From aa38e5c1f48e31213ee349aa5cd6f06c85bda70d Mon Sep 17 00:00:00 2001
From: android <android@lingyun.com>
Date: Tue, 25 Jun 2024 21:49:39 +0800
Subject: [PATCH] Add GD32F103RCT6 ADC converter board SDK source code

---
 mcu_sdk/gd32f103/rk_eFire/Middlewares/Third_Party/FreeRTOS/Source/include/timers.h | 1277 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 1 files changed, 1,277 insertions(+), 0 deletions(-)

diff --git a/mcu_sdk/gd32f103/rk_eFire/Middlewares/Third_Party/FreeRTOS/Source/include/timers.h b/mcu_sdk/gd32f103/rk_eFire/Middlewares/Third_Party/FreeRTOS/Source/include/timers.h
new file mode 100644
index 0000000..7e2eceb
--- /dev/null
+++ b/mcu_sdk/gd32f103/rk_eFire/Middlewares/Third_Party/FreeRTOS/Source/include/timers.h
@@ -0,0 +1,1277 @@
+/*
+ * FreeRTOS Kernel V10.0.1
+ * Copyright (C) 2017 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy of
+ * this software and associated documentation files (the "Software"), to deal in
+ * the Software without restriction, including without limitation the rights to
+ * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
+ * the Software, and to permit persons to whom the Software is furnished to do so,
+ * subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
+ * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
+ * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
+ * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+ *
+ * http://www.FreeRTOS.org
+ * http://aws.amazon.com/freertos
+ *
+ * 1 tab == 4 spaces!
+ */
+
+
+#ifndef TIMERS_H
+#define TIMERS_H
+
+#ifndef INC_FREERTOS_H
+	#error "include FreeRTOS.h must appear in source files before include timers.h"
+#endif
+
+/*lint -save -e537 This headers are only multiply included if the application code
+happens to also be including task.h. */
+#include "task.h"
+/*lint -restore */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*-----------------------------------------------------------
+ * MACROS AND DEFINITIONS
+ *----------------------------------------------------------*/
+
+/* IDs for commands that can be sent/received on the timer queue.  These are to
+be used solely through the macros that make up the public software timer API,
+as defined below.  The commands that are sent from interrupts must use the
+highest numbers as tmrFIRST_FROM_ISR_COMMAND is used to determine if the task
+or interrupt version of the queue send function should be used. */
+#define tmrCOMMAND_EXECUTE_CALLBACK_FROM_ISR 	( ( BaseType_t ) -2 )
+#define tmrCOMMAND_EXECUTE_CALLBACK				( ( BaseType_t ) -1 )
+#define tmrCOMMAND_START_DONT_TRACE				( ( BaseType_t ) 0 )
+#define tmrCOMMAND_START					    ( ( BaseType_t ) 1 )
+#define tmrCOMMAND_RESET						( ( BaseType_t ) 2 )
+#define tmrCOMMAND_STOP							( ( BaseType_t ) 3 )
+#define tmrCOMMAND_CHANGE_PERIOD				( ( BaseType_t ) 4 )
+#define tmrCOMMAND_DELETE						( ( BaseType_t ) 5 )
+
+#define tmrFIRST_FROM_ISR_COMMAND				( ( BaseType_t ) 6 )
+#define tmrCOMMAND_START_FROM_ISR				( ( BaseType_t ) 6 )
+#define tmrCOMMAND_RESET_FROM_ISR				( ( BaseType_t ) 7 )
+#define tmrCOMMAND_STOP_FROM_ISR				( ( BaseType_t ) 8 )
+#define tmrCOMMAND_CHANGE_PERIOD_FROM_ISR		( ( BaseType_t ) 9 )
+
+
+/**
+ * Type by which software timers are referenced.  For example, a call to
+ * xTimerCreate() returns an TimerHandle_t variable that can then be used to
+ * reference the subject timer in calls to other software timer API functions
+ * (for example, xTimerStart(), xTimerReset(), etc.).
+ */
+typedef void * TimerHandle_t;
+
+/*
+ * Defines the prototype to which timer callback functions must conform.
+ */
+typedef void (*TimerCallbackFunction_t)( TimerHandle_t xTimer );
+
+/*
+ * Defines the prototype to which functions used with the
+ * xTimerPendFunctionCallFromISR() function must conform.
+ */
+typedef void (*PendedFunction_t)( void *, uint32_t );
+
+/**
+ * TimerHandle_t xTimerCreate( 	const char * const pcTimerName,
+ * 								TickType_t xTimerPeriodInTicks,
+ * 								UBaseType_t uxAutoReload,
+ * 								void * pvTimerID,
+ * 								TimerCallbackFunction_t pxCallbackFunction );
+ *
+ * Creates a new software timer instance, and returns a handle by which the
+ * created software timer can be referenced.
+ *
+ * Internally, within the FreeRTOS implementation, software timers use a block
+ * of memory, in which the timer data structure is stored.  If a software timer
+ * is created using xTimerCreate() then the required memory is automatically
+ * dynamically allocated inside the xTimerCreate() function.  (see
+ * http://www.freertos.org/a00111.html).  If a software timer is created using
+ * xTimerCreateStatic() then the application writer must provide the memory that
+ * will get used by the software timer.  xTimerCreateStatic() therefore allows a
+ * software timer to be created without using any dynamic memory allocation.
+ *
+ * Timers are created in the dormant state.  The xTimerStart(), xTimerReset(),
+ * xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
+ * xTimerChangePeriodFromISR() API functions can all be used to transition a
+ * timer into the active state.
+ *
+ * @param pcTimerName A text name that is assigned to the timer.  This is done
+ * purely to assist debugging.  The kernel itself only ever references a timer
+ * by its handle, and never by its name.
+ *
+ * @param xTimerPeriodInTicks The timer period.  The time is defined in tick
+ * periods so the constant portTICK_PERIOD_MS can be used to convert a time that
+ * has been specified in milliseconds.  For example, if the timer must expire
+ * after 100 ticks, then xTimerPeriodInTicks should be set to 100.
+ * Alternatively, if the timer must expire after 500ms, then xPeriod can be set
+ * to ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than or
+ * equal to 1000.
+ *
+ * @param uxAutoReload If uxAutoReload is set to pdTRUE then the timer will
+ * expire repeatedly with a frequency set by the xTimerPeriodInTicks parameter.
+ * If uxAutoReload is set to pdFALSE then the timer will be a one-shot timer and
+ * enter the dormant state after it expires.
+ *
+ * @param pvTimerID An identifier that is assigned to the timer being created.
+ * Typically this would be used in the timer callback function to identify which
+ * timer expired when the same callback function is assigned to more than one
+ * timer.
+ *
+ * @param pxCallbackFunction The function to call when the timer expires.
+ * Callback functions must have the prototype defined by TimerCallbackFunction_t,
+ * which is	"void vCallbackFunction( TimerHandle_t xTimer );".
+ *
+ * @return If the timer is successfully created then a handle to the newly
+ * created timer is returned.  If the timer cannot be created (because either
+ * there is insufficient FreeRTOS heap remaining to allocate the timer
+ * structures, or the timer period was set to 0) then NULL is returned.
+ *
+ * Example usage:
+ * @verbatim
+ * #define NUM_TIMERS 5
+ *
+ * // An array to hold handles to the created timers.
