeInitCallback : IRDA MspDeInit. + + [..] + By default, after the @ref HAL_IRDA_Init() and when the state is HAL_IRDA_STATE_RESET + all callbacks are set to the corresponding weak (surcharged) functions: + examples @ref HAL_IRDA_TxCpltCallback(), @ref HAL_IRDA_RxHalfCpltCallback(). + Exception done for MspInit and MspDeInit functions that are respectively + reset to the legacy weak (surcharged) functions in the @ref HAL_IRDA_Init() + and @ref HAL_IRDA_DeInit() only when these callbacks are null (not registered beforehand). + If not, MspInit or MspDeInit are not null, the @ref HAL_IRDA_Init() and @ref HAL_IRDA_DeInit() + keep and use the user MspInit/MspDeInit callbacks (registered beforehand). + + [..] + Callbacks can be registered/unregistered in HAL_IRDA_STATE_READY state only. + Exception done MspInit/MspDeInit that can be registered/unregistered + in HAL_IRDA_STATE_READY or HAL_IRDA_STATE_RESET state, thus registered (user) + MspInit/DeInit callbacks can be used during the Init/DeInit. + In that case first register the MspInit/MspDeInit user callbacks + using @ref HAL_IRDA_RegisterCallback() before calling @ref HAL_IRDA_DeInit() + or @ref HAL_IRDA_Init() function. + + [..] + When The compilation define USE_HAL_IRDA_REGISTER_CALLBACKS is set to 0 or + not defined, the callback registration feature is not available + and weak (surcharged) callbacks are used. + + @endverbatim + [..] + (@) Additionnal remark: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + Depending on the frame length defined by the M bit (8-bits or 9-bits), + the possible IRDA frame formats are as listed in the following table: + +-------------------------------------------------------------+ + | M bit | PCE bit | IRDA frame | + |---------------------|---------------------------------------| + | 0 | 0 | | SB | 8 bit data | 1 STB | | + |---------|-----------|---------------------------------------| + | 0 | 1 | | SB | 7 bit data | PB | 1 STB | | + |---------|-----------|---------------------------------------| + | 1 | 0 | | SB | 9 bit data | 1 STB | | + |---------|-----------|---------------------------------------| + | 1 | 1 | | SB | 8 bit data | PB | 1 STB | | + +-------------------------------------------------------------+ + ****************************************************************************** + * @attention + * + * <h2><center>© Copyright (c) 2016 STMicroelectronics. + * All rights reserved.</center></h2> + * + * This software component is licensed by ST under BSD 3-Clause license, + * the "License"; You may not use this file except in compliance with the + * License. You may obtain a copy of the License at: + * opensource.org/licenses/BSD-3-Clause + * + ****************************************************************************** + */ + +/* Includes ------------------------------------------------------------------*/ +#include "stm32f1xx_hal.h" + +/** @addtogroup STM32F1xx_HAL_Driver + * @{ + */ + +/** @defgroup IRDA IRDA + * @brief HAL IRDA module driver + * @{ + */ + +#ifdef HAL_IRDA_MODULE_ENABLED + +/* Private typedef -----------------------------------------------------------*/ +/* Private define ------------------------------------------------------------*/ +/* Private constants ---------------------------------------------------------*/ +/* Private macro -------------------------------------------------------------*/ +/* Private variables ---------------------------------------------------------*/ +/* Private function prototypes -----------------------------------------------*/ +/** @addtogroup IRDA_Private_Functions + * @{ + */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) +void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ +static void IRDA_SetConfig(IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda); +static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda); +static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma); +static void IRDA_DMAError(DMA_HandleTypeDef *hdma); +static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma); +static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma); +static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma); +static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma); +static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma); +static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout); +static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda); +static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda); +/** + * @} + */ + +/* Exported functions --------------------------------------------------------*/ +/** @defgroup IRDA_Exported_Functions IrDA Exported Functions + * @{ + */ + +/** @defgroup IRDA_Exported_Functions_Group1 IrDA Initialization and de-initialization functions + * @brief Initialization and Configuration functions + * +@verbatim + + ============================================================================== + ##### Initialization and Configuration functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to initialize the USARTx or the UARTy + in asynchronous IrDA mode. + (+) For the asynchronous mode only these parameters can be configured: + (++) BaudRate + (++) WordLength + (++) Parity: If the parity is enabled, then the MSB bit of the data written + in the data register is transmitted but is changed by the parity bit. + Depending on the frame length defined by the M bit (8-bits or 9-bits), + please refer to Reference manual for possible IRDA frame formats. + (++) Prescaler: A pulse of width less than two and greater than one PSC period(s) may or may + not be rejected. The receiver set up time should be managed by software. The IrDA physical layer + specification specifies a minimum of 10 ms delay between transmission and + reception (IrDA is a half duplex protocol). + (++) Mode: Receiver/transmitter modes + (++) IrDAMode: the IrDA can operate in the Normal mode or in the Low power mode. + [..] + The HAL_IRDA_Init() API follows IRDA configuration procedures (details for the procedures + are available in reference manual). + +@endverbatim + * @{ + */ + +/** + * @brief Initializes the IRDA mode according to the specified + * parameters in the IRDA_InitTypeDef and create the associated handle. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda) +{ + /* Check the IRDA handle allocation */ + if (hirda == NULL) + { + return HAL_ERROR; + } + + /* Check the IRDA instance parameters */ + assert_param(IS_IRDA_INSTANCE(hirda->Instance)); + /* Check the IRDA mode parameter in the IRDA handle */ + assert_param(IS_IRDA_POWERMODE(hirda->Init.IrDAMode)); + + if (hirda->gState == HAL_IRDA_STATE_RESET) + { + /* Allocate lock resource and initialize it */ + hirda->Lock = HAL_UNLOCKED; + +#if USE_HAL_IRDA_REGISTER_CALLBACKS == 1 + IRDA_InitCallbacksToDefault(hirda); + + if (hirda->MspInitCallback == NULL) + { + hirda->MspInitCallback = HAL_IRDA_MspInit; + } + + /* Init the low level hardware */ + hirda->MspInitCallback(hirda); +#else + /* Init the low level hardware : GPIO, CLOCK */ + HAL_IRDA_MspInit(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ + } + + hirda->gState = HAL_IRDA_STATE_BUSY; + + /* Disable the IRDA peripheral */ + __HAL_IRDA_DISABLE(hirda); + + /* Set the IRDA communication parameters */ + IRDA_SetConfig(hirda); + + /* In IrDA mode, the following bits must be kept cleared: + - LINEN, STOP and CLKEN bits in the USART_CR2 register, + - SCEN and HDSEL bits in the USART_CR3 register.