From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Board/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_nand.c | 2305 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 2,305 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Board/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_nand.c b/mcu_sdk/gd32f103/rk_eFire/Board/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_nand.c
new file mode 100644
index 0000000..a110098
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Board/STM32F1xx_HAL_Driver/Src/stm32f1xx_hal_nand.c
@@ -0,0 +1,2305 @@
+/**
+  ******************************************************************************
+  * @file    stm32f1xx_hal_nand.c
+  * @author  MCD Application Team
+  * @brief   NAND HAL module driver.
+  *          This file provides a generic firmware to drive NAND memories mounted
+  *          as external device.
+  *
+  @verbatim
+  ==============================================================================
+                         ##### How to use this driver #####
+  ==============================================================================
+    [..]
+      This driver is a generic layered driver which contains a set of APIs used to
+      control NAND flash memories. It uses the FSMC layer functions to interface
+      with NAND devices. This driver is used as follows:
+
+      (+) NAND flash memory configuration sequence using the function HAL_NAND_Init()
+          with control and timing parameters for both common and attribute spaces.
+
+      (+) Read NAND flash memory maker and device IDs using the function
+          HAL_NAND_Read_ID(). The read information is stored in the NAND_ID_TypeDef
+          structure declared by the function caller.
+
+      (+) Access NAND flash memory by read/write operations using the functions
+          HAL_NAND_Read_Page_8b()/HAL_NAND_Read_SpareArea_8b(),
+          HAL_NAND_Write_Page_8b()/HAL_NAND_Write_SpareArea_8b(),
+          HAL_NAND_Read_Page_16b()/HAL_NAND_Read_SpareArea_16b(),
+          HAL_NAND_Write_Page_16b()/HAL_NAND_Write_SpareArea_16b()
+          to read/write page(s)/spare area(s). These functions use specific device
+          information (Block, page size..) predefined by the user in the NAND_DeviceConfigTypeDef
+          structure. The read/write address information is contained by the Nand_Address_Typedef
+          structure passed as parameter.
+
+      (+) Perform NAND flash Reset chip operation using the function HAL_NAND_Reset().
+
+      (+) Perform NAND flash erase block operation using the function HAL_NAND_Erase_Block().
+          The erase block address information is contained in the Nand_Address_Typedef
+          structure passed as parameter.
+
+      (+) Read the NAND flash status operation using the function HAL_NAND_Read_Status().
+
+      (+) You can also control the NAND device by calling the control APIs HAL_NAND_ECC_Enable()/
+          HAL_NAND_ECC_Disable() to respectively enable/disable the ECC code correction
+          feature or the function HAL_NAND_GetECC() to get the ECC correction code.
+
+      (+) You can monitor the NAND device HAL state by calling the function
+          HAL_NAND_GetState()
+
+    [..]
+      (@) This driver is a set of generic APIs which handle standard NAND flash operations.
+          If a NAND flash device contains different operations and/or implementations,
+          it should be implemented separately.
+
+    *** Callback registration ***
+    =============================================
+    [..]
+      The compilation define  USE_HAL_NAND_REGISTER_CALLBACKS when set to 1
+      allows the user to configure dynamically the driver callbacks.
+
+      Use Functions @ref HAL_NAND_RegisterCallback() to register a user callback,
+      it allows to register following callbacks:
+        (+) MspInitCallback    : NAND MspInit.
+        (+) MspDeInitCallback  : NAND MspDeInit.
+      This function takes as parameters the HAL peripheral handle, the Callback ID
+      and a pointer to the user callback function.
+
+      Use function @ref HAL_NAND_UnRegisterCallback() to reset a callback to the default
+      weak (surcharged) function. It allows to reset following callbacks:
+        (+) MspInitCallback    : NAND MspInit.
+        (+) MspDeInitCallback  : NAND MspDeInit.
+      This function) takes as parameters the HAL peripheral handle and the Callback ID.
+
+      By default, after the @ref HAL_NAND_Init and if the state is HAL_NAND_STATE_RESET
+      all callbacks are reset to the corresponding legacy weak (surcharged) functions.
+      Exception done for MspInit and MspDeInit callbacks that are respectively
+      reset to the legacy weak (surcharged) functions in the @ref HAL_NAND_Init
+      and @ref  HAL_NAND_DeInit only when these callbacks are null (not registered beforehand).
+      If not, MspInit or MspDeInit are not null, the @ref HAL_NAND_Init and @ref HAL_NAND_DeInit
+      keep and use the user MspInit/MspDeInit callbacks (registered beforehand)
+
+      Callbacks can be registered/unregistered in READY state only.
+      Exception done for MspInit/MspDeInit callbacks that can be registered/unregistered
+      in READY or RESET state, thus registered (user) MspInit/DeInit callbacks can be used
+      during the Init/DeInit.
+      In that case first register the MspInit/MspDeInit user callbacks
+      using @ref HAL_NAND_RegisterCallback before calling @ref HAL_NAND_DeInit
+      or @ref HAL_NAND_Init function.
+
+      When The compilation define USE_HAL_NAND_REGISTER_CALLBACKS is set to 0 or
+      not defined, the callback registering feature is not available
+      and weak (surcharged) callbacks are used.
+
+  @endverbatim
+  ******************************************************************************
+  * @attention
+  *
+  * <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
+  * All rights reserved.</center></h2>
+  *
+  * This software component is licensed by ST under BSD 3-Clause license,
+  * the "License"; You may not use this file except in compliance with the
+  * License. You may obtain a copy of the License at:
+  *                       opensource.org/licenses/BSD-3-Clause
+  *
+  ******************************************************************************
+  */
+
+/* Includes ------------------------------------------------------------------*/
+#include "stm32f1xx_hal.h"
+
+#if defined(FSMC_BANK3)
+
+/** @addtogroup STM32F1xx_HAL_Driver
+  * @{
+  */
+
+#ifdef HAL_NAND_MODULE_ENABLED
+
+/** @defgroup NAND NAND
+  * @brief NAND HAL module driver
+  * @{
+  */
+
+/* Private typedef -----------------------------------------------------------*/
+/* Private Constants ------------------------------------------------------------*/
+/* Private macro -------------------------------------------------------------*/
+/* Private variables ---------------------------------------------------------*/
+/* Private function prototypes -----------------------------------------------*/
+/* Exported functions ---------------------------------------------------------*/
+
+/** @defgroup NAND_Exported_Functions NAND Exported Functions
+  * @{
+  */
+
+/** @defgroup NAND_Exported_Functions_Group1 Initialization and de-initialization functions
+  * @brief    Initialization and Configuration functions
+  *
+  @verbatim
+  ==============================================================================
+            ##### NAND Initialization and de-initialization functions #####
+  ==============================================================================
+  [..]