+ * TimerHandle_t xTimers[ NUM_TIMERS ];
+ *
+ * // An array to hold a count of the number of times each timer expires.
+ * int32_t lExpireCounters[ NUM_TIMERS ] = { 0 };
+ *
+ * // Define a callback function that will be used by multiple timer instances.
+ * // The callback function does nothing but count the number of times the
+ * // associated timer expires, and stop the timer once the timer has expired
+ * // 10 times.
+ * void vTimerCallback( TimerHandle_t pxTimer )
+ * {
+ * int32_t lArrayIndex;
+ * const int32_t xMaxExpiryCountBeforeStopping = 10;
+ *
+ * 	   // Optionally do something if the pxTimer parameter is NULL.
+ * 	   configASSERT( pxTimer );
+ *
+ *     // Which timer expired?
+ *     lArrayIndex = ( int32_t ) pvTimerGetTimerID( pxTimer );
+ *
+ *     // Increment the number of times that pxTimer has expired.
+ *     lExpireCounters[ lArrayIndex ] += 1;
+ *
+ *     // If the timer has expired 10 times then stop it from running.
+ *     if( lExpireCounters[ lArrayIndex ] == xMaxExpiryCountBeforeStopping )
+ *     {
+ *         // Do not use a block time if calling a timer API function from a
+ *         // timer callback function, as doing so could cause a deadlock!
+ *         xTimerStop( pxTimer, 0 );
+ *     }
+ * }
+ *
+ * void main( void )
+ * {
+ * int32_t x;
+ *
+ *     // Create then start some timers.  Starting the timers before the scheduler
+ *     // has been started means the timers will start running immediately that
+ *     // the scheduler starts.
+ *     for( x = 0; x < NUM_TIMERS; x++ )
+ *     {
+ *         xTimers[ x ] = xTimerCreate(    "Timer",       // Just a text name, not used by the kernel.
+ *                                         ( 100 * x ),   // The timer period in ticks.
+ *                                         pdTRUE,        // The timers will auto-reload themselves when they expire.
+ *                                         ( void * ) x,  // Assign each timer a unique id equal to its array index.
+ *                                         vTimerCallback // Each timer calls the same callback when it expires.
+ *                                     );
+ *
+ *         if( xTimers[ x ] == NULL )
+ *         {
+ *             // The timer was not created.
+ *         }
+ *         else
+ *         {
+ *             // Start the timer.  No block time is specified, and even if one was
+ *             // it would be ignored because the scheduler has not yet been
+ *             // started.
+ *             if( xTimerStart( xTimers[ x ], 0 ) != pdPASS )
+ *             {
+ *                 // The timer could not be set into the Active state.
+ *             }
+ *         }
+ *     }
+ *
+ *     // ...
+ *     // Create tasks here.
+ *     // ...
+ *
+ *     // Starting the scheduler will start the timers running as they have already
+ *     // been set into the active state.
+ *     vTaskStartScheduler();
+ *
+ *     // Should not reach here.
+ *     for( ;; );
+ * }
+ * @endverbatim
+ */
+#if( configSUPPORT_DYNAMIC_ALLOCATION == 1 )
+	TimerHandle_t xTimerCreate(	const char * const pcTimerName,			/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+								const TickType_t xTimerPeriodInTicks,
+								const UBaseType_t uxAutoReload,
+								void * const pvTimerID,
+								TimerCallbackFunction_t pxCallbackFunction ) PRIVILEGED_FUNCTION;
+#endif
+
+/**
+ * TimerHandle_t xTimerCreateStatic(const char * const pcTimerName,
+ * 									TickType_t xTimerPeriodInTicks,
+ * 									UBaseType_t uxAutoReload,
+ * 									void * pvTimerID,
+ * 									TimerCallbackFunction_t pxCallbackFunction,
+ *									StaticTimer_t *pxTimerBuffer );
+ *
+ * Creates a new software timer instance, and returns a handle by which the
+ * created software timer can be referenced.
+ *
+ * Internally, within the FreeRTOS implementation, software timers use a block
+ * of memory, in which the timer data structure is stored.  If a software timer
+ * is created using xTimerCreate() then the required memory is automatically
+ * dynamically allocated inside the xTimerCreate() function.  (see
+ * http://www.freertos.org/a00111.html).  If a software timer is created using
+ * xTimerCreateStatic() then the application writer must provide the memory that
+ * will get used by the software timer.  xTimerCreateStatic() therefore allows a
+ * software timer to be created without using any dynamic memory allocation.
+ *
+ * Timers are created in the dormant state.  The xTimerStart(), xTimerReset(),
+ * xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
+ * xTimerChangePeriodFromISR() API functions can all be used to transition a
+ * timer into the active state.
+ *
+ * @param pcTimerName A text name that is assigned to the timer.  This is done
+ * purely to assist debugging.  The kernel itself only ever references a timer
+ * by its handle, and never by its name.
+ *
+ * @param xTimerPeriodInTicks The timer period.  The time is defined in tick
+ * periods so the constant portTICK_PERIOD_MS can be used to convert a time that
+ * has been specified in milliseconds.  For example, if the timer must expire
+ * after 100 ticks, then xTimerPeriodInTicks should be set to 100.
+ * Alternatively, if the timer must expire after 500ms, then xPeriod can be set
+ * to ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than or
+ * equal to 1000.
+ *
+ * @param uxAutoReload If uxAutoReload is set to pdTRUE then the timer will
+ * expire repeatedly with a frequency set by the xTimerPeriodInTicks parameter.
+ * If uxAutoReload is set to pdFALSE then the timer will be a one-shot timer and
+ * enter the dormant state after it expires.
+ *
+ * @param pvTimerID An identifier that is assigned to the timer being created.
+ * Typically this would be used in the timer callback function to identify which
+ * timer expired when the same callback function is assigned to more than one
+ * timer.
+ *
+ * @param pxCallbackFunction The function to call when the timer expires.
+ * Callback functions must have the prototype defined by TimerCallbackFunction_t,
+ * which is "void vCallbackFunction( TimerHandle_t xTimer );".
+ *
+ * @param pxTimerBuffer Must point to a variable of type StaticTimer_t, which
+ * will be then be used to hold the software timer's data structures, removing
+ * the need for the memory to be allocated dynamically.
+ *
+ * @return If the timer is created then a handle to the created timer is
+ * returned.  If pxTimerBuffer was NULL then NULL is returned.
+ *
+ * Example usage:
+ * @verbatim
+ *
+ * // The buffer used to hold the software timer's data structure.
+ * static StaticTimer_t xTimerBuffer;
+ *
+ * // A variable that will be incremented by the software timer's callback
+ * // function.
+ * UBaseType_t uxVariableToIncrement = 0;
+ *
+ * // A software timer callback function that increments a variable passed to
+ * // it when the software timer was created.  After the 5th increment the
+ * // callback function stops the software timer.
+ * static void prvTimerCallback( TimerHandle_t xExpiredTimer )
+ * {
+ * UBaseType_t *puxVariableToIncrement;
+ * BaseType_t xReturned;
+ *
+ *     // Obtain the address of the variable to increment from the timer ID.
+ *     puxVariableToIncrement = ( UBaseType_t * ) pvTimerGetTimerID( xExpiredTimer );
+ *
+ *     // Increment the variable to show the timer callback has executed.
