From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001 From: android <android@lingyun.com> Date: Tue, 25 Jun 2024 21:49:39 +0800 Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code --- mcu_sdk/gd32f103/rk_eFire/Middlewares/Third_Party/FreeRTOS/Source/include/semphr.h | 1140 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 files changed, 1,140 insertions(+), 0 deletions(-) diff --git a/mcu_sdk/gd32f103/rk_eFire/Middlewares/Third_Party/FreeRTOS/Source/include/semphr.h b/mcu_sdk/gd32f103/rk_eFire/Middlewares/Third_Party/FreeRTOS/Source/include/semphr.h new file mode 100644 index 0000000..0f58285 --- /dev/null +++ b/mcu_sdk/gd32f103/rk_eFire/Middlewares/Third_Party/FreeRTOS/Source/include/semphr.h @@ -0,0 +1,1140 @@ +/* + * FreeRTOS Kernel V10.0.1 + * Copyright (C) 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. + * + * Permission is hereby granted, free of charge, to any person obtaining a copy of + * this software and associated documentation files (the "Software"), to deal in + * the Software without restriction, including without limitation the rights to + * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of + * the Software, and to permit persons to whom the Software is furnished to do so, + * subject to the following conditions: + * + * The above copyright notice and this permission notice shall be included in all + * copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS + * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR + * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER + * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + * + * http://www.FreeRTOS.org + * http://aws.amazon.com/freertos + * + * 1 tab == 4 spaces! + */ + +#ifndef SEMAPHORE_H +#define SEMAPHORE_H + +#ifndef INC_FREERTOS_H + #error "include FreeRTOS.h" must appear in source files before "include semphr.h" +#endif + +#include "queue.h" + +typedef QueueHandle_t SemaphoreHandle_t; + +#define semBINARY_SEMAPHORE_QUEUE_LENGTH ( ( uint8_t ) 1U ) +#define semSEMAPHORE_QUEUE_ITEM_LENGTH ( ( uint8_t ) 0U ) +#define semGIVE_BLOCK_TIME ( ( TickType_t ) 0U ) + + +/** + * semphr. h + * <pre>vSemaphoreCreateBinary( SemaphoreHandle_t xSemaphore )</pre> + * + * In many usage scenarios it is faster and more memory efficient to use a + * direct to task notification in place of a binary semaphore! + * http://www.freertos.org/RTOS-task-notifications.html + * + * This old vSemaphoreCreateBinary() macro is now deprecated in favour of the + * xSemaphoreCreateBinary() function. Note that binary semaphores created using + * the vSemaphoreCreateBinary() macro are created in a state such that the + * first call to 'take' the semaphore would pass, whereas binary semaphores + * created using xSemaphoreCreateBinary() are created in a state such that the + * the semaphore must first be 'given' before it can be 'taken'. + * + * <i>Macro</i> that implements a semaphore by using the existing queue mechanism. + * The queue length is 1 as this is a binary semaphore. The data size is 0 + * as we don't want to actually store any data - we just want to know if the + * queue is empty or full. + * + * This type of semaphore can be used for pure synchronisation between tasks or + * between an interrupt and a task. The semaphore need not be given back once + * obtained, so one task/interrupt can continuously 'give' the semaphore while + * another continuously 'takes' the semaphore. For this reason this type of + * semaphore does not use a priority inheritance mechanism. For an alternative + * that does use priority inheritance see xSemaphoreCreateMutex(). + * + * @param xSemaphore Handle to the created semaphore. Should be of type SemaphoreHandle_t. + * + * Example usage: + <pre> + SemaphoreHandle_t xSemaphore = NULL; + + void vATask( void * pvParameters ) + { + // Semaphore cannot be used before a call to vSemaphoreCreateBinary (). + // This is a macro so pass the variable in directly. + vSemaphoreCreateBinary( xSemaphore ); + + if( xSemaphore != NULL ) + { + // The semaphore was created successfully. + // The semaphore can now be used. + } + } + </pre> + * \defgroup vSemaphoreCreateBinary vSemaphoreCreateBinary + * \ingroup Semaphores + */ +#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) + #define vSemaphoreCreateBinary( xSemaphore ) \ + { \ + ( xSemaphore ) = xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE ); \ + if( ( xSemaphore ) != NULL ) \ + { \ + ( void ) xSemaphoreGive( ( xSemaphore ) ); \ + } \ + } +#endif + +/** + * semphr. h + * <pre>SemaphoreHandle_t xSemaphoreCreateBinary( void )</pre> + * + * Creates a new binary semaphore instance, and returns a handle by which the + * new semaphore can be referenced. + * + * In many usage scenarios it is faster and more memory efficient to use a + * direct to task notification in place of a binary semaphore! + * http://www.freertos.org/RTOS-task-notifications.html + * + * Internally, within the FreeRTOS implementation, binary semaphores use a block + * of memory, in which the semaphore structure is stored. If a binary semaphore + * is created using xSemaphoreCreateBinary() then the required memory is + * automatically dynamically allocated inside the xSemaphoreCreateBinary() + * function. (see http://www.freertos.org/a00111.html). If a binary semaphore + * is created using xSemaphoreCreateBinaryStatic() then the application writer + * must provide the memory. xSemaphoreCreateBinaryStatic() therefore allows a + * binary semaphore to be created without using any dynamic memory allocation. + * + * The old vSemaphoreCreateBinary() macro is now deprecated in favour of this + * xSemaphoreCreateBinary() function. Note that binary semaphores created using + * the vSemaphoreCreateBinary() macro are created in a state such that the + * first call to 'take' the semaphore would