+    This section provides functions allowing to initialize/de-initialize
+    the NAND memory
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Perform NAND memory Initialization sequence
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  ComSpace_Timing pointer to Common space timing structure
+  * @param  AttSpace_Timing pointer to Attribute space timing structure
+  * @retval HAL status
+  */
+HAL_StatusTypeDef  HAL_NAND_Init(NAND_HandleTypeDef *hnand, FSMC_NAND_PCC_TimingTypeDef *ComSpace_Timing,
+                                 FSMC_NAND_PCC_TimingTypeDef *AttSpace_Timing)
+{
+  /* Check the NAND handle state */
+  if (hnand == NULL)
+  {
+    return HAL_ERROR;
+  }
+
+  if (hnand->State == HAL_NAND_STATE_RESET)
+  {
+    /* Allocate lock resource and initialize it */
+    hnand->Lock = HAL_UNLOCKED;
+
+#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
+    if (hnand->MspInitCallback == NULL)
+    {
+      hnand->MspInitCallback = HAL_NAND_MspInit;
+    }
+    hnand->ItCallback = HAL_NAND_ITCallback;
+
+    /* Init the low level hardware */
+    hnand->MspInitCallback(hnand);
+#else
+    /* Initialize the low level hardware (MSP) */
+    HAL_NAND_MspInit(hnand);
+#endif
+  }
+
+  /* Initialize NAND control Interface */
+  (void)FSMC_NAND_Init(hnand->Instance, &(hnand->Init));
+
+  /* Initialize NAND common space timing Interface */
+  (void)FSMC_NAND_CommonSpace_Timing_Init(hnand->Instance, ComSpace_Timing, hnand->Init.NandBank);
+
+  /* Initialize NAND attribute space timing Interface */
+  (void)FSMC_NAND_AttributeSpace_Timing_Init(hnand->Instance, AttSpace_Timing, hnand->Init.NandBank);
+
+  /* Enable the NAND device */
+  __FSMC_NAND_ENABLE(hnand->Instance, hnand->Init.NandBank);
+
+  /* Update the NAND controller state */
+  hnand->State = HAL_NAND_STATE_READY;
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Perform NAND memory De-Initialization sequence
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_DeInit(NAND_HandleTypeDef *hnand)
+{
+#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
+  if (hnand->MspDeInitCallback == NULL)
+  {
+    hnand->MspDeInitCallback = HAL_NAND_MspDeInit;
+  }
+
+  /* DeInit the low level hardware */
+  hnand->MspDeInitCallback(hnand);
+#else
+  /* Initialize the low level hardware (MSP) */
+  HAL_NAND_MspDeInit(hnand);
+#endif
+
+  /* Configure the NAND registers with their reset values */
+  (void)FSMC_NAND_DeInit(hnand->Instance, hnand->Init.NandBank);
+
+  /* Reset the NAND controller state */
+  hnand->State = HAL_NAND_STATE_RESET;
+
+  /* Release Lock */
+  __HAL_UNLOCK(hnand);
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  NAND MSP Init
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval None
+  */
+__weak void HAL_NAND_MspInit(NAND_HandleTypeDef *hnand)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hnand);
+
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_NAND_MspInit could be implemented in the user file
+   */
+}
+
+/**
+  * @brief  NAND MSP DeInit
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval None
+  */
+__weak void HAL_NAND_MspDeInit(NAND_HandleTypeDef *hnand)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hnand);
+
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_NAND_MspDeInit could be implemented in the user file
+   */
+}
+
+
+/**
+  * @brief  This function handles NAND device interrupt request.
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL status
+  */
+void HAL_NAND_IRQHandler(NAND_HandleTypeDef *hnand)
+{
+  /* Check NAND interrupt Rising edge flag */
+  if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_RISING_EDGE))
+  {
+    /* NAND interrupt callback*/
+#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
+    hnand->ItCallback(hnand);
+#else
+    HAL_NAND_ITCallback(hnand);
+#endif
+
+    /* Clear NAND interrupt Rising edge pending bit */
+    __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_RISING_EDGE);
+  }
+
+  /* Check NAND interrupt Level flag */
+  if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_LEVEL))
+  {
+    /* NAND interrupt callback*/
+#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
+    hnand->ItCallback(hnand);
+#else
+    HAL_NAND_ITCallback(hnand);
+#endif
+
+    /* Clear NAND interrupt Level pending bit */
+    __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_LEVEL);
+  }
+
+  /* Check NAND interrupt Falling edge flag */
+  if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FALLING_EDGE))
+  {
+    /* NAND interrupt callback*/
+#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
+    hnand->ItCallback(hnand);
+#else
+    HAL_NAND_ITCallback(hnand);
+#endif
+
+    /* Clear NAND interrupt Falling edge pending bit */
+    __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FALLING_EDGE);
+  }
+
+  /* Check NAND interrupt FIFO empty flag */
+  if (__FSMC_NAND_GET_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FEMPT))
+  {
+    /* NAND interrupt callback*/
+#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
+    hnand->ItCallback(hnand);
+#else
+    HAL_NAND_ITCallback(hnand);
+#endif
+
+    /* Clear NAND interrupt FIFO empty pending bit */
+    __FSMC_NAND_CLEAR_FLAG(hnand->Instance, hnand->Init.NandBank, FSMC_FLAG_FEMPT);
+  }
+
+}
+
+/**
+  * @brief  NAND interrupt feature callback
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval None
+  */
+__weak void HAL_NAND_ITCallback(NAND_HandleTypeDef *hnand)
+{
+  /* Prevent unused argument(s) compilation warning */
+  UNUSED(hnand);
+
+  /* NOTE : This function Should not be modified, when the callback is needed,
+            the HAL_NAND_ITCallback could be implemented in the user file
+   */
+}
+
+/**
+  * @}
+  */
+
+/** @defgroup NAND_Exported_Functions_Group2 Input and Output functions
+  * @brief    Input Output and memory control functions
+  *
+  @verbatim
+  ==============================================================================
+                    ##### NAND Input and Output functions #####
+  ==============================================================================
+  [..]