+ *     ( *puxVariableToIncrement )++;
+ *
+ *     // If this callback has executed the required number of times, stop the
+ *     // timer.
+ *     if( *puxVariableToIncrement == 5 )
+ *     {
+ *         // This is called from a timer callback so must not block.
+ *         xTimerStop( xExpiredTimer, staticDONT_BLOCK );
+ *     }
+ * }
+ *
+ *
+ * void main( void )
+ * {
+ *     // Create the software time.  xTimerCreateStatic() has an extra parameter
+ *     // than the normal xTimerCreate() API function.  The parameter is a pointer
+ *     // to the StaticTimer_t structure that will hold the software timer
+ *     // structure.  If the parameter is passed as NULL then the structure will be
+ *     // allocated dynamically, just as if xTimerCreate() had been called.
+ *     xTimer = xTimerCreateStatic( "T1",             // Text name for the task.  Helps debugging only.  Not used by FreeRTOS.
+ *                                  xTimerPeriod,     // The period of the timer in ticks.
+ *                                  pdTRUE,           // This is an auto-reload timer.
+ *                                  ( void * ) &uxVariableToIncrement,    // A variable incremented by the software timer's callback function
+ *                                  prvTimerCallback, // The function to execute when the timer expires.
+ *                                  &xTimerBuffer );  // The buffer that will hold the software timer structure.
+ *
+ *     // The scheduler has not started yet so a block time is not used.
+ *     xReturned = xTimerStart( xTimer, 0 );
+ *
+ *     // ...
+ *     // Create tasks here.
+ *     // ...
+ *
+ *     // Starting the scheduler will start the timers running as they have already
+ *     // been set into the active state.
+ *     vTaskStartScheduler();
+ *
+ *     // Should not reach here.
+ *     for( ;; );
+ * }
+ * @endverbatim
+ */
+#if( configSUPPORT_STATIC_ALLOCATION == 1 )
+	TimerHandle_t xTimerCreateStatic(	const char * const pcTimerName,			/*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+										const TickType_t xTimerPeriodInTicks,
+										const UBaseType_t uxAutoReload,
+										void * const pvTimerID,
+										TimerCallbackFunction_t pxCallbackFunction,
+										StaticTimer_t *pxTimerBuffer ) PRIVILEGED_FUNCTION;
+#endif /* configSUPPORT_STATIC_ALLOCATION */
+
+/**
+ * void *pvTimerGetTimerID( TimerHandle_t xTimer );
+ *
+ * Returns the ID assigned to the timer.
+ *
+ * IDs are assigned to timers using the pvTimerID parameter of the call to
+ * xTimerCreated() that was used to create the timer, and by calling the
+ * vTimerSetTimerID() API function.
+ *
+ * If the same callback function is assigned to multiple timers then the timer
+ * ID can be used as time specific (timer local) storage.
+ *
+ * @param xTimer The timer being queried.
+ *
+ * @return The ID assigned to the timer being queried.
+ *
+ * Example usage:
+ *
+ * See the xTimerCreate() API function example usage scenario.
+ */
+void *pvTimerGetTimerID( const TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
+
+/**
+ * void vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID );
+ *
+ * Sets the ID assigned to the timer.
+ *
+ * IDs are assigned to timers using the pvTimerID parameter of the call to
+ * xTimerCreated() that was used to create the timer.
+ *
+ * If the same callback function is assigned to multiple timers then the timer
+ * ID can be used as time specific (timer local) storage.
+ *
+ * @param xTimer The timer being updated.
+ *
+ * @param pvNewID The ID to assign to the timer.
+ *
+ * Example usage:
+ *
+ * See the xTimerCreate() API function example usage scenario.
+ */
+void vTimerSetTimerID( TimerHandle_t xTimer, void *pvNewID ) PRIVILEGED_FUNCTION;
+
+/**
+ * BaseType_t xTimerIsTimerActive( TimerHandle_t xTimer );
+ *
+ * Queries a timer to see if it is active or dormant.
+ *
+ * A timer will be dormant if:
+ *     1) It has been created but not started, or
+ *     2) It is an expired one-shot timer that has not been restarted.
+ *
+ * Timers are created in the dormant state.  The xTimerStart(), xTimerReset(),
+ * xTimerStartFromISR(), xTimerResetFromISR(), xTimerChangePeriod() and
+ * xTimerChangePeriodFromISR() API functions can all be used to transition a timer into the
+ * active state.
+ *
+ * @param xTimer The timer being queried.
+ *
+ * @return pdFALSE will be returned if the timer is dormant.  A value other than
+ * pdFALSE will be returned if the timer is active.
+ *
+ * Example usage:
+ * @verbatim
+ * // This function assumes xTimer has already been created.
+ * void vAFunction( TimerHandle_t xTimer )
+ * {
+ *     if( xTimerIsTimerActive( xTimer ) != pdFALSE ) // or more simply and equivalently "if( xTimerIsTimerActive( xTimer ) )"
+ *     {
+ *         // xTimer is active, do something.
+ *     }
+ *     else
+ *     {
+ *         // xTimer is not active, do something else.
+ *     }
+ * }
+ * @endverbatim
+ */
+BaseType_t xTimerIsTimerActive( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
+
+/**
+ * TaskHandle_t xTimerGetTimerDaemonTaskHandle( void );
+ *
+ * Simply returns the handle of the timer service/daemon task.  It it not valid
+ * to call xTimerGetTimerDaemonTaskHandle() before the scheduler has been started.
+ */
+TaskHandle_t xTimerGetTimerDaemonTaskHandle( void ) PRIVILEGED_FUNCTION;
+
+/**
+ * BaseType_t xTimerStart( TimerHandle_t xTimer, TickType_t xTicksToWait );
+ *
+ * Timer functionality is provided by a timer service/daemon task.  Many of the
+ * public FreeRTOS timer API functions send commands to the timer service task
+ * through a queue called the timer command queue.  The timer command queue is
+ * private to the kernel itself and is not directly accessible to application
+ * code.  The length of the timer command queue is set by the
+ * configTIMER_QUEUE_LENGTH configuration constant.
+ *
+ * xTimerStart() starts a timer that was previously created using the
+ * xTimerCreate() API function.  If the timer had already been started and was
+ * already in the active state, then xTimerStart() has equivalent functionality
+ * to the xTimerReset() API function.
+ *
+ * Starting a timer ensures the timer is in the active state.  If the timer
+ * is not stopped, deleted, or reset in the mean time, the callback function
+ * associated with the timer will get called 'n' ticks after xTimerStart() was
+ * called, where 'n' is the timers defined period.
+ *
+ * It is valid to call xTimerStart() before the scheduler has been started, but
+ * when this is done the timer will not actually start until the scheduler is
+ * started, and the timers expiry time will be relative to when the scheduler is
+ * started, not relative to when xTimerStart() was called.
+ *
+ * The configUSE_TIMERS configuration constant must be set to 1 for xTimerStart()
+ * to be available.
+ *
+ * @param xTimer The handle of the timer being started/restarted.
+ *
+ * @param xTicksToWait Specifies the time, in ticks, that the calling task should
+ * be held in the Blocked state to wait for the start command to be successfully
+ * sent to the timer command queue, should the queue already be full when
+ * xTimerStart() was called.  xTicksToWait is ignored if xTimerStart() is called
+ * before the scheduler is started.