pass, whereas binary semaphores + * created using xSemaphoreCreateBinary() are created in a state such that the + * the semaphore must first be 'given' before it can be 'taken'. + * + * This type of semaphore can be used for pure synchronisation between tasks or + * between an interrupt and a task. The semaphore need not be given back once + * obtained, so one task/interrupt can continuously 'give' the semaphore while + * another continuously 'takes' the semaphore. For this reason this type of + * semaphore does not use a priority inheritance mechanism. For an alternative + * that does use priority inheritance see xSemaphoreCreateMutex(). + * + * @return Handle to the created semaphore, or NULL if the memory required to + * hold the semaphore's data structures could not be allocated. + * + * Example usage: + <pre> + SemaphoreHandle_t xSemaphore = NULL; + + void vATask( void * pvParameters ) + { + // Semaphore cannot be used before a call to xSemaphoreCreateBinary(). + // This is a macro so pass the variable in directly. + xSemaphore = xSemaphoreCreateBinary(); + + if( xSemaphore != NULL ) + { + // The semaphore was created successfully. + // The semaphore can now be used. + } + } + </pre> + * \defgroup xSemaphoreCreateBinary xSemaphoreCreateBinary + * \ingroup Semaphores + */ +#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) + #define xSemaphoreCreateBinary() xQueueGenericCreate( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, queueQUEUE_TYPE_BINARY_SEMAPHORE ) +#endif + +/** + * semphr. h + * <pre>SemaphoreHandle_t xSemaphoreCreateBinaryStatic( StaticSemaphore_t *pxSemaphoreBuffer )</pre> + * + * Creates a new binary semaphore instance, and returns a handle by which the + * new semaphore can be referenced. + * + * NOTE: In many usage scenarios it is faster and more memory efficient to use a + * direct to task notification in place of a binary semaphore! + * http://www.freertos.org/RTOS-task-notifications.html + * + * Internally, within the FreeRTOS implementation, binary semaphores use a block + * of memory, in which the semaphore structure is stored. If a binary semaphore + * is created using xSemaphoreCreateBinary() then the required memory is + * automatically dynamically allocated inside the xSemaphoreCreateBinary() + * function. (see http://www.freertos.org/a00111.html). If a binary semaphore + * is created using xSemaphoreCreateBinaryStatic() then the application writer + * must provide the memory. xSemaphoreCreateBinaryStatic() therefore allows a + * binary semaphore to be created without using any dynamic memory allocation. + * + * This type of semaphore can be used for pure synchronisation between tasks or + * between an interrupt and a task. The semaphore need not be given back once + * obtained, so one task/interrupt can continuously 'give' the semaphore while + * another continuously 'takes' the semaphore. For this reason this type of + * semaphore does not use a priority inheritance mechanism. For an alternative + * that does use priority inheritance see xSemaphoreCreateMutex(). + * + * @param pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t, + * which will then be used to hold the semaphore's data structure, removing the + * need for the memory to be allocated dynamically. + * + * @return If the semaphore is created then a handle to the created semaphore is + * returned. If pxSemaphoreBuffer is NULL then NULL is returned. + * + * Example usage: + <pre> + SemaphoreHandle_t xSemaphore = NULL; + StaticSemaphore_t xSemaphoreBuffer; + + void vATask( void * pvParameters ) + { + // Semaphore cannot be used before a call to xSemaphoreCreateBinary(). + // The semaphore's data structures will be placed in the xSemaphoreBuffer + // variable, the address of which is passed into the function. The + // function's parameter is not NULL, so the function will not attempt any + // dynamic memory allocation, and therefore the function will not return + // return NULL. + xSemaphore = xSemaphoreCreateBinary( &xSemaphoreBuffer ); + + // Rest of task code goes here. + } + </pre> + * \defgroup xSemaphoreCreateBinaryStatic xSemaphoreCreateBinaryStatic + * \ingroup Semaphores + */ +#if( configSUPPORT_STATIC_ALLOCATION == 1 ) + #define xSemaphoreCreateBinaryStatic( pxStaticSemaphore ) xQueueGenericCreateStatic( ( UBaseType_t ) 1, semSEMAPHORE_QUEUE_ITEM_LENGTH, NULL, pxStaticSemaphore, queueQUEUE_TYPE_BINARY_SEMAPHORE ) +#endif /* configSUPPORT_STATIC_ALLOCATION */ + +/** + * semphr. h + * <pre>xSemaphoreTake( + * SemaphoreHandle_t xSemaphore, + * TickType_t xBlockTime + * )</pre> + * + * <i>Macro</i> to obtain a semaphore. The semaphore must have previously been + * created with a call to xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or + * xSemaphoreCreateCounting(). + * + * @param xSemaphore A handle to the semaphore being taken - obtained when + * the semaphore was created. + * + * @param xBlockTime The time in ticks to wait for the semaphore to become + * available. The macro portTICK_PERIOD_MS can be used to convert this to a + * real time. A block time of zero can be used to poll the semaphore. A block + * time of portMAX_DELAY can be used to block indefinitely (provided + * INCLUDE_vTaskSuspend is set to 1 in FreeRTOSConfig.h). + * + * @return pdTRUE if the semaphore was obtained. pdFALSE + * if xBlockTime expired without the semaphore becoming available. + * + * Example usage: + <pre> + SemaphoreHandle_t xSemaphore = NULL; + + // A task that creates a semaphore. + void vATask( void * pvParameters ) + { + // Create the semaphore to guard a shared resource. + xSemaphore = xSemaphoreCreateBinary(); + } + + // A task that uses the semaphore. + void vAnotherTask( void * pvParameters ) + { + // ... Do other things. + + if( xSemaphore != NULL ) + { + // See if we can obtain the semaphore. If the