+    This section provides functions allowing to use and control the NAND
+    memory
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  Read the NAND memory electronic signature
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pNAND_ID NAND ID structure
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Read_ID(NAND_HandleTypeDef *hnand, NAND_IDTypeDef *pNAND_ID)
+{
+  __IO uint32_t data = 0;
+  __IO uint32_t data1 = 0;
+  uint32_t deviceaddress;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hnand);
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Identify the device address */
+    if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+    {
+      deviceaddress = NAND_DEVICE1;
+    }
+    else
+    {
+      deviceaddress = NAND_DEVICE2;
+    }
+
+    /* Send Read ID command sequence */
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA))  = NAND_CMD_READID;
+    __DSB();
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00;
+    __DSB();
+
+    /* Read the electronic signature from NAND flash */
+    if (hnand->Init.MemoryDataWidth == FSMC_NAND_PCC_MEM_BUS_WIDTH_8)
+    {
+      data = *(__IO uint32_t *)deviceaddress;
+
+      /* Return the data read */
+      pNAND_ID->Maker_Id   = ADDR_1ST_CYCLE(data);
+      pNAND_ID->Device_Id  = ADDR_2ND_CYCLE(data);
+      pNAND_ID->Third_Id   = ADDR_3RD_CYCLE(data);
+      pNAND_ID->Fourth_Id  = ADDR_4TH_CYCLE(data);
+    }
+    else
+    {
+      data = *(__IO uint32_t *)deviceaddress;
+      data1 = *((__IO uint32_t *)deviceaddress + 4);
+
+      /* Return the data read */
+      pNAND_ID->Maker_Id   = ADDR_1ST_CYCLE(data);
+      pNAND_ID->Device_Id  = ADDR_3RD_CYCLE(data);
+      pNAND_ID->Third_Id   = ADDR_1ST_CYCLE(data1);
+      pNAND_ID->Fourth_Id  = ADDR_3RD_CYCLE(data1);
+    }
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_READY;
+
+    /* Process unlocked */
+    __HAL_UNLOCK(hnand);
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  NAND memory reset
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Reset(NAND_HandleTypeDef *hnand)
+{
+  uint32_t deviceaddress;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hnand);
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Identify the device address */
+    if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+    {
+      deviceaddress = NAND_DEVICE1;
+    }
+    else
+    {
+      deviceaddress = NAND_DEVICE2;
+    }
+
+    /* Send NAND reset command */
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = 0xFF;
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_READY;
+
+    /* Process unlocked */
+    __HAL_UNLOCK(hnand);
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+
+}
+
+/**
+  * @brief  Configure the device: Enter the physical parameters of the device
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pDeviceConfig  pointer to NAND_DeviceConfigTypeDef structure
+  * @retval HAL status
+  */
+HAL_StatusTypeDef  HAL_NAND_ConfigDevice(NAND_HandleTypeDef *hnand, NAND_DeviceConfigTypeDef *pDeviceConfig)
+{
+  hnand->Config.PageSize           = pDeviceConfig->PageSize;
+  hnand->Config.SpareAreaSize      = pDeviceConfig->SpareAreaSize;
+  hnand->Config.BlockSize          = pDeviceConfig->BlockSize;
+  hnand->Config.BlockNbr           = pDeviceConfig->BlockNbr;
+  hnand->Config.PlaneSize          = pDeviceConfig->PlaneSize;
+  hnand->Config.PlaneNbr           = pDeviceConfig->PlaneNbr;
+  hnand->Config.ExtraCommandEnable = pDeviceConfig->ExtraCommandEnable;
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Read Page(s) from NAND memory block (8-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to destination read buffer
+  * @param  NumPageToRead  number of pages to read from block
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Read_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer,
+                                        uint32_t NumPageToRead)
+{
+  uint32_t index;
+  uint32_t tickstart;
+  uint32_t deviceaddress;
+  uint32_t numpagesread = 0U;
+  uint32_t nandaddress;
+  uint32_t nbpages = NumPageToRead;
+  uint8_t *buff = pBuffer;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hnand);
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Identify the device address */
+    if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+    {
+      deviceaddress = NAND_DEVICE1;
+    }
+    else
+    {
+      deviceaddress = NAND_DEVICE2;
+    }
+
+    /* NAND raw address calculation */
+    nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+
+    /* Page(s) read loop */
+    while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+    {
+      /* Send read page command sequence */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+      __DSB();
+
+      /* Cards with page size <= 512 bytes */
+      if ((hnand->Config.PageSize) <= 512U)
+      {
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+      else /* (hnand->Config.PageSize) > 512 */
+      {
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA))  = NAND_CMD_AREA_TRUE1;
+      __DSB();
+
+
+      if (hnand->Config.ExtraCommandEnable == ENABLE)
+      {
+        /* Get tick */
+        tickstart = HAL_GetTick();
+
+        /* Read status until NAND is ready */
+        while (HAL_NAND_Read_Status(hnand) != NAND_READY)
+        {
+          if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
+          {
+            /* Update the NAND controller state */
+            hnand->State = HAL_NAND_STATE_ERROR;
+
+            /* Process unlocked */
+            __HAL_UNLOCK(hnand);
+
+            return HAL_TIMEOUT;
+          }
+        }
+
+        /* Go back to read mode */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00);
+        __DSB();
+      }
+
+      /* Get Data into Buffer */
+      for (index = 0U; index < hnand->Config.PageSize; index++)
+      {
+        *buff = *(uint8_t *)deviceaddress;
+        buff++;
+      }
+
+      /* Increment read pages number */
+      numpagesread++;
+
+      /* Decrement pages to read */
+      nbpages--;
+
+      /* Increment the NAND address */
+      nandaddress = (uint32_t)(nandaddress + 1U);
+    }
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_READY;
+
+    /* Process unlocked */
+    __HAL_UNLOCK(hnand);
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Read Page(s) from NAND memory block (16-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to destination read buffer. pBuffer should be 16bits aligned
+  * @param  NumPageToRead  number of pages to read from block
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Read_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer,
+                                         uint32_t NumPageToRead)
+{
+  uint32_t index;
+  uint32_t tickstart;
+  uint32_t deviceaddress;
+  uint32_t numpagesread = 0;
+  uint32_t nandaddress;
+  uint32_t nbpages = NumPageToRead;