+ *
+ * @return pdFAIL will be returned if the start command could not be sent to
+ * the timer command queue even after xTicksToWait ticks had passed.  pdPASS will
+ * be returned if the command was successfully sent to the timer command queue.
+ * When the command is actually processed will depend on the priority of the
+ * timer service/daemon task relative to other tasks in the system, although the
+ * timers expiry time is relative to when xTimerStart() is actually called.  The
+ * timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
+ * configuration constant.
+ *
+ * Example usage:
+ *
+ * See the xTimerCreate() API function example usage scenario.
+ *
+ */
+#define xTimerStart( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START, ( xTaskGetTickCount() ), NULL, ( xTicksToWait ) )
+
+/**
+ * BaseType_t xTimerStop( TimerHandle_t xTimer, TickType_t xTicksToWait );
+ *
+ * Timer functionality is provided by a timer service/daemon task.  Many of the
+ * public FreeRTOS timer API functions send commands to the timer service task
+ * through a queue called the timer command queue.  The timer command queue is
+ * private to the kernel itself and is not directly accessible to application
+ * code.  The length of the timer command queue is set by the
+ * configTIMER_QUEUE_LENGTH configuration constant.
+ *
+ * xTimerStop() stops a timer that was previously started using either of the
+ * The xTimerStart(), xTimerReset(), xTimerStartFromISR(), xTimerResetFromISR(),
+ * xTimerChangePeriod() or xTimerChangePeriodFromISR() API functions.
+ *
+ * Stopping a timer ensures the timer is not in the active state.
+ *
+ * The configUSE_TIMERS configuration constant must be set to 1 for xTimerStop()
+ * to be available.
+ *
+ * @param xTimer The handle of the timer being stopped.
+ *
+ * @param xTicksToWait Specifies the time, in ticks, that the calling task should
+ * be held in the Blocked state to wait for the stop command to be successfully
+ * sent to the timer command queue, should the queue already be full when
+ * xTimerStop() was called.  xTicksToWait is ignored if xTimerStop() is called
+ * before the scheduler is started.
+ *
+ * @return pdFAIL will be returned if the stop command could not be sent to
+ * the timer command queue even after xTicksToWait ticks had passed.  pdPASS will
+ * be returned if the command was successfully sent to the timer command queue.
+ * When the command is actually processed will depend on the priority of the
+ * timer service/daemon task relative to other tasks in the system.  The timer
+ * service/daemon task priority is set by the configTIMER_TASK_PRIORITY
+ * configuration constant.
+ *
+ * Example usage:
+ *
+ * See the xTimerCreate() API function example usage scenario.
+ *
+ */
+#define xTimerStop( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP, 0U, NULL, ( xTicksToWait ) )
+
+/**
+ * BaseType_t xTimerChangePeriod( 	TimerHandle_t xTimer,
+ *										TickType_t xNewPeriod,
+ *										TickType_t xTicksToWait );
+ *
+ * Timer functionality is provided by a timer service/daemon task.  Many of the
+ * public FreeRTOS timer API functions send commands to the timer service task
+ * through a queue called the timer command queue.  The timer command queue is
+ * private to the kernel itself and is not directly accessible to application
+ * code.  The length of the timer command queue is set by the
+ * configTIMER_QUEUE_LENGTH configuration constant.
+ *
+ * xTimerChangePeriod() changes the period of a timer that was previously
+ * created using the xTimerCreate() API function.
+ *
+ * xTimerChangePeriod() can be called to change the period of an active or
+ * dormant state timer.
+ *
+ * The configUSE_TIMERS configuration constant must be set to 1 for
+ * xTimerChangePeriod() to be available.
+ *
+ * @param xTimer The handle of the timer that is having its period changed.
+ *
+ * @param xNewPeriod The new period for xTimer. Timer periods are specified in
+ * tick periods, so the constant portTICK_PERIOD_MS can be used to convert a time
+ * that has been specified in milliseconds.  For example, if the timer must
+ * expire after 100 ticks, then xNewPeriod should be set to 100.  Alternatively,
+ * if the timer must expire after 500ms, then xNewPeriod can be set to
+ * ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than
+ * or equal to 1000.
+ *
+ * @param xTicksToWait Specifies the time, in ticks, that the calling task should
+ * be held in the Blocked state to wait for the change period command to be
+ * successfully sent to the timer command queue, should the queue already be
+ * full when xTimerChangePeriod() was called.  xTicksToWait is ignored if
+ * xTimerChangePeriod() is called before the scheduler is started.
+ *
+ * @return pdFAIL will be returned if the change period command could not be
+ * sent to the timer command queue even after xTicksToWait ticks had passed.
+ * pdPASS will be returned if the command was successfully sent to the timer
+ * command queue.  When the command is actually processed will depend on the
+ * priority of the timer service/daemon task relative to other tasks in the
+ * system.  The timer service/daemon task priority is set by the
+ * configTIMER_TASK_PRIORITY configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // This function assumes xTimer has already been created.  If the timer
+ * // referenced by xTimer is already active when it is called, then the timer
+ * // is deleted.  If the timer referenced by xTimer is not active when it is
+ * // called, then the period of the timer is set to 500ms and the timer is
+ * // started.
+ * void vAFunction( TimerHandle_t xTimer )
+ * {
+ *     if( xTimerIsTimerActive( xTimer ) != pdFALSE ) // or more simply and equivalently "if( xTimerIsTimerActive( xTimer ) )"
+ *     {
+ *         // xTimer is already active - delete it.
+ *         xTimerDelete( xTimer );
+ *     }
+ *     else
+ *     {
+ *         // xTimer is not active, change its period to 500ms.  This will also
+ *         // cause the timer to start.  Block for a maximum of 100 ticks if the
+ *         // change period command cannot immediately be sent to the timer
+ *         // command queue.
+ *         if( xTimerChangePeriod( xTimer, 500 / portTICK_PERIOD_MS, 100 ) == pdPASS )
+ *         {
+ *             // The command was successfully sent.
+ *         }
+ *         else
+ *         {
+ *             // The command could not be sent, even after waiting for 100 ticks
+ *             // to pass.  Take appropriate action here.
+ *         }
+ *     }
+ * }
+ * @endverbatim
+ */
+ #define xTimerChangePeriod( xTimer, xNewPeriod, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD, ( xNewPeriod ), NULL, ( xTicksToWait ) )
+
+/**
+ * BaseType_t xTimerDelete( TimerHandle_t xTimer, TickType_t xTicksToWait );
+ *
+ * Timer functionality is provided by a timer service/daemon task.  Many of the
+ * public FreeRTOS timer API functions send commands to the timer service task
+ * through a queue called the timer command queue.  The timer command queue is
+ * private to the kernel itself and is not directly accessible to application
+ * code.  The length of the timer command queue is set by the
+ * configTIMER_QUEUE_LENGTH configuration constant.
+ *
+ * xTimerDelete() deletes a timer that was previously created using the
+ * xTimerCreate() API function.
+ *
+ * The configUSE_TIMERS configuration constant must be set to 1 for
+ * xTimerDelete() to be available.
+ *
+ * @param xTimer The handle of the timer being deleted.