semaphore is not available + // wait 10 ticks to see if it becomes free. + if( xSemaphoreTake( xSemaphore, ( TickType_t ) 10 ) == pdTRUE ) + { + // We were able to obtain the semaphore and can now access the + // shared resource. + + // ... + + // We have finished accessing the shared resource. Release the + // semaphore. + xSemaphoreGive( xSemaphore ); + } + else + { + // We could not obtain the semaphore and can therefore not access + // the shared resource safely. + } + } + } + </pre> + * \defgroup xSemaphoreTake xSemaphoreTake + * \ingroup Semaphores + */ +#define xSemaphoreTake( xSemaphore, xBlockTime ) xQueueSemaphoreTake( ( xSemaphore ), ( xBlockTime ) ) + +/** + * semphr. h + * xSemaphoreTakeRecursive( + * SemaphoreHandle_t xMutex, + * TickType_t xBlockTime + * ) + * + * <i>Macro</i> to recursively obtain, or 'take', a mutex type semaphore. + * The mutex must have previously been created using a call to + * xSemaphoreCreateRecursiveMutex(); + * + * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this + * macro to be available. + * + * This macro must not be used on mutexes created using xSemaphoreCreateMutex(). + * + * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex + * doesn't become available again until the owner has called + * xSemaphoreGiveRecursive() for each successful 'take' request. For example, + * if a task successfully 'takes' the same mutex 5 times then the mutex will + * not be available to any other task until it has also 'given' the mutex back + * exactly five times. + * + * @param xMutex A handle to the mutex being obtained. This is the + * handle returned by xSemaphoreCreateRecursiveMutex(); + * + * @param xBlockTime The time in ticks to wait for the semaphore to become + * available. The macro portTICK_PERIOD_MS can be used to convert this to a + * real time. A block time of zero can be used to poll the semaphore. If + * the task already owns the semaphore then xSemaphoreTakeRecursive() will + * return immediately no matter what the value of xBlockTime. + * + * @return pdTRUE if the semaphore was obtained. pdFALSE if xBlockTime + * expired without the semaphore becoming available. + * + * Example usage: + <pre> + SemaphoreHandle_t xMutex = NULL; + + // A task that creates a mutex. + void vATask( void * pvParameters ) + { + // Create the mutex to guard a shared resource. + xMutex = xSemaphoreCreateRecursiveMutex(); + } + + // A task that uses the mutex. + void vAnotherTask( void * pvParameters ) + { + // ... Do other things. + + if( xMutex != NULL ) + { + // See if we can obtain the mutex. If the mutex is not available + // wait 10 ticks to see if it becomes free. + if( xSemaphoreTakeRecursive( xSemaphore, ( TickType_t ) 10 ) == pdTRUE ) + { + // We were able to obtain the mutex and can now access the + // shared resource. + + // ... + // For some reason due to the nature of the code further calls to + // xSemaphoreTakeRecursive() are made on the same mutex. In real + // code these would not be just sequential calls as this would make + // no sense. Instead the calls are likely to be buried inside + // a more complex call structure. + xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 ); + xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 ); + + // The mutex has now been 'taken' three times, so will not be + // available to another task until it has also been given back + // three times. Again it is unlikely that real code would have + // these calls sequentially, but instead buried in a more complex + // call structure. This is just for illustrative purposes. + xSemaphoreGiveRecursive( xMutex ); + xSemaphoreGiveRecursive( xMutex ); + xSemaphoreGiveRecursive( xMutex ); + + // Now the mutex can be taken by other tasks. + } + else + { + // We could not obtain the mutex and can therefore not access + // the shared resource safely. + } + } + } + </pre> + * \defgroup xSemaphoreTakeRecursive xSemaphoreTakeRecursive + * \ingroup Semaphores + */ +#if( configUSE_RECURSIVE_MUTEXES == 1 ) + #define xSemaphoreTakeRecursive( xMutex, xBlockTime ) xQueueTakeMutexRecursive( ( xMutex ), ( xBlockTime ) ) +#endif + +/** + * semphr. h + * <pre>xSemaphoreGive( SemaphoreHandle_t xSemaphore )</pre> + * + * <i>Macro</i> to release a semaphore. The semaphore must have previously been + * created with a call to xSemaphoreCreateBinary(), xSemaphoreCreateMutex() or + * xSemaphoreCreateCounting(). and obtained using sSemaphoreTake(). + * + * This macro must not be used from an ISR. See xSemaphoreGiveFromISR () for + * an alternative which can be used from an ISR. + * + * This macro must also not be used on semaphores created using + * xSemaphoreCreateRecursiveMutex(). + * + * @param xSemaphore A handle to the semaphore being released. This is the + * handle returned when the semaphore was created. + * + * @return pdTRUE if the semaphore was released. pdFALSE if an error occurred. + * Semaphores are implemented using queues. An error can occur if there is + * no space on the queue to post a message - indicating that the + * semaphore was not first obtained correctly. + * + * Example usage: + <pre> + SemaphoreHandle_t xSemaphore = NULL; + + void vATask( void * pvParameters ) + { + // Create the semaphore to guard a shared resource. + xSemaphore = vSemaphoreCreateBinary(); + + if( xSemaphore != NULL ) + { + if( xSemaphoreGive( xSemaphore ) != pdTRUE ) + { + // We would expect this call to fail because we cannot give + // a semaphore without first "taking" it! + } + + // Obtain the semaphore - don't block if the semaphore is not + // immediately available. + if( xSemaphoreTake( xSemaphore, ( TickType_t ) 0 ) ) + { + // We now have the semaphore and can access the shared resource. + + // ... + + // We have finished accessing the shared resource so can free the + // semaphore. + if( xSemaphoreGive( xSemaphore ) != pdTRUE ) + { + // We would not expect this call to fail because we must have + // obtained the semaphore to get here. + } + } + } + } + </pre> + * \defgroup xSemaphoreGive xSemaphoreGive + * \ingroup Semaphores + */ +#define xSemaphoreGive( xSemaphore ) xQueueGenericSend( ( QueueHandle_t ) ( xSemaphore ), NULL, semGIVE_BLOCK_TIME, queueSEND_TO_BACK ) + +/** + * semphr. h + * <pre>xSemaphoreGiveRecursive( SemaphoreHandle_t xMutex )</pre> + * + * <i>Macro</i> to recursively release, or 'give', a mutex type semaphore. + * The mutex must have previously been created using a call to + * xSemaphoreCreateRecursiveMutex(); + * + * configUSE_RECURSIVE_MUTEXES must be set to 1 in FreeRTOSConfig.h for this + * macro to be available. + * + * This macro must not be used on mutexes created using xSemaphoreCreateMutex(). + * + * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex + * doesn't become available again until the owner has called + * xSemaphoreGiveRecursive() for each successful 'take' request. For example, + * if a task successfully 'takes' the same mutex 5 times then the mutex will + * not be available to any other task until it has also 'given' the mutex back + * exactly five times. + * + * @param xMutex A handle to the mutex being released, or 'given'. This is the + * handle returned by xSemaphoreCreateMutex(); + * + * @return pdTRUE if the semaphore was given. + * + * Example usage: + <pre> + SemaphoreHandle_t xMutex = NULL; + + // A task that creates a mutex. + void vATask( void * pvParameters ) + { + // Create the mutex to guard a shared resource. + xMutex = xSemaphoreCreateRecursiveMutex(); + } + + // A task that uses the mutex. + void vAnotherTask( void * pvParameters ) + { + // ... Do other things. + + if( xMutex != NULL ) + { + // See if we can obtain the mutex. If the mutex is not available + // wait 10 ticks to see if it becomes free. + if( xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 ) == pdTRUE ) + { + // We were able to obtain the mutex and can now access the + // shared resource. + + // ... + // For some reason due to the nature of the code further calls to + // xSemaphoreTakeRecursive() are made on the same mutex. In real + // code these would not be just sequential calls as this would make + // no sense. Instead the calls are likely to be buried inside + // a more complex call structure. + xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 ); + xSemaphoreTakeRecursive( xMutex, ( TickType_t ) 10 ); + + // The mutex has now been 'taken' three times, so will not be + // available to another task until it has also been given back + // three times. Again it is unlikely that real code would have + // these calls sequentially, it would be more likely that the calls + // to xSemaphoreGiveRecursive() would be called as a call stack + // unwound. This is just for demonstrative purposes. + xSemaphoreGiveRecursive( xMutex ); + xSemaphoreGiveRecursive( xMutex ); + xSemaphoreGiveRecursive( xMutex ); + + // Now the mutex can be taken by other tasks. + } + else + { + // We could not obtain the mutex and can therefore not access + // the shared resource safely. + } + } + } + </pre> + * \defgroup xSemaphoreGiveRecursive xSemaphoreGiveRecursive + * \ingroup Semaphores + */ +#if( configUSE_RECURSIVE_MUTEXES == 1 ) + #define xSemaphoreGiveRecursive( xMutex ) xQueueGiveMutexRecursive( ( xMutex ) ) +#endif + +/** + * semphr. h + * <pre> + xSemaphoreGiveFromISR( + SemaphoreHandle_t xSemaphore, + BaseType_t *pxHigherPriorityTaskWoken + )</pre> + * + * <i>Macro</i> to release a semaphore. The semaphore must have previously been + * created with a call to xSemaphoreCreateBinary() or xSemaphoreCreateCounting(). + * + * Mutex type semaphores (those created using a call to xSemaphoreCreateMutex()) + * must not be used with this macro. + * + * This macro can be used from an ISR. + * + * @param xSemaphore A handle to the semaphore being released. This is the + * handle returned when the semaphore was created. + * + * @param pxHigherPriorityTaskWoken xSemaphoreGiveFromISR() will set + * *pxHigherPriorityTaskWoken to pdTRUE if giving the semaphore caused a task + * to unblock, and the unblocked task has a priority higher than the currently + * running task. If xSemaphoreGiveFromISR() sets this value to pdTRUE then + * a context switch should be requested before the interrupt is exited. + * + * @return pdTRUE if the semaphore was successfully given, otherwise errQUEUE_FULL. + * + * Example usage: + <pre> + \#define LONG_TIME 0xffff + \#define TICKS_TO_WAIT 10 + SemaphoreHandle_t xSemaphore = NULL; + + // Repetitive task. + void vATask( void * pvParameters ) + { + for( ;; ) + { + // We want this task to run every 10 ticks of a timer. The semaphore + // was created before this task was started. + + // Block waiting for the semaphore to become available. + if( xSemaphoreTake( xSemaphore, LONG_TIME ) == pdTRUE ) + { + // It is time to execute. + + // ... + + // We have finished our task. Return to the top of the loop where + // we will block on the semaphore until it is time to execute + // again. Note when using the semaphore for synchronisation with an + // ISR in this manner there is no need to 'give' the semaphore back. + } + } + } + + // Timer ISR + void vTimerISR( void * pvParameters ) + { + static uint8_t ucLocalTickCount = 0; + static BaseType_t xHigherPriorityTaskWoken; + + // A timer tick has occurred. + + // ... Do other time functions. + + // Is it time for vATask () to run? + xHigherPriorityTaskWoken = pdFALSE; + ucLocalTickCount++; + if( ucLocalTickCount >= TICKS_TO_WAIT ) + { + // Unblock the task by releasing the semaphore. + xSemaphoreGiveFromISR( xSemaphore, &xHigherPriorityTaskWoken ); + + // Reset the count so we release the semaphore again in 10 ticks time. + ucLocalTickCount = 