+  uint16_t *buff = pBuffer;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hnand);
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Identify the device address */
+    if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+    {
+      deviceaddress = NAND_DEVICE1;
+    }
+    else
+    {
+      deviceaddress = NAND_DEVICE2;
+    }
+
+    /* NAND raw address calculation */
+    nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+
+    /* Page(s) read loop */
+    while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+    {
+      /* Send read page command sequence */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+      __DSB();
+
+      /* Cards with page size <= 512 bytes */
+      if ((hnand->Config.PageSize) <= 512U)
+      {
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+      else /* (hnand->Config.PageSize) > 512 */
+      {
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA))  = NAND_CMD_AREA_TRUE1;
+      __DSB();
+
+      if (hnand->Config.ExtraCommandEnable == ENABLE)
+      {
+        /* Get tick */
+        tickstart = HAL_GetTick();
+
+        /* Read status until NAND is ready */
+        while (HAL_NAND_Read_Status(hnand) != NAND_READY)
+        {
+          if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
+          {
+            /* Update the NAND controller state */
+            hnand->State = HAL_NAND_STATE_ERROR;
+
+            /* Process unlocked */
+            __HAL_UNLOCK(hnand);
+
+            return HAL_TIMEOUT;
+          }
+        }
+
+        /* Go back to read mode */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00);
+        __DSB();
+      }
+
+      /* Get Data into Buffer */
+      for (index = 0U; index < hnand->Config.PageSize; index++)
+      {
+        *buff = *(uint16_t *)deviceaddress;
+        buff++;
+      }
+
+      /* Increment read pages number */
+      numpagesread++;
+
+      /* Decrement pages to read */
+      nbpages--;
+
+      /* Increment the NAND address */
+      nandaddress = (uint32_t)(nandaddress + 1U);
+    }
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_READY;
+
+    /* Process unlocked */
+    __HAL_UNLOCK(hnand);
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Write Page(s) to NAND memory block (8-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to source buffer to write
+  * @param  NumPageToWrite   number of pages to write to block
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Write_Page_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer,
+                                         uint32_t NumPageToWrite)
+{
+  uint32_t index;
+  uint32_t tickstart;
+  uint32_t deviceaddress;
+  uint32_t numpageswritten = 0;
+  uint32_t nandaddress;
+  uint32_t nbpages = NumPageToWrite;
+  uint8_t *buff = pBuffer;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hnand);
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Identify the device address */
+    if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+    {
+      deviceaddress = NAND_DEVICE1;
+    }
+    else
+    {
+      deviceaddress = NAND_DEVICE2;
+    }
+
+    /* NAND raw address calculation */
+    nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+
+    /* Page(s) write loop */
+    while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+    {
+      /* Send write page command sequence */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+      __DSB();
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+      __DSB();
+
+      /* Cards with page size <= 512 bytes */
+      if ((hnand->Config.PageSize) <= 512U)
+      {
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+      else /* (hnand->Config.PageSize) > 512 */
+      {
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+
+      /* Write data to memory */
+      for (index = 0U; index < hnand->Config.PageSize; index++)
+      {
+        *(__IO uint8_t *)deviceaddress = *buff;
+        buff++;
+        __DSB();
+      }
+
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
+      __DSB();
+
+      /* Get tick */
+      tickstart = HAL_GetTick();
+
+      /* Read status until NAND is ready */
+      while (HAL_NAND_Read_Status(hnand) != NAND_READY)
+      {
+        if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
+        {
+          /* Update the NAND controller state */
+          hnand->State = HAL_NAND_STATE_ERROR;
+
+          /* Process unlocked */
+          __HAL_UNLOCK(hnand);
+
+          return HAL_TIMEOUT;
+        }
+      }
+
+      /* Increment written pages number */
+      numpageswritten++;
+
+      /* Decrement pages to write */
+      nbpages--;
+
+      /* Increment the NAND address */
+      nandaddress = (uint32_t)(nandaddress + 1U);
+    }
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_READY;
+
+    /* Process unlocked */
+    __HAL_UNLOCK(hnand);
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Write Page(s) to NAND memory block (16-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to source buffer to write. pBuffer should be 16bits aligned
+  * @param  NumPageToWrite   number of pages to write to block
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Write_Page_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint16_t *pBuffer,
+                                          uint32_t NumPageToWrite)
+{
+  uint32_t index;
+  uint32_t tickstart;
+  uint32_t deviceaddress;
+  uint32_t numpageswritten = 0;
+  uint32_t nandaddress;
+  uint32_t nbpages = NumPageToWrite;
+  uint16_t *buff = pBuffer;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hnand);
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Identify the device address */
+    if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+    {
+      deviceaddress = NAND_DEVICE1;
+    }
+    else
+    {
+      deviceaddress = NAND_DEVICE2;
+    }
+
+    /* NAND raw address calculation */
+    nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+
+    /* Page(s) write loop */
+    while ((nbpages != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+    {
+      /* Send write page command sequence */
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+      __DSB();
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+      __DSB();
+
+      /* Cards with page size <= 512 bytes */
+      if ((hnand->Config.PageSize) <= 512U)
+      {
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+      else /* (hnand->Config.PageSize) > 512 */
+      {
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+
+      /* Write data to memory */
+      for (index = 0U; index < hnand->Config.PageSize; index++)
+      {
+        *(__IO uint16_t *)deviceaddress = *buff;
+        buff++;
+        __DSB();
+      }
+
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
+      __DSB();
+
+      /* Get tick */
+      tickstart = HAL_GetTick();