+ *
+ * @param xTicksToWait Specifies the time, in ticks, that the calling task should
+ * be held in the Blocked state to wait for the delete command to be
+ * successfully sent to the timer command queue, should the queue already be
+ * full when xTimerDelete() was called.  xTicksToWait is ignored if xTimerDelete()
+ * is called before the scheduler is started.
+ *
+ * @return pdFAIL will be returned if the delete command could not be sent to
+ * the timer command queue even after xTicksToWait ticks had passed.  pdPASS will
+ * be returned if the command was successfully sent to the timer command queue.
+ * When the command is actually processed will depend on the priority of the
+ * timer service/daemon task relative to other tasks in the system.  The timer
+ * service/daemon task priority is set by the configTIMER_TASK_PRIORITY
+ * configuration constant.
+ *
+ * Example usage:
+ *
+ * See the xTimerChangePeriod() API function example usage scenario.
+ */
+#define xTimerDelete( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_DELETE, 0U, NULL, ( xTicksToWait ) )
+
+/**
+ * BaseType_t xTimerReset( TimerHandle_t xTimer, TickType_t xTicksToWait );
+ *
+ * Timer functionality is provided by a timer service/daemon task.  Many of the
+ * public FreeRTOS timer API functions send commands to the timer service task
+ * through a queue called the timer command queue.  The timer command queue is
+ * private to the kernel itself and is not directly accessible to application
+ * code.  The length of the timer command queue is set by the
+ * configTIMER_QUEUE_LENGTH configuration constant.
+ *
+ * xTimerReset() re-starts a timer that was previously created using the
+ * xTimerCreate() API function.  If the timer had already been started and was
+ * already in the active state, then xTimerReset() will cause the timer to
+ * re-evaluate its expiry time so that it is relative to when xTimerReset() was
+ * called.  If the timer was in the dormant state then xTimerReset() has
+ * equivalent functionality to the xTimerStart() API function.
+ *
+ * Resetting a timer ensures the timer is in the active state.  If the timer
+ * is not stopped, deleted, or reset in the mean time, the callback function
+ * associated with the timer will get called 'n' ticks after xTimerReset() was
+ * called, where 'n' is the timers defined period.
+ *
+ * It is valid to call xTimerReset() before the scheduler has been started, but
+ * when this is done the timer will not actually start until the scheduler is
+ * started, and the timers expiry time will be relative to when the scheduler is
+ * started, not relative to when xTimerReset() was called.
+ *
+ * The configUSE_TIMERS configuration constant must be set to 1 for xTimerReset()
+ * to be available.
+ *
+ * @param xTimer The handle of the timer being reset/started/restarted.
+ *
+ * @param xTicksToWait Specifies the time, in ticks, that the calling task should
+ * be held in the Blocked state to wait for the reset command to be successfully
+ * sent to the timer command queue, should the queue already be full when
+ * xTimerReset() was called.  xTicksToWait is ignored if xTimerReset() is called
+ * before the scheduler is started.
+ *
+ * @return pdFAIL will be returned if the reset command could not be sent to
+ * the timer command queue even after xTicksToWait ticks had passed.  pdPASS will
+ * be returned if the command was successfully sent to the timer command queue.
+ * When the command is actually processed will depend on the priority of the
+ * timer service/daemon task relative to other tasks in the system, although the
+ * timers expiry time is relative to when xTimerStart() is actually called.  The
+ * timer service/daemon task priority is set by the configTIMER_TASK_PRIORITY
+ * configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // When a key is pressed, an LCD back-light is switched on.  If 5 seconds pass
+ * // without a key being pressed, then the LCD back-light is switched off.  In
+ * // this case, the timer is a one-shot timer.
+ *
+ * TimerHandle_t xBacklightTimer = NULL;
+ *
+ * // The callback function assigned to the one-shot timer.  In this case the
+ * // parameter is not used.
+ * void vBacklightTimerCallback( TimerHandle_t pxTimer )
+ * {
+ *     // The timer expired, therefore 5 seconds must have passed since a key
+ *     // was pressed.  Switch off the LCD back-light.
+ *     vSetBacklightState( BACKLIGHT_OFF );
+ * }
+ *
+ * // The key press event handler.
+ * void vKeyPressEventHandler( char cKey )
+ * {
+ *     // Ensure the LCD back-light is on, then reset the timer that is
+ *     // responsible for turning the back-light off after 5 seconds of
+ *     // key inactivity.  Wait 10 ticks for the command to be successfully sent
+ *     // if it cannot be sent immediately.
+ *     vSetBacklightState( BACKLIGHT_ON );
+ *     if( xTimerReset( xBacklightTimer, 100 ) != pdPASS )
+ *     {
+ *         // The reset command was not executed successfully.  Take appropriate
+ *         // action here.
+ *     }
+ *
+ *     // Perform the rest of the key processing here.
+ * }
+ *
+ * void main( void )
+ * {
+ * int32_t x;
+ *
+ *     // Create then start the one-shot timer that is responsible for turning
+ *     // the back-light off if no keys are pressed within a 5 second period.
+ *     xBacklightTimer = xTimerCreate( "BacklightTimer",           // Just a text name, not used by the kernel.
+ *                                     ( 5000 / portTICK_PERIOD_MS), // The timer period in ticks.
+ *                                     pdFALSE,                    // The timer is a one-shot timer.
+ *                                     0,                          // The id is not used by the callback so can take any value.
+ *                                     vBacklightTimerCallback     // The callback function that switches the LCD back-light off.
+ *                                   );
+ *
+ *     if( xBacklightTimer == NULL )
+ *     {
+ *         // The timer was not created.
+ *     }
+ *     else
+ *     {
+ *         // Start the timer.  No block time is specified, and even if one was
+ *         // it would be ignored because the scheduler has not yet been
+ *         // started.
+ *         if( xTimerStart( xBacklightTimer, 0 ) != pdPASS )
+ *         {
+ *             // The timer could not be set into the Active state.
+ *         }
+ *     }
+ *
+ *     // ...
+ *     // Create tasks here.
+ *     // ...
+ *
+ *     // Starting the scheduler will start the timer running as it has already
+ *     // been set into the active state.
+ *     vTaskStartScheduler();
+ *
+ *     // Should not reach here.
+ *     for( ;; );
+ * }
+ * @endverbatim
+ */
+#define xTimerReset( xTimer, xTicksToWait ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_RESET, ( xTaskGetTickCount() ), NULL, ( xTicksToWait ) )
+
+/**
+ * BaseType_t xTimerStartFromISR( 	TimerHandle_t xTimer,
+ *									BaseType_t *pxHigherPriorityTaskWoken );
+ *
+ * A version of xTimerStart() that can be called from an interrupt service
+ * routine.
+ *
+ * @param xTimer The handle of the timer being started/restarted.
+ *
+ * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
+ * of its time in the Blocked state, waiting for messages to arrive on the timer
+ * command queue.  Calling xTimerStartFromISR() writes a message to the timer
+ * command queue, so has the potential to transition the timer service/daemon
+ * task out of the Blocked state.  If calling xTimerStartFromISR() causes the
+ * timer service/daemon task to leave the Blocked state, and the timer service/
+ * daemon task has a priority equal to or greater than the currently executing
+ * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
+ * get set to pdTRUE internally within the xTimerStartFromISR() function.  If
+ * xTimerStartFromISR() sets this value to pdTRUE then a context switch should
+ * be performed before the interrupt exits.