0; + } + + if( xHigherPriorityTaskWoken != pdFALSE ) + { + // We can force a context switch here. Context switching from an + // ISR uses port specific syntax. Check the demo task for your port + // to find the syntax required. + } + } + </pre> + * \defgroup xSemaphoreGiveFromISR xSemaphoreGiveFromISR + * \ingroup Semaphores + */ +#define xSemaphoreGiveFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueGiveFromISR( ( QueueHandle_t ) ( xSemaphore ), ( pxHigherPriorityTaskWoken ) ) + +/** + * semphr. h + * <pre> + xSemaphoreTakeFromISR( + SemaphoreHandle_t xSemaphore, + BaseType_t *pxHigherPriorityTaskWoken + )</pre> + * + * <i>Macro</i> to take a semaphore from an ISR. The semaphore must have + * previously been created with a call to xSemaphoreCreateBinary() or + * xSemaphoreCreateCounting(). + * + * Mutex type semaphores (those created using a call to xSemaphoreCreateMutex()) + * must not be used with this macro. + * + * This macro can be used from an ISR, however taking a semaphore from an ISR + * is not a common operation. It is likely to only be useful when taking a + * counting semaphore when an interrupt is obtaining an object from a resource + * pool (when the semaphore count indicates the number of resources available). + * + * @param xSemaphore A handle to the semaphore being taken. This is the + * handle returned when the semaphore was created. + * + * @param pxHigherPriorityTaskWoken xSemaphoreTakeFromISR() will set + * *pxHigherPriorityTaskWoken to pdTRUE if taking the semaphore caused a task + * to unblock, and the unblocked task has a priority higher than the currently + * running task. If xSemaphoreTakeFromISR() sets this value to pdTRUE then + * a context switch should be requested before the interrupt is exited. + * + * @return pdTRUE if the semaphore was successfully taken, otherwise + * pdFALSE + */ +#define xSemaphoreTakeFromISR( xSemaphore, pxHigherPriorityTaskWoken ) xQueueReceiveFromISR( ( QueueHandle_t ) ( xSemaphore ), NULL, ( pxHigherPriorityTaskWoken ) ) + +/** + * semphr. h + * <pre>SemaphoreHandle_t xSemaphoreCreateMutex( void )</pre> + * + * Creates a new mutex type semaphore instance, and returns a handle by which + * the new mutex can be referenced. + * + * Internally, within the FreeRTOS implementation, mutex semaphores use a block + * of memory, in which the mutex structure is stored. If a mutex is created + * using xSemaphoreCreateMutex() then the required memory is automatically + * dynamically allocated inside the xSemaphoreCreateMutex() function. (see + * http://www.freertos.org/a00111.html). If a mutex is created using + * xSemaphoreCreateMutexStatic() then the application writer must provided the + * memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to be created + * without using any dynamic memory allocation. + * + * Mutexes created using this function can be accessed using the xSemaphoreTake() + * and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and + * xSemaphoreGiveRecursive() macros must not be used. + * + * This type of semaphore uses a priority inheritance mechanism so a task + * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the + * semaphore it is no longer required. + * + * Mutex type semaphores cannot be used from within interrupt service routines. + * + * See xSemaphoreCreateBinary() for an alternative implementation that can be + * used for pure synchronisation (where one task or interrupt always 'gives' the + * semaphore and another always 'takes' the semaphore) and from within interrupt + * service routines. + * + * @return If the mutex was successfully created then a handle to the created + * semaphore is returned. If there was not enough heap to allocate the mutex + * data structures then NULL is returned. + * + * Example usage: + <pre> + SemaphoreHandle_t xSemaphore; + + void vATask( void * pvParameters ) + { + // Semaphore cannot be used before a call to xSemaphoreCreateMutex(). + // This is a macro so pass the variable in directly. + xSemaphore = xSemaphoreCreateMutex(); + + if( xSemaphore != NULL ) + { + // The semaphore was created successfully. + // The semaphore can now be used. + } + } + </pre> + * \defgroup xSemaphoreCreateMutex xSemaphoreCreateMutex + * \ingroup Semaphores + */ +#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) + #define xSemaphoreCreateMutex() xQueueCreateMutex( queueQUEUE_TYPE_MUTEX ) +#endif + +/** + * semphr. h + * <pre>SemaphoreHandle_t xSemaphoreCreateMutexStatic( StaticSemaphore_t *pxMutexBuffer )</pre> + * + * Creates a new mutex type semaphore instance, and returns a handle by which + * the new mutex can be referenced. + * + * Internally, within the FreeRTOS implementation, mutex semaphores use a block + * of memory, in which the mutex structure is stored. If a mutex is created + * using xSemaphoreCreateMutex() then the required memory is automatically + * dynamically allocated inside the xSemaphoreCreateMutex() function. (see + * http://www.freertos.org/a00111.html). If a mutex is created using + * xSemaphoreCreateMutexStatic() then the application writer must provided the + * memory. xSemaphoreCreateMutexStatic() therefore allows a mutex to be created + * without using any dynamic memory allocation. + * + * Mutexes created using this function can be accessed using the xSemaphoreTake() + * and xSemaphoreGive() macros. The xSemaphoreTakeRecursive() and + * xSemaphoreGiveRecursive() macros must not be used. + * + * This type of semaphore uses a priority inheritance mechanism so a task + * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the + * semaphore it is no longer required. + * + * Mutex type semaphores cannot be used from within interrupt service routines. + * + * See xSemaphoreCreateBinary() for an alternative implementation that can be + * used for pure synchronisation (where one task