+
+      /* Read status until NAND is ready */
+      while (HAL_NAND_Read_Status(hnand) != NAND_READY)
+      {
+        if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
+        {
+          /* Update the NAND controller state */
+          hnand->State = HAL_NAND_STATE_ERROR;
+
+          /* Process unlocked */
+          __HAL_UNLOCK(hnand);
+
+          return HAL_TIMEOUT;
+        }
+      }
+
+      /* Increment written pages number */
+      numpageswritten++;
+
+      /* Decrement pages to write */
+      nbpages--;
+
+      /* Increment the NAND address */
+      nandaddress = (uint32_t)(nandaddress + 1U);
+    }
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_READY;
+
+    /* Process unlocked */
+    __HAL_UNLOCK(hnand);
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Read Spare area(s) from NAND memory (8-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer pointer to source buffer to write
+  * @param  NumSpareAreaToRead Number of spare area to read
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Read_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress, uint8_t *pBuffer,
+                                             uint32_t NumSpareAreaToRead)
+{
+  uint32_t index;
+  uint32_t tickstart;
+  uint32_t deviceaddress;
+  uint32_t numsparearearead = 0;
+  uint32_t nandaddress;
+  uint32_t columnaddress;
+  uint32_t nbspare = NumSpareAreaToRead;
+  uint8_t *buff = pBuffer;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hnand);
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Identify the device address */
+    if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+    {
+      deviceaddress = NAND_DEVICE1;
+    }
+    else
+    {
+      deviceaddress = NAND_DEVICE2;
+    }
+
+    /* NAND raw address calculation */
+    nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+
+    /* Column in page address */
+    columnaddress = COLUMN_ADDRESS(hnand);
+
+    /* Spare area(s) read loop */
+    while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+    {
+      /* Cards with page size <= 512 bytes */
+      if ((hnand->Config.PageSize) <= 512U)
+      {
+        /* Send read spare area command sequence */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C;
+        __DSB();
+
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+      else /* (hnand->Config.PageSize) > 512 */
+      {
+        /* Send read spare area command sequence */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+        __DSB();
+
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
+      __DSB();
+
+      if (hnand->Config.ExtraCommandEnable == ENABLE)
+      {
+        /* Get tick */
+        tickstart = HAL_GetTick();
+
+        /* Read status until NAND is ready */
+        while (HAL_NAND_Read_Status(hnand) != NAND_READY)
+        {
+          if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
+          {
+            /* Update the NAND controller state */
+            hnand->State = HAL_NAND_STATE_ERROR;
+
+            /* Process unlocked */
+            __HAL_UNLOCK(hnand);
+
+            return HAL_TIMEOUT;
+          }
+        }
+
+        /* Go back to read mode */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00);
+        __DSB();
+      }
+
+      /* Get Data into Buffer */
+      for (index = 0U; index < hnand->Config.SpareAreaSize; index++)
+      {
+        *buff = *(uint8_t *)deviceaddress;
+        buff++;
+      }
+
+      /* Increment read spare areas number */
+      numsparearearead++;
+
+      /* Decrement spare areas to read */
+      nbspare--;
+
+      /* Increment the NAND address */
+      nandaddress = (uint32_t)(nandaddress + 1U);
+    }
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_READY;
+
+    /* Process unlocked */
+    __HAL_UNLOCK(hnand);
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Read Spare area(s) from NAND memory (16-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer pointer to source buffer to write. pBuffer should be 16bits aligned.
+  * @param  NumSpareAreaToRead Number of spare area to read
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Read_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress,
+                                              uint16_t *pBuffer, uint32_t NumSpareAreaToRead)
+{
+  uint32_t index;
+  uint32_t tickstart;
+  uint32_t deviceaddress;
+  uint32_t numsparearearead = 0;
+  uint32_t nandaddress;
+  uint32_t columnaddress;
+  uint32_t nbspare = NumSpareAreaToRead;
+  uint16_t *buff = pBuffer;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hnand);
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Identify the device address */
+    if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+    {
+      deviceaddress = NAND_DEVICE1;
+    }
+    else
+    {
+      deviceaddress = NAND_DEVICE2;
+    }
+
+    /* NAND raw address calculation */
+    nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+
+    /* Column in page address */
+    columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand) * 2U);
+
+    /* Spare area(s) read loop */
+    while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+    {
+      /* Cards with page size <= 512 bytes */
+      if ((hnand->Config.PageSize) <= 512U)
+      {
+        /* Send read spare area command sequence */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C;
+        __DSB();
+
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+      else /* (hnand->Config.PageSize) > 512 */
+      {
+        /* Send read spare area command sequence */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+        __DSB();
+
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_TRUE1;
+      __DSB();
+
+      if (hnand->Config.ExtraCommandEnable == ENABLE)
+      {
+        /* Get tick */
+        tickstart = HAL_GetTick();
+
+        /* Read status until NAND is ready */
+        while (HAL_NAND_Read_Status(hnand) != NAND_READY)
+        {
+          if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
+          {
+            /* Update the NAND controller state */
+            hnand->State = HAL_NAND_STATE_ERROR;
+
+            /* Process unlocked */
+            __HAL_UNLOCK(hnand);
+
+            return HAL_TIMEOUT;
+          }
+        }
+
+        /* Go back to read mode */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = ((uint8_t)0x00);
+        __DSB();
+      }
+
+      /* Get Data into Buffer */
+      for (index = 0U; index < hnand->Config.SpareAreaSize; index++)
+      {
+        *buff = *(uint16_t *)deviceaddress;
+        buff++;
+      }
+
+      /* Increment read spare areas number */
+      numsparearearead++;
+
+      /* Decrement spare areas to read */
+      nbspare--;
+
+      /* Increment the NAND address */
+      nandaddress = (uint32_t)(nandaddress + 1U);
+    }