+ *
+ * @return pdFAIL will be returned if the start command could not be sent to
+ * the timer command queue.  pdPASS will be returned if the command was
+ * successfully sent to the timer command queue.  When the command is actually
+ * processed will depend on the priority of the timer service/daemon task
+ * relative to other tasks in the system, although the timers expiry time is
+ * relative to when xTimerStartFromISR() is actually called.  The timer
+ * service/daemon task priority is set by the configTIMER_TASK_PRIORITY
+ * configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // This scenario assumes xBacklightTimer has already been created.  When a
+ * // key is pressed, an LCD back-light is switched on.  If 5 seconds pass
+ * // without a key being pressed, then the LCD back-light is switched off.  In
+ * // this case, the timer is a one-shot timer, and unlike the example given for
+ * // the xTimerReset() function, the key press event handler is an interrupt
+ * // service routine.
+ *
+ * // The callback function assigned to the one-shot timer.  In this case the
+ * // parameter is not used.
+ * void vBacklightTimerCallback( TimerHandle_t pxTimer )
+ * {
+ *     // The timer expired, therefore 5 seconds must have passed since a key
+ *     // was pressed.  Switch off the LCD back-light.
+ *     vSetBacklightState( BACKLIGHT_OFF );
+ * }
+ *
+ * // The key press interrupt service routine.
+ * void vKeyPressEventInterruptHandler( void )
+ * {
+ * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
+ *
+ *     // Ensure the LCD back-light is on, then restart the timer that is
+ *     // responsible for turning the back-light off after 5 seconds of
+ *     // key inactivity.  This is an interrupt service routine so can only
+ *     // call FreeRTOS API functions that end in "FromISR".
+ *     vSetBacklightState( BACKLIGHT_ON );
+ *
+ *     // xTimerStartFromISR() or xTimerResetFromISR() could be called here
+ *     // as both cause the timer to re-calculate its expiry time.
+ *     // xHigherPriorityTaskWoken was initialised to pdFALSE when it was
+ *     // declared (in this function).
+ *     if( xTimerStartFromISR( xBacklightTimer, &xHigherPriorityTaskWoken ) != pdPASS )
+ *     {
+ *         // The start command was not executed successfully.  Take appropriate
+ *         // action here.
+ *     }
+ *
+ *     // Perform the rest of the key processing here.
+ *
+ *     // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
+ *     // should be performed.  The syntax required to perform a context switch
+ *     // from inside an ISR varies from port to port, and from compiler to
+ *     // compiler.  Inspect the demos for the port you are using to find the
+ *     // actual syntax required.
+ *     if( xHigherPriorityTaskWoken != pdFALSE )
+ *     {
+ *         // Call the interrupt safe yield function here (actual function
+ *         // depends on the FreeRTOS port being used).
+ *     }
+ * }
+ * @endverbatim
+ */
+#define xTimerStartFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_START_FROM_ISR, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U )
+
+/**
+ * BaseType_t xTimerStopFromISR( 	TimerHandle_t xTimer,
+ *									BaseType_t *pxHigherPriorityTaskWoken );
+ *
+ * A version of xTimerStop() that can be called from an interrupt service
+ * routine.
+ *
+ * @param xTimer The handle of the timer being stopped.
+ *
+ * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
+ * of its time in the Blocked state, waiting for messages to arrive on the timer
+ * command queue.  Calling xTimerStopFromISR() writes a message to the timer
+ * command queue, so has the potential to transition the timer service/daemon
+ * task out of the Blocked state.  If calling xTimerStopFromISR() causes the
+ * timer service/daemon task to leave the Blocked state, and the timer service/
+ * daemon task has a priority equal to or greater than the currently executing
+ * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
+ * get set to pdTRUE internally within the xTimerStopFromISR() function.  If
+ * xTimerStopFromISR() sets this value to pdTRUE then a context switch should
+ * be performed before the interrupt exits.
+ *
+ * @return pdFAIL will be returned if the stop command could not be sent to
+ * the timer command queue.  pdPASS will be returned if the command was
+ * successfully sent to the timer command queue.  When the command is actually
+ * processed will depend on the priority of the timer service/daemon task
+ * relative to other tasks in the system.  The timer service/daemon task
+ * priority is set by the configTIMER_TASK_PRIORITY configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // This scenario assumes xTimer has already been created and started.  When
+ * // an interrupt occurs, the timer should be simply stopped.
+ *
+ * // The interrupt service routine that stops the timer.
+ * void vAnExampleInterruptServiceRoutine( void )
+ * {
+ * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
+ *
+ *     // The interrupt has occurred - simply stop the timer.
+ *     // xHigherPriorityTaskWoken was set to pdFALSE where it was defined
+ *     // (within this function).  As this is an interrupt service routine, only
+ *     // FreeRTOS API functions that end in "FromISR" can be used.
+ *     if( xTimerStopFromISR( xTimer, &xHigherPriorityTaskWoken ) != pdPASS )
+ *     {
+ *         // The stop command was not executed successfully.  Take appropriate
+ *         // action here.
+ *     }
+ *
+ *     // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
+ *     // should be performed.  The syntax required to perform a context switch
+ *     // from inside an ISR varies from port to port, and from compiler to
+ *     // compiler.  Inspect the demos for the port you are using to find the
+ *     // actual syntax required.
+ *     if( xHigherPriorityTaskWoken != pdFALSE )
+ *     {
+ *         // Call the interrupt safe yield function here (actual function
+ *         // depends on the FreeRTOS port being used).
+ *     }
+ * }
+ * @endverbatim
+ */
+#define xTimerStopFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_STOP_FROM_ISR, 0, ( pxHigherPriorityTaskWoken ), 0U )
+
+/**
+ * BaseType_t xTimerChangePeriodFromISR( TimerHandle_t xTimer,
+ *										 TickType_t xNewPeriod,
+ *										 BaseType_t *pxHigherPriorityTaskWoken );
+ *
+ * A version of xTimerChangePeriod() that can be called from an interrupt
+ * service routine.
+ *
+ * @param xTimer The handle of the timer that is having its period changed.
+ *
+ * @param xNewPeriod The new period for xTimer. Timer periods are specified in
+ * tick periods, so the constant portTICK_PERIOD_MS can be used to convert a time
+ * that has been specified in milliseconds.  For example, if the timer must
+ * expire after 100 ticks, then xNewPeriod should be set to 100.  Alternatively,
+ * if the timer must expire after 500ms, then xNewPeriod can be set to
+ * ( 500 / portTICK_PERIOD_MS ) provided configTICK_RATE_HZ is less than
+ * or equal to 1000.
+ *
+ * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
+ * of its time in the Blocked state, waiting for messages to arrive on the timer
+ * command queue.  Calling xTimerChangePeriodFromISR() writes a message to the
+ * timer command queue, so has the potential to transition the timer service/
+ * daemon task out of the Blocked state.  If calling xTimerChangePeriodFromISR()
+ * causes the timer service/daemon task to leave the Blocked state, and the
+ * timer service/daemon task has a priority equal to or greater than the
+ * currently executing task (the task that was interrupted), then
+ * *pxHigherPriorityTaskWoken will get set to pdTRUE internally within the
+ * xTimerChangePeriodFromISR() function.  If xTimerChangePeriodFromISR() sets
+ * this value to pdTRUE then a context switch should be performed before the
+ * interrupt exits.