or interrupt always 'gives' the + * semaphore and another always 'takes' the semaphore) and from within interrupt + * service routines. + * + * @param pxMutexBuffer Must point to a variable of type StaticSemaphore_t, + * which will be used to hold the mutex's data structure, removing the need for + * the memory to be allocated dynamically. + * + * @return If the mutex was successfully created then a handle to the created + * mutex is returned. If pxMutexBuffer was NULL then NULL is returned. + * + * Example usage: + <pre> + SemaphoreHandle_t xSemaphore; + StaticSemaphore_t xMutexBuffer; + + void vATask( void * pvParameters ) + { + // A mutex cannot be used before it has been created. xMutexBuffer is + // into xSemaphoreCreateMutexStatic() so no dynamic memory allocation is + // attempted. + xSemaphore = xSemaphoreCreateMutexStatic( &xMutexBuffer ); + + // As no dynamic memory allocation was performed, xSemaphore cannot be NULL, + // so there is no need to check it. + } + </pre> + * \defgroup xSemaphoreCreateMutexStatic xSemaphoreCreateMutexStatic + * \ingroup Semaphores + */ + #if( configSUPPORT_STATIC_ALLOCATION == 1 ) + #define xSemaphoreCreateMutexStatic( pxMutexBuffer ) xQueueCreateMutexStatic( queueQUEUE_TYPE_MUTEX, ( pxMutexBuffer ) ) +#endif /* configSUPPORT_STATIC_ALLOCATION */ + + +/** + * semphr. h + * <pre>SemaphoreHandle_t xSemaphoreCreateRecursiveMutex( void )</pre> + * + * Creates a new recursive mutex type semaphore instance, and returns a handle + * by which the new recursive mutex can be referenced. + * + * Internally, within the FreeRTOS implementation, recursive mutexs use a block + * of memory, in which the mutex structure is stored. If a recursive mutex is + * created using xSemaphoreCreateRecursiveMutex() then the required memory is + * automatically dynamically allocated inside the + * xSemaphoreCreateRecursiveMutex() function. (see + * http://www.freertos.org/a00111.html). If a recursive mutex is created using + * xSemaphoreCreateRecursiveMutexStatic() then the application writer must + * provide the memory that will get used by the mutex. + * xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to + * be created without using any dynamic memory allocation. + * + * Mutexes created using this macro can be accessed using the + * xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The + * xSemaphoreTake() and xSemaphoreGive() macros must not be used. + * + * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex + * doesn't become available again until the owner has called + * xSemaphoreGiveRecursive() for each successful 'take' request. For example, + * if a task successfully 'takes' the same mutex 5 times then the mutex will + * not be available to any other task until it has also 'given' the mutex back + * exactly five times. + * + * This type of semaphore uses a priority inheritance mechanism so a task + * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the + * semaphore it is no longer required. + * + * Mutex type semaphores cannot be used from within interrupt service routines. + * + * See xSemaphoreCreateBinary() for an alternative implementation that can be + * used for pure synchronisation (where one task or interrupt always 'gives' the + * semaphore and another always 'takes' the semaphore) and from within interrupt + * service routines. + * + * @return xSemaphore Handle to the created mutex semaphore. Should be of type + * SemaphoreHandle_t. + * + * Example usage: + <pre> + SemaphoreHandle_t xSemaphore; + + void vATask( void * pvParameters ) + { + // Semaphore cannot be used before a call to xSemaphoreCreateMutex(). + // This is a macro so pass the variable in directly. + xSemaphore = xSemaphoreCreateRecursiveMutex(); + + if( xSemaphore != NULL ) + { + // The semaphore was created successfully. + // The semaphore can now be used. + } + } + </pre> + * \defgroup xSemaphoreCreateRecursiveMutex xSemaphoreCreateRecursiveMutex + * \ingroup Semaphores + */ +#if( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configUSE_RECURSIVE_MUTEXES == 1 ) ) + #define xSemaphoreCreateRecursiveMutex() xQueueCreateMutex( queueQUEUE_TYPE_RECURSIVE_MUTEX ) +#endif + +/** + * semphr. h + * <pre>SemaphoreHandle_t xSemaphoreCreateRecursiveMutexStatic( StaticSemaphore_t *pxMutexBuffer )</pre> + * + * Creates a new recursive mutex type semaphore instance, and returns a handle + * by which the new recursive mutex can be referenced. + * + * Internally, within the FreeRTOS implementation, recursive mutexs use a block + * of memory, in which the mutex structure is stored. If a recursive mutex is + * created using xSemaphoreCreateRecursiveMutex() then the required memory is + * automatically dynamically allocated inside the + * xSemaphoreCreateRecursiveMutex() function. (see + * http://www.freertos.org/a00111.html). If a recursive mutex is created using + * xSemaphoreCreateRecursiveMutexStatic() then the application writer must + * provide the memory that will get used by the mutex. + * xSemaphoreCreateRecursiveMutexStatic() therefore allows a recursive mutex to + * be created without using any dynamic memory allocation. + * + * Mutexes created using this macro can be accessed using the + * xSemaphoreTakeRecursive() and xSemaphoreGiveRecursive() macros. The + * xSemaphoreTake() and xSemaphoreGive() macros must not be used. + * + * A mutex used recursively can be 'taken' repeatedly by the owner. The mutex + * doesn't become available again until the owner has called + * xSemaphoreGiveRecursive() for each successful 'take' request. For example, + * if a task successfully 'takes' the same mutex 5 times then the mutex will + * not be available to any other task until it has also 'given' the mutex back + * exactly five times. + * + * This type of semaphore uses a priority inheritance mechanism so a task + * 