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_READY;
+
+    /* Process unlocked */
+    __HAL_UNLOCK(hnand);
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Write Spare area(s) to NAND memory (8-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to source buffer to write
+  * @param  NumSpareAreaTowrite   number of spare areas to write to block
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Write_SpareArea_8b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress,
+                                              uint8_t *pBuffer, uint32_t NumSpareAreaTowrite)
+{
+  uint32_t index;
+  uint32_t tickstart;
+  uint32_t deviceaddress;
+  uint32_t numspareareawritten = 0;
+  uint32_t nandaddress;
+  uint32_t columnaddress;
+  uint32_t nbspare = NumSpareAreaTowrite;
+  uint8_t *buff = pBuffer;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hnand);
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Identify the device address */
+    if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+    {
+      deviceaddress = NAND_DEVICE1;
+    }
+    else
+    {
+      deviceaddress = NAND_DEVICE2;
+    }
+
+    /* Page address calculation */
+    nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+
+    /* Column in page address */
+    columnaddress = COLUMN_ADDRESS(hnand);
+
+    /* Spare area(s) write loop */
+    while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+    {
+      /* Cards with page size <= 512 bytes */
+      if ((hnand->Config.PageSize) <= 512U)
+      {
+        /* Send write Spare area command sequence */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C;
+        __DSB();
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+        __DSB();
+
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+      else /* (hnand->Config.PageSize) > 512 */
+      {
+        /* Send write Spare area command sequence */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+        __DSB();
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+        __DSB();
+
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+
+      /* Write data to memory */
+      for (index = 0U; index < hnand->Config.SpareAreaSize; index++)
+      {
+        *(__IO uint8_t *)deviceaddress = *buff;
+        buff++;
+        __DSB();
+      }
+
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
+      __DSB();
+
+      /* Get tick */
+      tickstart = HAL_GetTick();
+
+      /* Read status until NAND is ready */
+      while (HAL_NAND_Read_Status(hnand) != NAND_READY)
+      {
+        if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
+        {
+          /* Update the NAND controller state */
+          hnand->State = HAL_NAND_STATE_ERROR;
+
+          /* Process unlocked */
+          __HAL_UNLOCK(hnand);
+
+          return HAL_TIMEOUT;
+        }
+      }
+
+      /* Increment written spare areas number */
+      numspareareawritten++;
+
+      /* Decrement spare areas to write */
+      nbspare--;
+
+      /* Increment the NAND address */
+      nandaddress = (uint32_t)(nandaddress + 1U);
+    }
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_READY;
+
+    /* Process unlocked */
+    __HAL_UNLOCK(hnand);
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Write Spare area(s) to NAND memory (16-bits addressing)
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @param  pBuffer  pointer to source buffer to write. pBuffer should be 16bits aligned.
+  * @param  NumSpareAreaTowrite   number of spare areas to write to block
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Write_SpareArea_16b(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress,
+                                               uint16_t *pBuffer, uint32_t NumSpareAreaTowrite)
+{
+  uint32_t index;
+  uint32_t tickstart;
+  uint32_t deviceaddress;
+  uint32_t numspareareawritten = 0;
+  uint32_t nandaddress;
+  uint32_t columnaddress;
+  uint32_t nbspare = NumSpareAreaTowrite;
+  uint16_t *buff = pBuffer;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hnand);
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Identify the device address */
+    if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+    {
+      deviceaddress = NAND_DEVICE1;
+    }
+    else
+    {
+      deviceaddress = NAND_DEVICE2;
+    }
+
+    /* NAND raw address calculation */
+    nandaddress = ARRAY_ADDRESS(pAddress, hnand);
+
+    /* Column in page address */
+    columnaddress = (uint32_t)(COLUMN_ADDRESS(hnand) * 2U);
+
+    /* Spare area(s) write loop */
+    while ((nbspare != 0U) && (nandaddress < ((hnand->Config.BlockSize) * (hnand->Config.BlockNbr))))
+    {
+      /* Cards with page size <= 512 bytes */
+      if ((hnand->Config.PageSize) <= 512U)
+      {
+        /* Send write Spare area command sequence */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_C;
+        __DSB();
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+        __DSB();
+
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = 0x00U;
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+      else /* (hnand->Config.PageSize) > 512 */
+      {
+        /* Send write Spare area command sequence */
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_AREA_A;
+        __DSB();
+        *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE0;
+        __DSB();
+
+        if (((hnand->Config.BlockSize) * (hnand->Config.BlockNbr)) <= 65535U)
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+        }
+        else /* ((hnand->Config.BlockSize)*(hnand->Config.BlockNbr)) > 65535 */
+        {
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_1ST_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = COLUMN_2ND_CYCLE(columnaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(nandaddress);
+          __DSB();
+          *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(nandaddress);
+          __DSB();
+        }
+      }
+
+      /* Write data to memory */
+      for (index = 0U; index < hnand->Config.SpareAreaSize; index++)
+      {
+        *(__IO uint16_t *)deviceaddress = *buff;
+        buff++;
+        __DSB();
+      }
+
+      *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_WRITE_TRUE1;
+      __DSB();
+
+      /* Get tick */
+      tickstart = HAL_GetTick();
+
+      /* Read status until NAND is ready */
+      while (HAL_NAND_Read_Status(hnand) != NAND_READY)
+      {
+        if ((HAL_GetTick() - tickstart) > NAND_WRITE_TIMEOUT)
+        {
+          /* Update the NAND controller state */
+          hnand->State = HAL_NAND_STATE_ERROR;
+
+          /* Process unlocked */
+          __HAL_UNLOCK(hnand);
+
+          return HAL_TIMEOUT;
+        }
+      }
+
+      /* Increment written spare areas number */
+      numspareareawritten++;
+
+      /* Decrement spare areas to write */
+      nbspare--;
+
+      /* Increment the NAND address */