+ *
+ * @return pdFAIL will be returned if the command to change the timers period
+ * could not be sent to the timer command queue.  pdPASS will be returned if the
+ * command was successfully sent to the timer command queue.  When the command
+ * is actually processed will depend on the priority of the timer service/daemon
+ * task relative to other tasks in the system.  The timer service/daemon task
+ * priority is set by the configTIMER_TASK_PRIORITY configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // This scenario assumes xTimer has already been created and started.  When
+ * // an interrupt occurs, the period of xTimer should be changed to 500ms.
+ *
+ * // The interrupt service routine that changes the period of xTimer.
+ * void vAnExampleInterruptServiceRoutine( void )
+ * {
+ * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
+ *
+ *     // The interrupt has occurred - change the period of xTimer to 500ms.
+ *     // xHigherPriorityTaskWoken was set to pdFALSE where it was defined
+ *     // (within this function).  As this is an interrupt service routine, only
+ *     // FreeRTOS API functions that end in "FromISR" can be used.
+ *     if( xTimerChangePeriodFromISR( xTimer, &xHigherPriorityTaskWoken ) != pdPASS )
+ *     {
+ *         // The command to change the timers period was not executed
+ *         // successfully.  Take appropriate action here.
+ *     }
+ *
+ *     // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
+ *     // should be performed.  The syntax required to perform a context switch
+ *     // from inside an ISR varies from port to port, and from compiler to
+ *     // compiler.  Inspect the demos for the port you are using to find the
+ *     // actual syntax required.
+ *     if( xHigherPriorityTaskWoken != pdFALSE )
+ *     {
+ *         // Call the interrupt safe yield function here (actual function
+ *         // depends on the FreeRTOS port being used).
+ *     }
+ * }
+ * @endverbatim
+ */
+#define xTimerChangePeriodFromISR( xTimer, xNewPeriod, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_CHANGE_PERIOD_FROM_ISR, ( xNewPeriod ), ( pxHigherPriorityTaskWoken ), 0U )
+
+/**
+ * BaseType_t xTimerResetFromISR( 	TimerHandle_t xTimer,
+ *									BaseType_t *pxHigherPriorityTaskWoken );
+ *
+ * A version of xTimerReset() that can be called from an interrupt service
+ * routine.
+ *
+ * @param xTimer The handle of the timer that is to be started, reset, or
+ * restarted.
+ *
+ * @param pxHigherPriorityTaskWoken The timer service/daemon task spends most
+ * of its time in the Blocked state, waiting for messages to arrive on the timer
+ * command queue.  Calling xTimerResetFromISR() writes a message to the timer
+ * command queue, so has the potential to transition the timer service/daemon
+ * task out of the Blocked state.  If calling xTimerResetFromISR() causes the
+ * timer service/daemon task to leave the Blocked state, and the timer service/
+ * daemon task has a priority equal to or greater than the currently executing
+ * task (the task that was interrupted), then *pxHigherPriorityTaskWoken will
+ * get set to pdTRUE internally within the xTimerResetFromISR() function.  If
+ * xTimerResetFromISR() sets this value to pdTRUE then a context switch should
+ * be performed before the interrupt exits.
+ *
+ * @return pdFAIL will be returned if the reset command could not be sent to
+ * the timer command queue.  pdPASS will be returned if the command was
+ * successfully sent to the timer command queue.  When the command is actually
+ * processed will depend on the priority of the timer service/daemon task
+ * relative to other tasks in the system, although the timers expiry time is
+ * relative to when xTimerResetFromISR() is actually called.  The timer service/daemon
+ * task priority is set by the configTIMER_TASK_PRIORITY configuration constant.
+ *
+ * Example usage:
+ * @verbatim
+ * // This scenario assumes xBacklightTimer has already been created.  When a
+ * // key is pressed, an LCD back-light is switched on.  If 5 seconds pass
+ * // without a key being pressed, then the LCD back-light is switched off.  In
+ * // this case, the timer is a one-shot timer, and unlike the example given for
+ * // the xTimerReset() function, the key press event handler is an interrupt
+ * // service routine.
+ *
+ * // The callback function assigned to the one-shot timer.  In this case the
+ * // parameter is not used.
+ * void vBacklightTimerCallback( TimerHandle_t pxTimer )
+ * {
+ *     // The timer expired, therefore 5 seconds must have passed since a key
+ *     // was pressed.  Switch off the LCD back-light.
+ *     vSetBacklightState( BACKLIGHT_OFF );
+ * }
+ *
+ * // The key press interrupt service routine.
+ * void vKeyPressEventInterruptHandler( void )
+ * {
+ * BaseType_t xHigherPriorityTaskWoken = pdFALSE;
+ *
+ *     // Ensure the LCD back-light is on, then reset the timer that is
+ *     // responsible for turning the back-light off after 5 seconds of
+ *     // key inactivity.  This is an interrupt service routine so can only
+ *     // call FreeRTOS API functions that end in "FromISR".
+ *     vSetBacklightState( BACKLIGHT_ON );
+ *
+ *     // xTimerStartFromISR() or xTimerResetFromISR() could be called here
+ *     // as both cause the timer to re-calculate its expiry time.
+ *     // xHigherPriorityTaskWoken was initialised to pdFALSE when it was
+ *     // declared (in this function).
+ *     if( xTimerResetFromISR( xBacklightTimer, &xHigherPriorityTaskWoken ) != pdPASS )
+ *     {
+ *         // The reset command was not executed successfully.  Take appropriate
+ *         // action here.
+ *     }
+ *
+ *     // Perform the rest of the key processing here.
+ *
+ *     // If xHigherPriorityTaskWoken equals pdTRUE, then a context switch
+ *     // should be performed.  The syntax required to perform a context switch
+ *     // from inside an ISR varies from port to port, and from compiler to
+ *     // compiler.  Inspect the demos for the port you are using to find the
+ *     // actual syntax required.
+ *     if( xHigherPriorityTaskWoken != pdFALSE )
+ *     {
+ *         // Call the interrupt safe yield function here (actual function
+ *         // depends on the FreeRTOS port being used).
+ *     }
+ * }
+ * @endverbatim
+ */
+#define xTimerResetFromISR( xTimer, pxHigherPriorityTaskWoken ) xTimerGenericCommand( ( xTimer ), tmrCOMMAND_RESET_FROM_ISR, ( xTaskGetTickCountFromISR() ), ( pxHigherPriorityTaskWoken ), 0U )
+
+
+/**
+ * BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend,
+ *                                          void *pvParameter1,
+ *                                          uint32_t ulParameter2,
+ *                                          BaseType_t *pxHigherPriorityTaskWoken );
+ *
+ *
+ * Used from application interrupt service routines to defer the execution of a
+ * function to the RTOS daemon task (the timer service task, hence this function
+ * is implemented in timers.c and is prefixed with 'Timer').
+ *
+ * Ideally an interrupt service routine (ISR) is kept as short as possible, but
+ * sometimes an ISR either has a lot of processing to do, or needs to perform
+ * processing that is not deterministic.  In these cases
+ * xTimerPendFunctionCallFromISR() can be used to defer processing of a function
+ * to the RTOS daemon task.