*/ + CLEAR_BIT(hirda->Instance->CR2, (USART_CR2_LINEN | USART_CR2_STOP | USART_CR2_CLKEN)); + CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL)); + + /* Enable the IRDA peripheral */ + __HAL_IRDA_ENABLE(hirda); + + /* Set the prescaler */ + MODIFY_REG(hirda->Instance->GTPR, USART_GTPR_PSC, hirda->Init.Prescaler); + + /* Configure the IrDA mode */ + MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.IrDAMode); + + /* Enable the IrDA mode by setting the IREN bit in the CR3 register */ + SET_BIT(hirda->Instance->CR3, USART_CR3_IREN); + + /* Initialize the IRDA state*/ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_READY; + hirda->RxState = HAL_IRDA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief DeInitializes the IRDA peripheral + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda) +{ + /* Check the IRDA handle allocation */ + if (hirda == NULL) + { + return HAL_ERROR; + } + + /* Check the parameters */ + assert_param(IS_IRDA_INSTANCE(hirda->Instance)); + + hirda->gState = HAL_IRDA_STATE_BUSY; + + /* Disable the Peripheral */ + __HAL_IRDA_DISABLE(hirda); + + /* DeInit the low level hardware */ +#if USE_HAL_IRDA_REGISTER_CALLBACKS == 1 + if (hirda->MspDeInitCallback == NULL) + { + hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; + } + /* DeInit the low level hardware */ + hirda->MspDeInitCallback(hirda); +#else + HAL_IRDA_MspDeInit(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + hirda->gState = HAL_IRDA_STATE_RESET; + hirda->RxState = HAL_IRDA_STATE_RESET; + + /* Release Lock */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief IRDA MSP Init. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_IRDA_MspInit can be implemented in the user file + */ +} + +/** + * @brief IRDA MSP DeInit. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE: This function should not be modified, when the callback is needed, + the HAL_IRDA_MspDeInit can be implemented in the user file + */ +} + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) +/** + * @brief Register a User IRDA Callback + * To be used instead of the weak predefined callback + * @param hirda irda handle + * @param CallbackID ID of the callback to be registered + * This parameter can be one of the following values: + * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID + * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID + * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID + * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID + * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID + * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID + * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID + * @param pCallback pointer to the Callback function + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_RegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID, pIRDA_CallbackTypeDef pCallback) +{ + HAL_StatusTypeDef status = HAL_OK; + + if (pCallback == NULL) + { + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + return HAL_ERROR; + } + /* Process locked */ + __HAL_LOCK(hirda); + + if (hirda->gState == HAL_IRDA_STATE_READY) + { + switch (CallbackID) + { + case HAL_IRDA_TX_HALFCOMPLETE_CB_ID : + hirda->TxHalfCpltCallback = pCallback; + break; + + case HAL_IRDA_TX_COMPLETE_CB_ID : + hirda->TxCpltCallback = pCallback; + break; + + case HAL_IRDA_RX_HALFCOMPLETE_CB_ID : + hirda->RxHalfCpltCallback = pCallback; + break; + + case HAL_IRDA_RX_COMPLETE_CB_ID : + hirda->RxCpltCallback = pCallback; + break; + + case HAL_IRDA_ERROR_CB_ID : + hirda->ErrorCallback = pCallback; + break; + + case HAL_IRDA_ABORT_COMPLETE_CB_ID : + hirda->AbortCpltCallback = pCallback; + break; + + case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID : + hirda->AbortTransmitCpltCallback = pCallback; + break; + + case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID : + hirda->AbortReceiveCpltCallback = pCallback; + break; + + case HAL_IRDA_MSPINIT_CB_ID : + hirda->MspInitCallback = pCallback; + break; + + case HAL_IRDA_MSPDEINIT_CB_ID : + hirda->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (hirda->gState == HAL_IRDA_STATE_RESET) + { + switch (CallbackID) + { + case HAL_IRDA_MSPINIT_CB_ID : + hirda->MspInitCallback = pCallback; + break; + + case HAL_IRDA_MSPDEINIT_CB_ID : + hirda->MspDeInitCallback = pCallback; + break; + + default : + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hirda); + + return status; +} + +/** + * @brief Unregister an IRDA callback + * IRDA callback is redirected to the weak predefined callback + * @param hirda irda handle + * @param CallbackID ID of the callback to be unregistered + * This parameter can be one of the following values: + * @arg @ref HAL_IRDA_TX_HALFCOMPLETE_CB_ID Tx Half Complete Callback ID + * @arg @ref HAL_IRDA_TX_COMPLETE_CB_ID Tx Complete Callback ID + * @arg @ref HAL_IRDA_RX_HALFCOMPLETE_CB_ID Rx Half Complete Callback ID + * @arg @ref HAL_IRDA_RX_COMPLETE_CB_ID Rx Complete Callback ID + * @arg @ref HAL_IRDA_ERROR_CB_ID Error Callback ID + * @arg @ref HAL_IRDA_ABORT_COMPLETE_CB_ID Abort Complete Callback ID + * @arg @ref HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID Abort Transmit Complete Callback ID + * @arg @ref HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID Abort Receive Complete Callback ID + * @arg @ref HAL_IRDA_MSPINIT_CB_ID MspInit Callback ID + * @arg @ref HAL_IRDA_MSPDEINIT_CB_ID MspDeInit Callback ID + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_UnRegisterCallback(IRDA_HandleTypeDef *hirda, HAL_IRDA_CallbackIDTypeDef CallbackID) +{ + HAL_StatusTypeDef status = HAL_OK; + + /* Process locked */ + __HAL_LOCK(hirda); + + if (HAL_IRDA_STATE_READY == hirda->gState) + { + switch (CallbackID) + { + case HAL_IRDA_TX_HALFCOMPLETE_CB_ID : + hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + break; + + case HAL_IRDA_TX_COMPLETE_CB_ID : + hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */ + break; + + case HAL_IRDA_RX_HALFCOMPLETE_CB_ID : + hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + break; + + case HAL_IRDA_RX_COMPLETE_CB_ID : + hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */ + break; + + case HAL_IRDA_ERROR_CB_ID : + hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */ + break; + + case HAL_IRDA_ABORT_COMPLETE_CB_ID : + hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + break; + + case HAL_IRDA_ABORT_TRANSMIT_COMPLETE_CB_ID : + hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ + break; + + case HAL_IRDA_ABORT_RECEIVE_COMPLETE_CB_ID : + hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ + break; + + case HAL_IRDA_MSPINIT_CB_ID : + hirda->MspInitCallback = HAL_IRDA_MspInit; /* Legacy weak MspInitCallback */ + break; + + case HAL_IRDA_MSPDEINIT_CB_ID : + hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; /* Legacy weak MspDeInitCallback */ + break; + + default : + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else if (HAL_IRDA_STATE_RESET == hirda->gState) + { + switch (CallbackID) + { + case HAL_IRDA_MSPINIT_CB_ID : + hirda->MspInitCallback = HAL_IRDA_MspInit; + break; + + case HAL_IRDA_MSPDEINIT_CB_ID : + hirda->MspDeInitCallback = HAL_IRDA_MspDeInit; + break; + + default : + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + break; + } + } + else + { + /* Update the error code */ + hirda->ErrorCode |= HAL_IRDA_ERROR_INVALID_CALLBACK; + + /* Return error status */ + status = HAL_ERROR; + } + + /* Release Lock */ + __HAL_UNLOCK(hirda); + + return status; +} +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ + +/** + * @} + */ + +/** @defgroup IRDA_Exported_Functions_Group2 IO operation functions + * @brief IRDA Transmit and Receive functions + * +@verbatim + ============================================================================== + ##### IO operation functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to manage the IRDA data transfers. + IrDA is a half duplex communication protocol. If the Transmitter is busy, any data + on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver + is busy, data on the TX from the USART to IrDA will not be encoded by IrDA. + While receiving data, transmission should be avoided as the data to be transmitted + could be corrupted. + + (#) There are two modes of transfer: + (++) Blocking mode: The communication is performed in polling mode. + The HAL status of all data processing is returned by the same function + after finishing transfer. + (++) Non-Blocking mode: The communication is performed using Interrupts + or DMA, these API's return the HAL status. + The end of the data processing will be indicated through the + dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when + using DMA mode. + The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks + will be executed respectively at the end of the Transmit or Receive process + The HAL_IRDA_ErrorCallback() user callback will be executed when a communication error is detected + + (#) Blocking mode APIs are : + (++) HAL_IRDA_Transmit() + (++) HAL_IRDA_Receive() + + (#) Non Blocking mode APIs with Interrupt are : + (++) HAL_IRDA_Transmit_IT() + (++) HAL_IRDA_Receive_IT() + (++) HAL_IRDA_IRQHandler() + + (#) Non Blocking mode functions with DMA are : + (++) HAL_IRDA_Transmit_DMA() + (++) HAL_IRDA_Receive_DMA() + (++) HAL_IRDA_DMAPause() + (++) HAL_IRDA_DMAResume() + (++) HAL_IRDA_DMAStop() + + (#) A set of Transfer Complete Callbacks are provided in Non Blocking mode: + (++) HAL_IRDA_TxHalfCpltCallback() + (++) HAL_IRDA_TxCpltCallback() + (++) HAL_IRDA_RxHalfCpltCallback() + (++) HAL_IRDA_RxCpltCallback() + (++) HAL_IRDA_ErrorCallback() + + (#) Non-Blocking mode transfers could be aborted using Abort API's : + (+) HAL_IRDA_Abort() + (+) HAL_IRDA_AbortTransmit() + (+) HAL_IRDA_AbortReceive() + (+) HAL_IRDA_Abort_IT() + (+) HAL_IRDA_AbortTransmit_IT() + (+) HAL_IRDA_AbortReceive_IT() + + (#) For Abort services based on interrupts (HAL_IRDA_Abortxxx_IT), a set of Abort Complete Callbacks are provided: + (+) HAL_IRDA_AbortCpltCallback() + (+) HAL_IRDA_AbortTransmitCpltCallback() + (+) HAL_IRDA_AbortReceiveCpltCallback() + + (#) In Non-Blocking mode transfers, possible errors are split into 2 categories. + Errors are handled as follows : + (+) Error is considered as Recoverable and non blocking : Transfer could go till end, but error severity is + to be evaluated by user : this concerns Frame Error, Parity Error or Noise Error in Interrupt mode reception . + Received character is then retrieved and stored in Rx buffer, Error code is set to allow user to identify error type, + and HAL_IRDA_ErrorCallback() user callback is executed. Transfer is kept ongoing on IRDA side. + If user wants to abort it, Abort services should be called by user. + (+) Error is considered as Blocking : Transfer could not be completed properly and is aborted. + This concerns Overrun Error In Interrupt mode reception and all errors in DMA mode. + Error code is set to allow user to identify error type, and HAL_IRDA_ErrorCallback() user callback is executed. + +@endverbatim + * @{ + */ + +/** + * @brief Sends an amount of data in blocking mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be sent. + * @param Timeout Specify timeout value. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t *tmp; + uint32_t tickstart = 0U; + + /* Check that a Tx process is not already ongoing */ + if (hirda->gState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_BUSY_TX; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + while (hirda->TxXferCount > 0U) + { + hirda->TxXferCount--; + if (hirda->Init.WordLength == IRDA_WORDLENGTH_9B) + { + if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t *) pData; + hirda->Instance->DR = (*tmp & (uint16_t)0x01FF); + if (hirda->Init.Parity == IRDA_PARITY_NONE) + { + pData += 2U; + } + else + { + pData += 1U; + } + } + else + { + if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + hirda->Instance->DR = (*pData++ & (uint8_t)0xFF); + } + } + + if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + + /* At end of Tx process, restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in blocking mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @param Timeout Specify timeout value + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout) +{ + uint16_t *tmp; + uint32_t tickstart = 0U; + + /* Check that a Rx process is not already ongoing */ + if (hirda->RxState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->RxState = HAL_IRDA_STATE_BUSY_RX; + + /* Init tickstart for timeout managment*/ + tickstart = HAL_GetTick(); + + hirda->RxXferSize = Size; + hirda->RxXferCount = Size; + + /* Check the remain data to be received */ + while (hirda->RxXferCount > 0U) + { + hirda->RxXferCount--; + + if (hirda->Init.WordLength == IRDA_WORDLENGTH_9B) + { + if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + tmp = (uint16_t *) pData ; + if (hirda->Init.Parity == IRDA_PARITY_NONE) + { + *tmp = (uint16_t)(hirda->Instance->DR & (uint16_t)0x01FF); + pData += 2U; + } + else + { + *tmp = (uint16_t)(hirda->Instance->DR & (uint16_t)0x00FF); + pData += 1U; + } + } + else + { + if (IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK) + { + return HAL_TIMEOUT; + } + if (hirda->Init.Parity == IRDA_PARITY_NONE) + { + *pData++ = (uint8_t)(hirda->Instance->DR & (uint8_t)0x00FF); + } + else + { + *pData++ = (uint8_t)(hirda->Instance->DR & (uint8_t)0x007F); + } + } + } + + /* At end of Rx process, restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in non blocking mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be sent. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + /* Check that a Tx process is not already ongoing */ + if (hirda->gState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pTxBuffPtr = pData; + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_BUSY_TX; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the IRDA Transmit Data Register Empty Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_TXEIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receive an amount of data in non blocking mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + /* Check that a Rx process is not already ongoing */ + if (hirda->RxState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pRxBuffPtr = pData; + hirda->RxXferSize = Size; + hirda->RxXferCount = Size; + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->RxState = HAL_IRDA_STATE_BUSY_RX; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the IRDA Parity Error and Data Register Not Empty Interrupts */ + SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE | USART_CR1_RXNEIE); + + /* Enable the IRDA Error Interrupt: (Frame error, Noise error, Overrun error) */ + SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Send an amount of data in DMA mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the sent data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be sent. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + /* Check that a Tx process is not already ongoing */ + if (hirda->gState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pTxBuffPtr = pData; + hirda->TxXferSize = Size; + hirda->TxXferCount = Size; + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->gState = HAL_IRDA_STATE_BUSY_TX; + + /* Set the IRDA DMA transfer complete callback */ + hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt; + + /* Set the IRDA DMA half transfer complete callback */ + hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt; + + /* Set the DMA error callback */ + hirda->hdmatx->XferErrorCallback = IRDA_DMAError; + + /* Set the DMA abort callback */ + hirda->hdmatx->XferAbortCallback = NULL; + + /* Enable the IRDA transmit DMA channel */ + tmp = (uint32_t *)&pData; + HAL_DMA_Start_IT(hirda->hdmatx, *(uint32_t *)tmp, (uint32_t)&hirda->Instance->DR, Size); + + /* Clear the TC flag in the SR register by writing 0 to it */ + __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_FLAG_TC); + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the DMA transfer for transmit request by setting the DMAT bit + in the USART CR3 register */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Receives an amount of data in DMA mode. + * @note When UART parity is not enabled (PCE = 0), and Word Length is configured to 9 bits (M1-M0 = 01), + * the received data is handled as a set of u16. In this case, Size must reflect the number + * of u16 available through pData. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @param pData Pointer to data buffer (u8 or u16 data elements). + * @param Size Amount of data elements (u8 or u16) to be received. + * @note When the IRDA parity is enabled (PCE = 1) the data received contain the parity bit. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size) +{ + uint32_t *tmp; + + /* Check that a Rx process is not already ongoing */ + if (hirda->RxState == HAL_IRDA_STATE_READY) + { + if ((pData == NULL) || (Size == 0U)) + { + return HAL_ERROR; + } + + /* Process Locked */ + __HAL_LOCK(hirda); + + hirda->pRxBuffPtr = pData; + hirda->RxXferSize = Size; + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + hirda->RxState = HAL_IRDA_STATE_BUSY_RX; + + /* Set the IRDA DMA transfer complete callback */ + hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt; + + /* Set the IRDA DMA half transfer complete callback */ + hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt; + + /* Set the DMA error callback */ + hirda->hdmarx->XferErrorCallback = IRDA_DMAError; + + /* Set the DMA abort callback */ + hirda->hdmarx->XferAbortCallback = NULL; + + /* Enable the DMA channel */ + tmp = (uint32_t *)&pData; + HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->DR, *(uint32_t *)tmp, Size); + + /* Clear the Overrun flag just before enabling the DMA Rx request: can be mandatory for the second transfer */ + __HAL_IRDA_CLEAR_OREFLAG(hirda); + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + /* Enable the IRDA Parity Error Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + + /* Enable the IRDA Error Interrupt: (Frame error, Noise error, Overrun error) */ + SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Enable the DMA transfer for the receiver request by setting the DMAR bit + in the USART CR3 register */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Pauses the DMA Transfer. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda) +{ + uint32_t dmarequest = 0x00U; + + /* Process Locked */ + __HAL_LOCK(hirda); + + dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT); + if ((hirda->gState == HAL_IRDA_STATE_BUSY_TX) && dmarequest) + { + /* Disable the IRDA DMA Tx request */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + } + + dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR); + if ((hirda->RxState == HAL_IRDA_STATE_BUSY_RX) && dmarequest) + { + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Disable the IRDA DMA Rx request */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief Resumes the DMA Transfer. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda) +{ + /* Process Locked */ + __HAL_LOCK(hirda); + + if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) + { + /* Enable the IRDA DMA Tx request */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + } + + if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) + { + /* Clear the Overrun flag before resuming the Rx transfer */ + __HAL_IRDA_CLEAR_OREFLAG(hirda); + + /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */ + SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + SET_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Enable the IRDA DMA Rx request */ + SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + } + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_OK; +} + +/** + * @brief Stops the DMA Transfer. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda) +{ + uint32_t dmarequest = 0x00U; + /* The Lock is not implemented on this API to allow the user application + to call the HAL IRDA API under callbacks HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback(): + when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated + and the correspond call back is executed HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback() + */ + + /* Stop IRDA DMA Tx request if ongoing */ + dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT); + if ((hirda->gState == HAL_IRDA_STATE_BUSY_TX) && dmarequest) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Abort the IRDA DMA Tx channel */ + if (hirda->hdmatx != NULL) + { + HAL_DMA_Abort(hirda->hdmatx); + } + IRDA_EndTxTransfer(hirda); + } + + /* Stop IRDA DMA Rx request if ongoing */ + dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR); + if ((hirda->RxState == HAL_IRDA_STATE_BUSY_RX) && dmarequest) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel */ + if (hirda->hdmarx != NULL) + { + HAL_DMA_Abort(hirda->hdmarx); + } + IRDA_EndRxTransfer(hirda); + } + + return HAL_OK; +} + +/** + * @brief Abort ongoing transfers (blocking mode). + * @param hirda IRDA handle. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable PPP Interrupts + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status +*/ +HAL_StatusTypeDef HAL_IRDA_Abort(IRDA_HandleTypeDef *hirda) +{ + /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Disable the IRDA DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */ + if (hirda->hdmatx != NULL) + { + /* Set the IRDA DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hirda->hdmatx->XferAbortCallback = NULL; + + HAL_DMA_Abort(hirda->hdmatx); + } + } + + /* Disable the IRDA DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */ + if (hirda->hdmarx != NULL) + { + /* Set the IRDA DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hirda->hdmarx->XferAbortCallback = NULL; + + HAL_DMA_Abort(hirda->hdmarx); + } + } + + /* Reset Tx and Rx transfer counters */ + hirda->TxXferCount = 0x00U; + hirda->RxXferCount = 0x00U; + + /* Reset ErrorCode */ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + /* Restore hirda->RxState and hirda->gState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + hirda->gState = HAL_IRDA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Abort ongoing Transmit transfer (blocking mode). + * @param hirda IRDA handle. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable PPP Interrupts + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status +*/ +HAL_StatusTypeDef HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef *hirda) +{ + /* Disable TXEIE and TCIE interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); + + /* Disable the IRDA DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */ + if (hirda->hdmatx != NULL) + { + /* Set the IRDA DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hirda->hdmatx->XferAbortCallback = NULL; + + HAL_DMA_Abort(hirda->hdmatx); + } + } + + /* Reset Tx transfer counter */ + hirda->TxXferCount = 0x00U; + + /* Restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Abort ongoing Receive transfer (blocking mode). + * @param hirda IRDA handle. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable PPP Interrupts + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode) + * - Set handle State to READY + * @note This procedure is executed in blocking mode : when exiting function, Abort is considered as completed. + * @retval HAL status +*/ +HAL_StatusTypeDef HAL_IRDA_AbortReceive(IRDA_HandleTypeDef *hirda) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Disable the IRDA DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */ + if (hirda->hdmarx != NULL) + { + /* Set the IRDA DMA Abort callback to Null. + No call back execution at end of DMA abort procedure */ + hirda->hdmarx->XferAbortCallback = NULL; + + HAL_DMA_Abort(hirda->hdmarx); + } + } + + /* Reset Rx transfer counter */ + hirda->RxXferCount = 0x00U; + + /* Restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + return HAL_OK; +} + +/** + * @brief Abort ongoing transfers (Interrupt mode). + * @param hirda IRDA handle. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable PPP Interrupts + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status +*/ +HAL_StatusTypeDef HAL_IRDA_Abort_IT(IRDA_HandleTypeDef *hirda) +{ + uint32_t AbortCplt = 0x01U; + + /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* If DMA Tx and/or DMA Rx Handles are associated to IRDA Handle, DMA Abort complete callbacks should be initialised + before any call to DMA Abort functions */ + /* DMA Tx Handle is valid */ + if (hirda->hdmatx != NULL) + { + /* Set DMA Abort Complete callback if IRDA DMA Tx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + hirda->hdmatx->XferAbortCallback = IRDA_DMATxAbortCallback; + } + else + { + hirda->hdmatx->XferAbortCallback = NULL; + } + } + /* DMA Rx Handle is valid */ + if (hirda->hdmarx != NULL) + { + /* Set DMA Abort Complete callback if IRDA DMA Rx request if enabled. + Otherwise, set it to NULL */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + hirda->hdmarx->XferAbortCallback = IRDA_DMARxAbortCallback; + } + else + { + hirda->hdmarx->XferAbortCallback = NULL; + } + } + + /* Disable the IRDA DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + /* Disable DMA Tx at IRDA level */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */ + if (hirda->hdmatx != NULL) + { + /* IRDA Tx DMA Abort callback has already been initialised : + will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK) + { + hirda->hdmatx->XferAbortCallback = NULL; + } + else + { + AbortCplt = 0x00U; + } + } + } + + /* Disable the IRDA DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */ + if (hirda->hdmarx != NULL) + { + /* IRDA Rx DMA Abort callback has already been initialised : + will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK) + { + hirda->hdmarx->XferAbortCallback = NULL; + AbortCplt = 0x01U; + } + else + { + AbortCplt = 0x00U; + } + } + } + + /* if no DMA abort complete callback execution is required => call user Abort Complete callback */ + if (AbortCplt == 0x01U) + { + /* Reset Tx and Rx transfer counters */ + hirda->TxXferCount = 0x00U; + hirda->RxXferCount = 0x00U; + + /* Reset ErrorCode */ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + /* Restore hirda->gState and hirda->RxState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + hirda->RxState = HAL_IRDA_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + hirda->AbortCpltCallback(hirda); +#else + /* Call legacy weak Abort complete callback */ + HAL_IRDA_AbortCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + + return HAL_OK; +} + +/** + * @brief Abort ongoing Transmit transfer (Interrupt mode). + * @param hirda IRDA handle. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable IRDA Interrupts (Tx) + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status +*/ +HAL_StatusTypeDef HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef *hirda) +{ + /* Disable TXEIE and TCIE interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); + + /* Disable the IRDA DMA Tx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */ + if (hirda->hdmatx != NULL) + { + /* Set the IRDA DMA Abort callback : + will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ + hirda->hdmatx->XferAbortCallback = IRDA_DMATxOnlyAbortCallback; + + /* Abort DMA TX */ + if (HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK) + { + /* Call Directly hirda->hdmatx->XferAbortCallback function in case of error */ + hirda->hdmatx->XferAbortCallback(hirda->hdmatx); + } + } + else + { + /* Reset Tx transfer counter */ + hirda->TxXferCount = 0x00U; + + /* Restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + hirda->AbortTransmitCpltCallback(hirda); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_IRDA_AbortTransmitCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + } + else + { + /* Reset Tx transfer counter */ + hirda->TxXferCount = 0x00U; + + /* Restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + hirda->AbortTransmitCpltCallback(hirda); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_IRDA_AbortTransmitCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + + return HAL_OK; +} + +/** + * @brief Abort ongoing Receive transfer (Interrupt mode). + * @param hirda IRDA handle. + * @note This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. + * This procedure performs following operations : + * - Disable PPP Interrupts + * - Disable the DMA transfer in the peripheral register (if enabled) + * - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode) + * - Set handle State to READY + * - At abort completion, call user abort complete callback + * @note This procedure is executed in Interrupt mode, meaning that abort procedure could be + * considered as completed only when user abort complete callback is executed (not when exiting function). + * @retval HAL status +*/ +HAL_StatusTypeDef HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef *hirda) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Disable the IRDA DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */ + if (hirda->hdmarx != NULL) + { + /* Set the IRDA DMA Abort callback : + will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */ + hirda->hdmarx->XferAbortCallback = IRDA_DMARxOnlyAbortCallback; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK) + { + /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */ + hirda->hdmarx->XferAbortCallback(hirda->hdmarx); + } + } + else + { + /* Reset Rx transfer counter */ + hirda->RxXferCount = 0x00U; + + /* Restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + hirda->AbortReceiveCpltCallback(hirda); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_IRDA_AbortReceiveCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + } + else + { + /* Reset Rx transfer counter */ + hirda->RxXferCount = 0x00U; + + /* Restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + /* As no DMA to be aborted, call directly user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + hirda->AbortReceiveCpltCallback(hirda); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_IRDA_AbortReceiveCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + + return HAL_OK; +} + +/** + * @brief This function handles IRDA interrupt request. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda) +{ + uint32_t isrflags = READ_REG(hirda->Instance->SR); + uint32_t cr1its = READ_REG(hirda->Instance->CR1); + uint32_t cr3its = READ_REG(hirda->Instance->CR3); + uint32_t errorflags = 0x00U; + uint32_t dmarequest = 0x00U; + + /* If no error occurs */ + errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE)); + if (errorflags == RESET) + { + /* IRDA in mode Receiver -----------------------------------------------*/ + if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) + { + IRDA_Receive_IT(hirda); + return; + } + } + + /* If some errors occur */ + if ((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET) || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET))) + { + /* IRDA parity error interrupt occurred -------------------------------*/ + if (((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET)) + { + hirda->ErrorCode |= HAL_IRDA_ERROR_PE; + } + + /* IRDA noise error interrupt occurred --------------------------------*/ + if (((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + hirda->ErrorCode |= HAL_IRDA_ERROR_NE; + } + + /* IRDA frame error interrupt occurred --------------------------------*/ + if (((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + hirda->ErrorCode |= HAL_IRDA_ERROR_FE; + } + + /* IRDA Over-Run interrupt occurred -----------------------------------*/ + if (((isrflags & USART_SR_ORE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET)) + { + hirda->ErrorCode |= HAL_IRDA_ERROR_ORE; + } + /* Call IRDA Error Call back function if need be -----------------------*/ + if (hirda->ErrorCode != HAL_IRDA_ERROR_NONE) + { + /* IRDA in mode Receiver ---------------------------------------------*/ + if (((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET)) + { + IRDA_Receive_IT(hirda); + } + + /* If Overrun error occurs, or if any error occurs in DMA mode reception, + consider error as blocking */ + dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR); + if (((hirda->ErrorCode & HAL_IRDA_ERROR_ORE) != RESET) || dmarequest) + { + /* Blocking error : transfer is aborted + Set the IRDA state ready to be able to start again the process, + Disable Rx Interrupts, and disable Rx DMA request, if ongoing */ + IRDA_EndRxTransfer(hirda); + + /* Disable the IRDA DMA Rx request if enabled */ + if (HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR)) + { + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* Abort the IRDA DMA Rx channel */ + if (hirda->hdmarx != NULL) + { + /* Set the IRDA DMA Abort callback : + will lead to call HAL_IRDA_ErrorCallback() at end of DMA abort procedure */ + hirda->hdmarx->XferAbortCallback = IRDA_DMAAbortOnError; + + /* Abort DMA RX */ + if (HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK) + { + /* Call Directly XferAbortCallback function in case of error */ + hirda->hdmarx->XferAbortCallback(hirda->hdmarx); + } + } + else + { +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hirda->ErrorCallback(hirda); +#else + /* Call legacy weak user error callback */ + HAL_IRDA_ErrorCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + } + else + { +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hirda->ErrorCallback(hirda); +#else + /* Call legacy weak user error callback */ + HAL_IRDA_ErrorCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } + } + else + { + /* Non Blocking error : transfer could go on. + Error is notified to user through user error callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hirda->ErrorCallback(hirda); +#else + /* Call legacy weak user error callback */ + HAL_IRDA_ErrorCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + } + } + return; + } /* End if some error occurs */ + + /* IRDA in mode Transmitter ------------------------------------------------*/ + if (((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET)) + { + IRDA_Transmit_IT(hirda); + return; + } + + /* IRDA in mode Transmitter end --------------------------------------------*/ + if (((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET)) + { + IRDA_EndTransmit_IT(hirda); + return; + } +} + +/** + * @brief Tx Transfer complete callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_TxCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Tx Half Transfer completed callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified USART module. + * @retval None + */ +__weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_TxHalfCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Rx Transfer complete callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_RxCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief Rx Half Transfer complete callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_RxHalfCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief IRDA error callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_ErrorCallback can be implemented in the user file. + */ +} + +/** + * @brief IRDA Abort Complete callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_AbortCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief IRDA Abort Transmit Complete callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_AbortTransmitCpltCallback can be implemented in the user file. + */ +} + +/** + * @brief IRDA Abort Receive Complete callback. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +__weak void HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef *hirda) +{ + /* Prevent unused argument(s) compilation warning */ + UNUSED(hirda); + + /* NOTE : This function should not be modified, when the callback is needed, + the HAL_IRDA_AbortReceiveCpltCallback can be implemented in the user file. + */ +} + +/** + * @} + */ + +/** @defgroup IRDA_Exported_Functions_Group3 Peripheral State and Errors functions + * @brief IRDA State and Errors functions + * +@verbatim + ============================================================================== + ##### Peripheral State and Errors functions ##### + ============================================================================== + [..] + This subsection provides a set of functions allowing to return the State of IrDA + communication process and also return Peripheral Errors occurred during communication process + (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state of the IrDA peripheral. + (+) HAL_IRDA_GetError() check in run-time errors that could be occurred during communication. + +@endverbatim + * @{ + */ + +/** + * @brief Return the IRDA state. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA. + * @retval HAL state + */ +HAL_IRDA_StateTypeDef HAL_IRDA_GetState(IRDA_HandleTypeDef *hirda) +{ + uint32_t temp1 = 0x00U, temp2 = 0x00U; + temp1 = hirda->gState; + temp2 = hirda->RxState; + + return (HAL_IRDA_StateTypeDef)(temp1 | temp2); +} + +/** + * @brief Return the IRDA error code + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA. + * @retval IRDA Error Code + */ +uint32_t HAL_IRDA_GetError(IRDA_HandleTypeDef *hirda) +{ + return hirda->ErrorCode; +} + +/** + * @} + */ + +/** + * @} + */ + +/** @defgroup IRDA_Private_Functions IRDA Private Functions + * @{ + */ + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) +/** + * @brief Initialize the callbacks to their default values. + * @param hirda IRDA handle. + * @retval none + */ +void IRDA_InitCallbacksToDefault(IRDA_HandleTypeDef *hirda) +{ + /* Init the IRDA Callback settings */ + hirda->TxHalfCpltCallback = HAL_IRDA_TxHalfCpltCallback; /* Legacy weak TxHalfCpltCallback */ + hirda->TxCpltCallback = HAL_IRDA_TxCpltCallback; /* Legacy weak TxCpltCallback */ + hirda->RxHalfCpltCallback = HAL_IRDA_RxHalfCpltCallback; /* Legacy weak RxHalfCpltCallback */ + hirda->RxCpltCallback = HAL_IRDA_RxCpltCallback; /* Legacy weak RxCpltCallback */ + hirda->ErrorCallback = HAL_IRDA_ErrorCallback; /* Legacy weak ErrorCallback */ + hirda->AbortCpltCallback = HAL_IRDA_AbortCpltCallback; /* Legacy weak AbortCpltCallback */ + hirda->AbortTransmitCpltCallback = HAL_IRDA_AbortTransmitCpltCallback; /* Legacy weak AbortTransmitCpltCallback */ + hirda->AbortReceiveCpltCallback = HAL_IRDA_AbortReceiveCpltCallback; /* Legacy weak AbortReceiveCpltCallback */ + +} +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ + +/** + * @brief DMA IRDA transmit process complete callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA. + * @retval None + */ +static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + /* DMA Normal mode */ + if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) + { + hirda->TxXferCount = 0U; + + /* Disable the DMA transfer for transmit request by resetting the DMAT bit + in the IRDA CR3 register */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT); + + /* Enable the IRDA Transmit Complete Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE); + } + /* DMA Circular mode */ + else + { +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Tx complete callback */ + hirda->TxCpltCallback(hirda); +#else + /* Call legacy weak Tx complete callback */ + HAL_IRDA_TxCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + } +} + +/** + * @brief DMA IRDA receive process half complete callback + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA. + * @retval None + */ +static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Tx Half complete callback */ + hirda->TxHalfCpltCallback(hirda); +#else + /* Call legacy weak Tx complete callback */ + HAL_IRDA_TxHalfCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief DMA IRDA receive process complete callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA. + * @retval None + */ +static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* DMA Normal mode */ + if ((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U) + { + hirda->RxXferCount = 0U; + + /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Disable the DMA transfer for the receiver request by resetting the DMAR bit + in the IRDA CR3 register */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR); + + /* At end of Rx process, restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + } + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Rx complete callback */ + hirda->RxCpltCallback(hirda); +#else + /* Call legacy weak Rx complete callback */ + HAL_IRDA_RxCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ +} + +/** + * @brief DMA IRDA receive process half complete callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA. + * @retval None + */ +static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /*Call registered Rx Half complete callback*/ + hirda->RxHalfCpltCallback(hirda); +#else + /* Call legacy weak Rx Half complete callback */ + HAL_IRDA_RxHalfCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief DMA IRDA communication error callback. + * @param hdma Pointer to a DMA_HandleTypeDef structure that contains + * the configuration information for the specified DMA. + * @retval None + */ +static void IRDA_DMAError(DMA_HandleTypeDef *hdma) +{ + uint32_t dmarequest = 0x00U; + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + /* Stop IRDA DMA Tx request if ongoing */ + dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT); + if ((hirda->gState == HAL_IRDA_STATE_BUSY_TX) && dmarequest) + { + hirda->TxXferCount = 0U; + IRDA_EndTxTransfer(hirda); + } + + /* Stop IRDA DMA Rx request if ongoing */ + dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR); + if ((hirda->RxState == HAL_IRDA_STATE_BUSY_RX) && dmarequest) + { + hirda->RxXferCount = 0U; + IRDA_EndRxTransfer(hirda); + } + + hirda->ErrorCode |= HAL_IRDA_ERROR_DMA; + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hirda->ErrorCallback(hirda); +#else + /* Call legacy weak user error callback */ + HAL_IRDA_ErrorCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief This function handles IRDA Communication Timeout. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA. + * @param Flag specifies the IRDA flag to check. + * @param Status The new Flag status (SET or RESET). + * @param Tickstart Tick start value + * @param Timeout Timeout duration + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout) +{ + /* Wait until flag is set */ + while ((__HAL_IRDA_GET_FLAG(hirda, Flag) ? SET : RESET) == Status) + { + /* Check for the Timeout */ + if (Timeout != HAL_MAX_DELAY) + { + if ((Timeout == 0U) || ((HAL_GetTick() - Tickstart) > Timeout)) + { + /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + hirda->gState = HAL_IRDA_STATE_READY; + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Process Unlocked */ + __HAL_UNLOCK(hirda); + + return HAL_TIMEOUT; + } + } + } + return HAL_OK; +} + +/** + * @brief End ongoing Tx transfer on IRDA peripheral (following error detection or Transmit completion). + * @param hirda IRDA handle. + * @retval None + */ +static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda) +{ + /* Disable TXEIE and TCIE interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE)); + + /* At end of Tx process, restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; +} + +/** + * @brief End ongoing Rx transfer on IRDA peripheral (following error detection or Reception completion). + * @param hirda IRDA handle. + * @retval None + */ +static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda) +{ + /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE)); + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* At end of Rx process, restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; +} + +/** + * @brief DMA IRDA communication abort callback, when initiated by HAL services on Error + * (To be called at end of DMA Abort procedure following error occurrence). + * @param hdma DMA handle. + * @retval None + */ +static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + hirda->RxXferCount = 0x00U; + hirda->TxXferCount = 0x00U; + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered user error callback */ + hirda->ErrorCallback(hirda); +#else + /* Call legacy weak user error callback */ + HAL_IRDA_ErrorCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief DMA IRDA Tx communication abort callback, when initiated by user + * (To be called at end of DMA Tx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Rx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hirda->hdmatx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (hirda->hdmarx != NULL) + { + if (hirda->hdmarx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ + hirda->TxXferCount = 0x00U; + hirda->RxXferCount = 0x00U; + + /* Reset ErrorCode */ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + /* Restore hirda->gState and hirda->RxState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + hirda->AbortCpltCallback(hirda); +#else + /* Call legacy weak Abort complete callback */ + HAL_IRDA_AbortCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief DMA IRDA Rx communication abort callback, when initiated by user + * (To be called at end of DMA Rx Abort procedure following user abort request). + * @note When this callback is executed, User Abort complete call back is called only if no + * Abort still ongoing for Tx DMA Handle. + * @param hdma DMA handle. + * @retval None + */ +static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hirda->hdmarx->XferAbortCallback = NULL; + + /* Check if an Abort process is still ongoing */ + if (hirda->hdmatx != NULL) + { + if (hirda->hdmatx->XferAbortCallback != NULL) + { + return; + } + } + + /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */ + hirda->TxXferCount = 0x00U; + hirda->RxXferCount = 0x00U; + + /* Reset ErrorCode */ + hirda->ErrorCode = HAL_IRDA_ERROR_NONE; + + /* Restore hirda->gState and hirda->RxState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort complete callback */ + hirda->AbortCpltCallback(hirda); +#else + /* Call legacy weak Abort complete callback */ + HAL_IRDA_AbortCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief DMA IRDA Tx communication abort callback, when initiated by user by a call to + * HAL_IRDA_AbortTransmit_IT API (Abort only Tx transfer) + * (This callback is executed at end of DMA Tx Abort procedure following user abort request, + * and leads to user Tx Abort Complete callback execution). + * @param hdma DMA handle. + * @retval None + */ +static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hirda->TxXferCount = 0x00U; + + /* Restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Transmit Complete Callback */ + hirda->AbortTransmitCpltCallback(hirda); +#else + /* Call legacy weak Abort Transmit Complete Callback */ + HAL_IRDA_AbortTransmitCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief DMA IRDA Rx communication abort callback, when initiated by user by a call to + * HAL_IRDA_AbortReceive_IT API (Abort only Rx transfer) + * (This callback is executed at end of DMA Rx Abort procedure following user abort request, + * and leads to user Rx Abort Complete callback execution). + * @param hdma DMA handle. + * @retval None + */ +static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma) +{ + IRDA_HandleTypeDef *hirda = (IRDA_HandleTypeDef *)((DMA_HandleTypeDef *)hdma)->Parent; + + hirda->RxXferCount = 0x00U; + + /* Restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + + /* Call user Abort complete callback */ +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Abort Receive Complete Callback */ + hirda->AbortReceiveCpltCallback(hirda); +#else + /* Call legacy weak Abort Receive Complete Callback */ + HAL_IRDA_AbortReceiveCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ +} + +/** + * @brief Send an amount of data in non blocking mode. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda) +{ + uint16_t *tmp; + + /* Check that a Tx process is ongoing */ + if (hirda->gState == HAL_IRDA_STATE_BUSY_TX) + { + if (hirda->Init.WordLength == IRDA_WORDLENGTH_9B) + { + tmp = (uint16_t *) hirda->pTxBuffPtr; + hirda->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF); + if (hirda->Init.Parity == IRDA_PARITY_NONE) + { + hirda->pTxBuffPtr += 2U; + } + else + { + hirda->pTxBuffPtr += 1U; + } + } + else + { + hirda->Instance->DR = (uint8_t)(*hirda->pTxBuffPtr++ & (uint8_t)0x00FF); + } + + if (--hirda->TxXferCount == 0U) + { + /* Disable the IRDA Transmit Data Register Empty Interrupt */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TXEIE); + + /* Enable the IRDA Transmit Complete Interrupt */ + SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE); + } + + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Wraps up transmission in non blocking mode. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda) +{ + /* Disable the IRDA Transmit Complete Interrupt */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TCIE); + + /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Tx process is ended, restore hirda->gState to Ready */ + hirda->gState = HAL_IRDA_STATE_READY; + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Tx complete callback */ + hirda->TxCpltCallback(hirda); +#else + /* Call legacy weak Tx complete callback */ + HAL_IRDA_TxCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACK */ + + return HAL_OK; +} + +/** + * @brief Receives an amount of data in non blocking mode. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval HAL status + */ +static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda) +{ + uint16_t *tmp; + uint16_t uhdata; + + /* Check that a Rx process is ongoing */ + if (hirda->RxState == HAL_IRDA_STATE_BUSY_RX) + { + uhdata = (uint16_t) READ_REG(hirda->Instance->DR); + if (hirda->Init.WordLength == IRDA_WORDLENGTH_9B) + { + tmp = (uint16_t *) hirda->pRxBuffPtr; + if (hirda->Init.Parity == IRDA_PARITY_NONE) + { + *tmp = (uint16_t)(uhdata & (uint16_t)0x01FF); + hirda->pRxBuffPtr += 2U; + } + else + { + *tmp = (uint16_t)(uhdata & (uint16_t)0x00FF); + hirda->pRxBuffPtr += 1U; + } + } + else + { + if (hirda->Init.Parity == IRDA_PARITY_NONE) + { + *hirda->pRxBuffPtr++ = (uint8_t)(uhdata & (uint8_t)0x00FF); + } + else + { + *hirda->pRxBuffPtr++ = (uint8_t)(uhdata & (uint8_t)0x007F); + } + } + + if (--hirda->RxXferCount == 0U) + { + /* Disable the IRDA Data Register not empty Interrupt */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_RXNEIE); + + /* Disable the IRDA Parity Error Interrupt */ + CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE); + + /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */ + CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE); + + /* Rx process is completed, restore hirda->RxState to Ready */ + hirda->RxState = HAL_IRDA_STATE_READY; + +#if (USE_HAL_IRDA_REGISTER_CALLBACKS == 1) + /* Call registered Rx complete callback */ + hirda->RxCpltCallback(hirda); +#else + /* Call legacy weak Rx complete callback */ + HAL_IRDA_RxCpltCallback(hirda); +#endif /* USE_HAL_IRDA_REGISTER_CALLBACKS */ + + return HAL_OK; + } + return HAL_OK; + } + else + { + return HAL_BUSY; + } +} + +/** + * @brief Configures the IRDA peripheral. + * @param hirda Pointer to a IRDA_HandleTypeDef structure that contains + * the configuration information for the specified IRDA module. + * @retval None + */ +static void IRDA_SetConfig(IRDA_HandleTypeDef *hirda) +{ + uint32_t pclk; + + /* Check the parameters */ + assert_param(IS_IRDA_INSTANCE(hirda->Instance)); + assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate)); + assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength)); + assert_param(IS_IRDA_PARITY(hirda->Init.Parity)); + assert_param(IS_IRDA_MODE(hirda->Init.Mode)); + assert_param(IS_IRDA_POWERMODE(hirda->Init.IrDAMode)); + + /*-------------------------- USART CR2 Configuration ------------------------*/ + /* Clear STOP[13:12] bits */ + CLEAR_BIT(hirda->Instance->CR2, USART_CR2_STOP); + + /*-------------------------- USART CR1 Configuration -----------------------*/ + /* Clear M, PCE, PS, TE and RE bits */ + CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE)); + + /* Configure the USART Word Length, Parity and mode: + Set the M bits according to hirda->Init.WordLength value + Set PCE and PS bits according to hirda->Init.Parity value + Set TE and RE bits according to hirda->Init.Mode value */ + /* Write to USART CR1 */ + SET_BIT(hirda->Instance->CR1, (hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode)); + + /*-------------------------- USART CR3 Configuration -----------------------*/ + /* Clear CTSE and RTSE bits */ + CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_RTSE | USART_CR3_CTSE)); + + /*-------------------------- USART BRR Configuration -----------------------*/ + if(hirda->Instance == USART1) + { + pclk = HAL_RCC_GetPCLK2Freq(); + SET_BIT(hirda->Instance->BRR, IRDA_BRR(pclk, hirda->Init.BaudRate)); + } + else + { + pclk = HAL_RCC_GetPCLK1Freq(); + SET_BIT(hirda->Instance->BRR, IRDA_BRR(pclk, hirda->Init.BaudRate)); + } +} + +/** + * @} + */ + +#endif /* HAL_IRDA_MODULE_ENABLED */ +/** + * @} + */ + +/** + * @} + */ + +/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ -- Gitblit v1.9.1