+      nandaddress = (uint32_t)(nandaddress + 1U);
+    }
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_READY;
+
+    /* Process unlocked */
+    __HAL_UNLOCK(hnand);
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  NAND memory Block erase
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  pAddress  pointer to NAND address structure
+  * @retval HAL status
+  */
+HAL_StatusTypeDef HAL_NAND_Erase_Block(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress)
+{
+  uint32_t deviceaddress;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Process Locked */
+    __HAL_LOCK(hnand);
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Identify the device address */
+    if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+    {
+      deviceaddress = NAND_DEVICE1;
+    }
+    else
+    {
+      deviceaddress = NAND_DEVICE2;
+    }
+
+    /* Send Erase block command sequence */
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE0;
+    __DSB();
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_1ST_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
+    __DSB();
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_2ND_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
+    __DSB();
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | ADDR_AREA)) = ADDR_3RD_CYCLE(ARRAY_ADDRESS(pAddress, hnand));
+    __DSB();
+
+    *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_ERASE1;
+    __DSB();
+
+    /* Update the NAND controller state */
+    hnand->State = HAL_NAND_STATE_READY;
+
+    /* Process unlocked */
+    __HAL_UNLOCK(hnand);
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Increment the NAND memory address
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param pAddress pointer to NAND address structure
+  * @retval The new status of the increment address operation. It can be:
+  *           - NAND_VALID_ADDRESS: When the new address is valid address
+  *           - NAND_INVALID_ADDRESS: When the new address is invalid address
+  */
+uint32_t HAL_NAND_Address_Inc(NAND_HandleTypeDef *hnand, NAND_AddressTypeDef *pAddress)
+{
+  uint32_t status = NAND_VALID_ADDRESS;
+
+  /* Increment page address */
+  pAddress->Page++;
+
+  /* Check NAND address is valid */
+  if (pAddress->Page == hnand->Config.BlockSize)
+  {
+    pAddress->Page = 0;
+    pAddress->Block++;
+
+    if (pAddress->Block == hnand->Config.PlaneSize)
+    {
+      pAddress->Block = 0;
+      pAddress->Plane++;
+
+      if (pAddress->Plane == (hnand->Config.PlaneNbr))
+      {
+        status = NAND_INVALID_ADDRESS;
+      }
+    }
+  }
+
+  return (status);
+}
+
+#if (USE_HAL_NAND_REGISTER_CALLBACKS == 1)
+/**
+  * @brief  Register a User NAND Callback
+  *         To be used instead of the weak (surcharged) predefined callback
+  * @param hnand : NAND handle
+  * @param CallbackId : ID of the callback to be registered
+  *        This parameter can be one of the following values:
+  *          @arg @ref HAL_NAND_MSP_INIT_CB_ID       NAND MspInit callback ID
+  *          @arg @ref HAL_NAND_MSP_DEINIT_CB_ID     NAND MspDeInit callback ID
+  *          @arg @ref HAL_NAND_IT_CB_ID             NAND IT callback ID
+  * @param pCallback : pointer to the Callback function
+  * @retval status
+  */
+HAL_StatusTypeDef HAL_NAND_RegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId,
+                                            pNAND_CallbackTypeDef pCallback)
+{
+  HAL_StatusTypeDef status = HAL_OK;
+
+  if (pCallback == NULL)
+  {
+    return HAL_ERROR;
+  }
+
+  /* Process locked */
+  __HAL_LOCK(hnand);
+
+  if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    switch (CallbackId)
+    {
+      case HAL_NAND_MSP_INIT_CB_ID :
+        hnand->MspInitCallback = pCallback;
+        break;
+      case HAL_NAND_MSP_DEINIT_CB_ID :
+        hnand->MspDeInitCallback = pCallback;
+        break;
+      case HAL_NAND_IT_CB_ID :
+        hnand->ItCallback = pCallback;
+        break;
+      default :
+        /* update return status */
+        status =  HAL_ERROR;
+        break;
+    }
+  }
+  else if (hnand->State == HAL_NAND_STATE_RESET)
+  {
+    switch (CallbackId)
+    {
+      case HAL_NAND_MSP_INIT_CB_ID :
+        hnand->MspInitCallback = pCallback;
+        break;
+      case HAL_NAND_MSP_DEINIT_CB_ID :
+        hnand->MspDeInitCallback = pCallback;
+        break;
+      default :
+        /* update return status */
+        status =  HAL_ERROR;
+        break;
+    }
+  }
+  else
+  {
+    /* update return status */
+    status =  HAL_ERROR;
+  }
+
+  /* Release Lock */
+  __HAL_UNLOCK(hnand);
+  return status;
+}
+
+/**
+  * @brief  Unregister a User NAND Callback
+  *         NAND Callback is redirected to the weak (surcharged) predefined callback
+  * @param hnand : NAND handle
+  * @param CallbackId : ID of the callback to be unregistered
+  *        This parameter can be one of the following values:
+  *          @arg @ref HAL_NAND_MSP_INIT_CB_ID       NAND MspInit callback ID
+  *          @arg @ref HAL_NAND_MSP_DEINIT_CB_ID     NAND MspDeInit callback ID
+  *          @arg @ref HAL_NAND_IT_CB_ID             NAND IT callback ID
+  * @retval status
+  */
+HAL_StatusTypeDef HAL_NAND_UnRegisterCallback(NAND_HandleTypeDef *hnand, HAL_NAND_CallbackIDTypeDef CallbackId)
+{
+  HAL_StatusTypeDef status = HAL_OK;
+
+  /* Process locked */
+  __HAL_LOCK(hnand);
+
+  if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    switch (CallbackId)
+    {
+      case HAL_NAND_MSP_INIT_CB_ID :
+        hnand->MspInitCallback = HAL_NAND_MspInit;
+        break;
+      case HAL_NAND_MSP_DEINIT_CB_ID :
+        hnand->MspDeInitCallback = HAL_NAND_MspDeInit;
+        break;
+      case HAL_NAND_IT_CB_ID :
+        hnand->ItCallback = HAL_NAND_ITCallback;
+        break;
+      default :
+        /* update return status */
+        status =  HAL_ERROR;
+        break;
+    }
+  }
+  else if (hnand->State == HAL_NAND_STATE_RESET)
+  {
+    switch (CallbackId)
+    {
+      case HAL_NAND_MSP_INIT_CB_ID :
+        hnand->MspInitCallback = HAL_NAND_MspInit;
+        break;
+      case HAL_NAND_MSP_DEINIT_CB_ID :
+        hnand->MspDeInitCallback = HAL_NAND_MspDeInit;
+        break;
+      default :
+        /* update return status */
+        status =  HAL_ERROR;
+        break;
+    }
+  }
+  else
+  {
+    /* update return status */
+    status =  HAL_ERROR;
+  }
+
+  /* Release Lock */
+  __HAL_UNLOCK(hnand);
+  return status;
+}
+#endif
+
+/**
+  * @}
+  */
+
+/** @defgroup NAND_Exported_Functions_Group3 Peripheral Control functions
+  *  @brief   management functions
+  *
+@verbatim
+  ==============================================================================
+                         ##### NAND Control functions #####
+  ==============================================================================
+  [..]