'taking' a semaphore MUST ALWAYS 'give' the semaphore back once the + * semaphore it is no longer required. + * + * Mutex type semaphores cannot be used from within interrupt service routines. + * + * See xSemaphoreCreateBinary() for an alternative implementation that can be + * used for pure synchronisation (where one task or interrupt always 'gives' the + * semaphore and another always 'takes' the semaphore) and from within interrupt + * service routines. + * + * @param pxMutexBuffer Must point to a variable of type StaticSemaphore_t, + * which will then be used to hold the recursive mutex's data structure, + * removing the need for the memory to be allocated dynamically. + * + * @return If the recursive mutex was successfully created then a handle to the + * created recursive mutex is returned. If pxMutexBuffer was NULL then NULL is + * returned. + * + * Example usage: + <pre> + SemaphoreHandle_t xSemaphore; + StaticSemaphore_t xMutexBuffer; + + void vATask( void * pvParameters ) + { + // A recursive semaphore cannot be used before it is created. Here a + // recursive mutex is created using xSemaphoreCreateRecursiveMutexStatic(). + // The address of xMutexBuffer is passed into the function, and will hold + // the mutexes data structures - so no dynamic memory allocation will be + // attempted. + xSemaphore = xSemaphoreCreateRecursiveMutexStatic( &xMutexBuffer ); + + // As no dynamic memory allocation was performed, xSemaphore cannot be NULL, + // so there is no need to check it. + } + </pre> + * \defgroup xSemaphoreCreateRecursiveMutexStatic xSemaphoreCreateRecursiveMutexStatic + * \ingroup Semaphores + */ +#if( ( configSUPPORT_STATIC_ALLOCATION == 1 ) && ( configUSE_RECURSIVE_MUTEXES == 1 ) ) + #define xSemaphoreCreateRecursiveMutexStatic( pxStaticSemaphore ) xQueueCreateMutexStatic( queueQUEUE_TYPE_RECURSIVE_MUTEX, pxStaticSemaphore ) +#endif /* configSUPPORT_STATIC_ALLOCATION */ + +/** + * semphr. h + * <pre>SemaphoreHandle_t xSemaphoreCreateCounting( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount )</pre> + * + * Creates a new counting semaphore instance, and returns a handle by which the + * new counting semaphore can be referenced. + * + * In many usage scenarios it is faster and more memory efficient to use a + * direct to task notification in place of a counting semaphore! + * http://www.freertos.org/RTOS-task-notifications.html + * + * Internally, within the FreeRTOS implementation, counting semaphores use a + * block of memory, in which the counting semaphore structure is stored. If a + * counting semaphore is created using xSemaphoreCreateCounting() then the + * required memory is automatically dynamically allocated inside the + * xSemaphoreCreateCounting() function. (see + * http://www.freertos.org/a00111.html). If a counting semaphore is created + * using xSemaphoreCreateCountingStatic() then the application writer can + * instead optionally provide the memory that will get used by the counting + * semaphore. xSemaphoreCreateCountingStatic() therefore allows a counting + * semaphore to be created without using any dynamic memory allocation. + * + * Counting semaphores are typically used for two things: + * + * 1) Counting events. + * + * In this usage scenario an event handler will 'give' a semaphore each time + * an event occurs (incrementing the semaphore count value), and a handler + * task will 'take' a semaphore each time it processes an event + * (decrementing the semaphore count value). The count value is therefore + * the difference between the number of events that have occurred and the + * number that have been processed. In this case it is desirable for the + * initial count value to be zero. + * + * 2) Resource management. + * + * In this usage scenario the count value indicates the number of resources + * available. To obtain control of a resource a task must first obtain a + * semaphore - decrementing the semaphore count value. When the count value + * reaches zero there are no free resources. When a task finishes with the + * resource it 'gives' the semaphore back - incrementing the semaphore count + * value. In this case it is desirable for the initial count value to be + * equal to the maximum count value, indicating that all resources are free. + * + * @param uxMaxCount The maximum count value that can be reached. When the + * semaphore reaches this value it can no longer be 'given'. + * + * @param uxInitialCount The count value assigned to the semaphore when it is + * created. + * + * @return Handle to the created semaphore. Null if the semaphore could not be + * created. + * + * Example usage: + <pre> + SemaphoreHandle_t xSemaphore; + + void vATask( void * pvParameters ) + { + SemaphoreHandle_t xSemaphore = NULL; + + // Semaphore cannot be used before a call to xSemaphoreCreateCounting(). + // The max value to which the semaphore can count should be 10, and the + // initial value assigned to the count should be 0. + xSemaphore = xSemaphoreCreateCounting( 10, 0 ); + + if( xSemaphore != NULL ) + { + // The semaphore was created successfully. + // The semaphore can now be used. + } + } + </pre> + * \defgroup xSemaphoreCreateCounting xSemaphoreCreateCounting + * \ingroup Semaphores + */ +#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) + #define xSemaphoreCreateCounting( uxMaxCount, uxInitialCount ) xQueueCreateCountingSemaphore( ( uxMaxCount ), ( uxInitialCount ) ) +#endif + +/** + * semphr. h + * <pre>SemaphoreHandle_t xSemaphoreCreateCountingStatic( UBaseType_t uxMaxCount, UBaseType_t uxInitialCount, StaticSemaphore_t *pxSemaphoreBuffer )</pre> + * + * Creates a new counting semaphore instance, and returns a handle by which the + * new counting semaphore can be referenced. + * + * In many usage scenarios it is faster and more memory efficient to use a + * direct