+ *
+ * A mechanism is provided that allows the interrupt to return directly to the
+ * task that will subsequently execute the pended callback function.  This
+ * allows the callback function to execute contiguously in time with the
+ * interrupt - just as if the callback had executed in the interrupt itself.
+ *
+ * @param xFunctionToPend The function to execute from the timer service/
+ * daemon task.  The function must conform to the PendedFunction_t
+ * prototype.
+ *
+ * @param pvParameter1 The value of the callback function's first parameter.
+ * The parameter has a void * type to allow it to be used to pass any type.
+ * For example, unsigned longs can be cast to a void *, or the void * can be
+ * used to point to a structure.
+ *
+ * @param ulParameter2 The value of the callback function's second parameter.
+ *
+ * @param pxHigherPriorityTaskWoken As mentioned above, calling this function
+ * will result in a message being sent to the timer daemon task.  If the
+ * priority of the timer daemon task (which is set using
+ * configTIMER_TASK_PRIORITY in FreeRTOSConfig.h) is higher than the priority of
+ * the currently running task (the task the interrupt interrupted) then
+ * *pxHigherPriorityTaskWoken will be set to pdTRUE within
+ * xTimerPendFunctionCallFromISR(), indicating that a context switch should be
+ * requested before the interrupt exits.  For that reason
+ * *pxHigherPriorityTaskWoken must be initialised to pdFALSE.  See the
+ * example code below.
+ *
+ * @return pdPASS is returned if the message was successfully sent to the
+ * timer daemon task, otherwise pdFALSE is returned.
+ *
+ * Example usage:
+ * @verbatim
+ *
+ *	// The callback function that will execute in the context of the daemon task.
+ *  // Note callback functions must all use this same prototype.
+ *  void vProcessInterface( void *pvParameter1, uint32_t ulParameter2 )
+ *	{
+ *		BaseType_t xInterfaceToService;
+ *
+ *		// The interface that requires servicing is passed in the second
+ *      // parameter.  The first parameter is not used in this case.
+ *		xInterfaceToService = ( BaseType_t ) ulParameter2;
+ *
+ *		// ...Perform the processing here...
+ *	}
+ *
+ *	// An ISR that receives data packets from multiple interfaces
+ *  void vAnISR( void )
+ *	{
+ *		BaseType_t xInterfaceToService, xHigherPriorityTaskWoken;
+ *
+ *		// Query the hardware to determine which interface needs processing.
+ *		xInterfaceToService = prvCheckInterfaces();
+ *
+ *      // The actual processing is to be deferred to a task.  Request the
+ *      // vProcessInterface() callback function is executed, passing in the
+ *		// number of the interface that needs processing.  The interface to
+ *		// service is passed in the second parameter.  The first parameter is
+ *		// not used in this case.
+ *		xHigherPriorityTaskWoken = pdFALSE;
+ *		xTimerPendFunctionCallFromISR( vProcessInterface, NULL, ( uint32_t ) xInterfaceToService, &xHigherPriorityTaskWoken );
+ *
+ *		// If xHigherPriorityTaskWoken is now set to pdTRUE then a context
+ *		// switch should be requested.  The macro used is port specific and will
+ *		// be either portYIELD_FROM_ISR() or portEND_SWITCHING_ISR() - refer to
+ *		// the documentation page for the port being used.
+ *		portYIELD_FROM_ISR( xHigherPriorityTaskWoken );
+ *
+ *	}
+ * @endverbatim
+ */
+BaseType_t xTimerPendFunctionCallFromISR( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, BaseType_t *pxHigherPriorityTaskWoken ) PRIVILEGED_FUNCTION;
+
+ /**
+  * BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend,
+  *                                    void *pvParameter1,
+  *                                    uint32_t ulParameter2,
+  *                                    TickType_t xTicksToWait );
+  *
+  *
+  * Used to defer the execution of a function to the RTOS daemon task (the timer
+  * service task, hence this function is implemented in timers.c and is prefixed
+  * with 'Timer').
+  *
+  * @param xFunctionToPend The function to execute from the timer service/
+  * daemon task.  The function must conform to the PendedFunction_t
+  * prototype.
+  *
+  * @param pvParameter1 The value of the callback function's first parameter.
+  * The parameter has a void * type to allow it to be used to pass any type.
+  * For example, unsigned longs can be cast to a void *, or the void * can be
+  * used to point to a structure.
+  *
+  * @param ulParameter2 The value of the callback function's second parameter.
+  *
+  * @param xTicksToWait Calling this function will result in a message being
+  * sent to the timer daemon task on a queue.  xTicksToWait is the amount of
+  * time the calling task should remain in the Blocked state (so not using any
+  * processing time) for space to become available on the timer queue if the
+  * queue is found to be full.
+  *
+  * @return pdPASS is returned if the message was successfully sent to the
+  * timer daemon task, otherwise pdFALSE is returned.
+  *
+  */
+BaseType_t xTimerPendFunctionCall( PendedFunction_t xFunctionToPend, void *pvParameter1, uint32_t ulParameter2, TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+/**
+ * const char * const pcTimerGetName( TimerHandle_t xTimer );
+ *
+ * Returns the name that was assigned to a timer when the timer was created.
+ *
+ * @param xTimer The handle of the timer being queried.
+ *
+ * @return The name assigned to the timer specified by the xTimer parameter.
+ */
+const char * pcTimerGetName( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION; /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
+
+/**
+ * TickType_t xTimerGetPeriod( TimerHandle_t xTimer );
+ *
+ * Returns the period of a timer.
+ *
+ * @param xTimer The handle of the timer being queried.
+ *
+ * @return The period of the timer in ticks.
+ */
+TickType_t xTimerGetPeriod( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
+
+/**
+* TickType_t xTimerGetExpiryTime( TimerHandle_t xTimer );
+*
+* Returns the time in ticks at which the timer will expire.  If this is less
+* than the current tick count then the expiry time has overflowed from the
+* current time.
+*
+* @param xTimer The handle of the timer being queried.
+*
+* @return If the timer is running then the time in ticks at which the timer
+* will next expire is returned.  If the timer is not running then the return
+* value is undefined.
+*/
+TickType_t xTimerGetExpiryTime( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
+
+/*
+ * Functions beyond this part are not part of the public API and are intended
+ * for use by the kernel only.
+ */
+BaseType_t xTimerCreateTimerTask( void ) PRIVILEGED_FUNCTION;
+BaseType_t xTimerGenericCommand( TimerHandle_t xTimer, const BaseType_t xCommandID, const TickType_t xOptionalValue, BaseType_t * const pxHigherPriorityTaskWoken, const TickType_t xTicksToWait ) PRIVILEGED_FUNCTION;
+
+#if( configUSE_TRACE_FACILITY == 1 )
+	void vTimerSetTimerNumber( TimerHandle_t xTimer, UBaseType_t uxTimerNumber ) PRIVILEGED_FUNCTION;
+	UBaseType_t uxTimerGetTimerNumber( TimerHandle_t xTimer ) PRIVILEGED_FUNCTION;
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+#endif /* TIMERS_H */
+
+
+

--
Gitblit v1.9.1