+    This subsection provides a set of functions allowing to control dynamically
+    the NAND interface.
+
+@endverbatim
+  * @{
+  */
+
+
+/**
+  * @brief  Enables dynamically NAND ECC feature.
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef  HAL_NAND_ECC_Enable(NAND_HandleTypeDef *hnand)
+{
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Update the NAND state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Enable ECC feature */
+    (void)FSMC_NAND_ECC_Enable(hnand->Instance, hnand->Init.NandBank);
+
+    /* Update the NAND state */
+    hnand->State = HAL_NAND_STATE_READY;
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Disables dynamically FSMC_NAND ECC feature.
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL status
+  */
+HAL_StatusTypeDef  HAL_NAND_ECC_Disable(NAND_HandleTypeDef *hnand)
+{
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Update the NAND state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Disable ECC feature */
+    (void)FSMC_NAND_ECC_Disable(hnand->Instance, hnand->Init.NandBank);
+
+    /* Update the NAND state */
+    hnand->State = HAL_NAND_STATE_READY;
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return HAL_OK;
+}
+
+/**
+  * @brief  Disables dynamically NAND ECC feature.
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @param  ECCval pointer to ECC value
+  * @param  Timeout maximum timeout to wait
+  * @retval HAL status
+  */
+HAL_StatusTypeDef  HAL_NAND_GetECC(NAND_HandleTypeDef *hnand, uint32_t *ECCval, uint32_t Timeout)
+{
+  HAL_StatusTypeDef status;
+
+  /* Check the NAND controller state */
+  if (hnand->State == HAL_NAND_STATE_BUSY)
+  {
+    return HAL_BUSY;
+  }
+  else if (hnand->State == HAL_NAND_STATE_READY)
+  {
+    /* Update the NAND state */
+    hnand->State = HAL_NAND_STATE_BUSY;
+
+    /* Get NAND ECC value */
+    status = FSMC_NAND_GetECC(hnand->Instance, ECCval, hnand->Init.NandBank, Timeout);
+
+    /* Update the NAND state */
+    hnand->State = HAL_NAND_STATE_READY;
+  }
+  else
+  {
+    return HAL_ERROR;
+  }
+
+  return status;
+}
+
+/**
+  * @}
+  */
+
+
+/** @defgroup NAND_Exported_Functions_Group4 Peripheral State functions
+  *  @brief   Peripheral State functions
+  *
+@verbatim
+  ==============================================================================
+                         ##### NAND State functions #####
+  ==============================================================================
+  [..]
+    This subsection permits to get in run-time the status of the NAND controller
+    and the data flow.
+
+@endverbatim
+  * @{
+  */
+
+/**
+  * @brief  return the NAND state
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval HAL state
+  */
+HAL_NAND_StateTypeDef HAL_NAND_GetState(NAND_HandleTypeDef *hnand)
+{
+  return hnand->State;
+}
+
+/**
+  * @brief  NAND memory read status
+  * @param  hnand pointer to a NAND_HandleTypeDef structure that contains
+  *                the configuration information for NAND module.
+  * @retval NAND status
+  */
+uint32_t HAL_NAND_Read_Status(NAND_HandleTypeDef *hnand)
+{
+  uint32_t data;
+  uint32_t deviceaddress;
+  UNUSED(hnand);
+
+  /* Identify the device address */
+  if (hnand->Init.NandBank == FSMC_NAND_BANK2)
+  {
+    deviceaddress = NAND_DEVICE1;
+  }
+  else
+  {
+    deviceaddress = NAND_DEVICE2;
+  }
+
+  /* Send Read status operation command */
+  *(__IO uint8_t *)((uint32_t)(deviceaddress | CMD_AREA)) = NAND_CMD_STATUS;
+
+  /* Read status register data */
+  data = *(__IO uint8_t *)deviceaddress;
+
+  /* Return the status */
+  if ((data & NAND_ERROR) == NAND_ERROR)
+  {
+    return NAND_ERROR;
+  }
+  else if ((data & NAND_READY) == NAND_READY)
+  {
+    return NAND_READY;
+  }
+  else
+  {
+    return NAND_BUSY;
+  }
+}
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+/**
+  * @}
+  */
+
+#endif /* HAL_NAND_MODULE_ENABLED  */
+
+/**
+  * @}
+  */
+
+#endif /* FSMC_BANK3 */
+
+/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

--
Gitblit v1.9.1