to task notification in place of a counting semaphore! + * http://www.freertos.org/RTOS-task-notifications.html + * + * Internally, within the FreeRTOS implementation, counting semaphores use a + * block of memory, in which the counting semaphore structure is stored. If a + * counting semaphore is created using xSemaphoreCreateCounting() then the + * required memory is automatically dynamically allocated inside the + * xSemaphoreCreateCounting() function. (see + * http://www.freertos.org/a00111.html). If a counting semaphore is created + * using xSemaphoreCreateCountingStatic() then the application writer must + * provide the memory. xSemaphoreCreateCountingStatic() therefore allows a + * counting semaphore to be created without using any dynamic memory allocation. + * + * Counting semaphores are typically used for two things: + * + * 1) Counting events. + * + * In this usage scenario an event handler will 'give' a semaphore each time + * an event occurs (incrementing the semaphore count value), and a handler + * task will 'take' a semaphore each time it processes an event + * (decrementing the semaphore count value). The count value is therefore + * the difference between the number of events that have occurred and the + * number that have been processed. In this case it is desirable for the + * initial count value to be zero. + * + * 2) Resource management. + * + * In this usage scenario the count value indicates the number of resources + * available. To obtain control of a resource a task must first obtain a + * semaphore - decrementing the semaphore count value. When the count value + * reaches zero there are no free resources. When a task finishes with the + * resource it 'gives' the semaphore back - incrementing the semaphore count + * value. In this case it is desirable for the initial count value to be + * equal to the maximum count value, indicating that all resources are free. + * + * @param uxMaxCount The maximum count value that can be reached. When the + * semaphore reaches this value it can no longer be 'given'. + * + * @param uxInitialCount The count value assigned to the semaphore when it is + * created. + * + * @param pxSemaphoreBuffer Must point to a variable of type StaticSemaphore_t, + * which will then be used to hold the semaphore's data structure, removing the + * need for the memory to be allocated dynamically. + * + * @return If the counting semaphore was successfully created then a handle to + * the created counting semaphore is returned. If pxSemaphoreBuffer was NULL + * then NULL is returned. + * + * Example usage: + <pre> + SemaphoreHandle_t xSemaphore; + StaticSemaphore_t xSemaphoreBuffer; + + void vATask( void * pvParameters ) + { + SemaphoreHandle_t xSemaphore = NULL; + + // Counting semaphore cannot be used before they have been created. Create + // a counting semaphore using xSemaphoreCreateCountingStatic(). The max + // value to which the semaphore can count is 10, and the initial value + // assigned to the count will be 0. The address of xSemaphoreBuffer is + // passed in and will be used to hold the semaphore structure, so no dynamic + // memory allocation will be used. + xSemaphore = xSemaphoreCreateCounting( 10, 0, &xSemaphoreBuffer ); + + // No memory allocation was attempted so xSemaphore cannot be NULL, so there + // is no need to check its value. + } + </pre> + * \defgroup xSemaphoreCreateCountingStatic xSemaphoreCreateCountingStatic + * \ingroup Semaphores + */ +#if( configSUPPORT_STATIC_ALLOCATION == 1 ) + #define xSemaphoreCreateCountingStatic( uxMaxCount, uxInitialCount, pxSemaphoreBuffer ) xQueueCreateCountingSemaphoreStatic( ( uxMaxCount ), ( uxInitialCount ), ( pxSemaphoreBuffer ) ) +#endif /* configSUPPORT_STATIC_ALLOCATION */ + +/** + * semphr. h + * <pre>void vSemaphoreDelete( SemaphoreHandle_t xSemaphore );</pre> + * + * Delete a semaphore. This function must be used with care. For example, + * do not delete a mutex type semaphore if the mutex is held by a task. + * + * @param xSemaphore A handle to the semaphore to be deleted. + * + * \defgroup vSemaphoreDelete vSemaphoreDelete + * \ingroup Semaphores + */ +#define vSemaphoreDelete( xSemaphore ) vQueueDelete( ( QueueHandle_t ) ( xSemaphore ) ) + +/** + * semphr.h + * <pre>TaskHandle_t xSemaphoreGetMutexHolder( SemaphoreHandle_t xMutex );</pre> + * + * If xMutex is indeed a mutex type semaphore, return the current mutex holder. + * If xMutex is not a mutex type semaphore, or the mutex is available (not held + * by a task), return NULL. + * + * Note: This is a good way of determining if the calling task is the mutex + * holder, but not a good way of determining the identity of the mutex holder as + * the holder may change between the function exiting and the returned value + * being tested. + */ +#define xSemaphoreGetMutexHolder( xSemaphore ) xQueueGetMutexHolder( ( xSemaphore ) ) + +/** + * semphr.h + * <pre>TaskHandle_t xSemaphoreGetMutexHolderFromISR( SemaphoreHandle_t xMutex );</pre> + * + * If xMutex is indeed a mutex type semaphore, return the current mutex holder. + * If xMutex is not a mutex type semaphore, or the mutex is available (not held + * by a task), return NULL. + * + */ +#define xSemaphoreGetMutexHolderFromISR( xSemaphore ) xQueueGetMutexHolderFromISR( ( xSemaphore ) ) + +/** + * semphr.h + * <pre>UBaseType_t uxSemaphoreGetCount( SemaphoreHandle_t xSemaphore );</pre> + * + * If the semaphore is a counting semaphore then uxSemaphoreGetCount() returns + * its current count value. If the semaphore is a binary semaphore then + * uxSemaphoreGetCount() returns 1 if the semaphore is available, and 0 if the + * semaphore is not available. + * + */ +#define uxSemaphoreGetCount( xSemaphore ) uxQueueMessagesWaiting( ( QueueHandle_t ) ( xSemaphore ) ) + +#endif /* SEMAPHORE_H */ + + -- Gitblit v1.9.1