/********************************************************************** * Copyright: (C)2024 LingYun IoT System Studio * Author: GuoWenxue * * Description: Winbond W25Q32 SPI norflash compatible driver on ISKBoard * Reference datasheet: <> * * ChangeLog: * Version Date Author Description * V1.0.0 2024.08.29 GuoWenxue Release initial version * ***********************************************************************/ #include #include #include "main.h" #include "w25q.h" #include "spi.h" #define CONFIG_DEBUG_W25Q /* Enable W25Q norflash debug */ #ifdef CONFIG_DEBUG_W25Q #define spinor_print(format,args...) printf(format, ##args) #else #define spinor_print(format,args...) do{} while(0) #endif __attribute__((unused)) static void dump_buf(const char *prompt, uint8_t *buf, uint32_t size) { int i; if(!buf) return ; if(prompt) printf("%s\r\n", prompt); for(i=0; ics_gpio, spi->cs_pin, GPIO_PIN_SET); GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; GPIO_InitStruct.Pin = spi->cs_pin; HAL_GPIO_Init(spi->cs_gpio, &GPIO_InitStruct); } void spi_cs_enable(struct spi_info *spi) { HAL_GPIO_WritePin(spi->cs_gpio, spi->cs_pin, GPIO_PIN_RESET); } void spi_cs_disable(struct spi_info *spi) { HAL_GPIO_WritePin(spi->cs_gpio, spi->cs_pin, GPIO_PIN_SET); } uint8_t spi_xfer(struct spi_info *spi, uint8_t data) { uint8_t rxbyte; HAL_SPI_TransmitReceive(spi->hspi, &data, &rxbyte, 1, 100); return rxbyte; } void spi_send(struct spi_info *spi, uint8_t *data, uint32_t bytes) { HAL_SPI_Transmit(spi->hspi, data, bytes, 100); } void spi_recv(struct spi_info *spi, uint8_t *buf, uint32_t size) { HAL_SPI_Receive(spi->hspi, buf, size, 100); } #define SPI_INFO(_hspi, _cs_gpio, _cs_pin) {\ .hspi = _hspi, \ .cs_gpio = _cs_gpio, \ .cs_pin = _cs_pin, \ .select = spi_cs_enable, \ .deselect = spi_cs_disable, \ .xfer = spi_xfer, \ .send = spi_send, \ .recv = spi_recv, \ } static struct spi_info spinor_spi = SPI_INFO(W25Q_SPI, W25Q_CS_PORT, W25Q_CS_PIN); /*+-----------------------+ *| W25Q SPI Norflash ID | *+-----------------------+*/ #define W25Q_PAGSIZE 256 /* 1Page=256B */ #define W25Q_SECSIZE 4096 /* 1Sector=16Pages=4KB */ #define W25Q_BLKSIZE 65536 /* 1Block=16Sector=64KB */ #define ARRAY_SIZE(x) (sizeof(x)/sizeof(x[0])) /* JEDEC ID the 3rd bytes is the storage capacity */ #pragma GCC diagnostic ignored "-Wshift-count-overflow" #define CAPCITY_ID(id) (1UL<<(id&0xFF)) #define NOR_INFO(_name, _jedec_id) \ .name = _name, \ .jedec_id = _jedec_id, \ .block_size = W25Q_BLKSIZE, \ .sector_size= W25Q_SECSIZE, \ .page_size = W25Q_PAGSIZE, \ .capacity = CAPCITY_ID(_jedec_id), \ .n_blocks = CAPCITY_ID(_jedec_id)/W25Q_BLKSIZE, \ .n_sectors = CAPCITY_ID(_jedec_id)/W25Q_SECSIZE, \ .n_pages = CAPCITY_ID(_jedec_id)/W25Q_PAGSIZE, \ static struct flash_info spinor_ids[] = { { NOR_INFO("W25Q512", 0xef4020) }, { NOR_INFO("W25Q256", 0xef4019) }, { NOR_INFO("W25Q128", 0xef4018) }, { NOR_INFO("W25Q64", 0xef4017) }, { NOR_INFO("W25Q32", 0xef4016) }, { NOR_INFO("W25Q16", 0xef4015) }, { NOR_INFO("W25Q80", 0xef4014) }, { NOR_INFO("W25Q40", 0xef4013) }, { NOR_INFO("W25Q20", 0xef4012) }, { NOR_INFO("W25Q10", 0xef4011) }, }; /*+-------------------------------+ *| SPI Norflash HighLevel API | *+-------------------------------+*/ /* SPI Norflash API test function */ void spinor_test(void) { spinor_info_t spinor; int i; uint8_t buf[W25Q_PAGSIZE*2]; if( spinor_init(&spinor) < 0 ) return ; //spinor_erase_chip(&spinor); //spinor_erase_block(&spinor, 1, W25Q_BLKSIZE); spinor_erase_sector(&spinor, 1, W25Q_SECSIZE); memset(buf, 0, sizeof(buf)); spinor_read(&spinor, 0, buf, sizeof(buf)); dump_buf("<<spi = &spinor_spi; spinor_gpio_init(spinor->spi); if( !spinor_detect_by_jedec(spinor) ) return -1; printf("Norflash %s detected, capacity %lu KB, %lu blocks, %lu sectors, %lu pages.\r\n", spinor->flash->name, spinor->flash->capacity>>10, spinor->flash->n_blocks, spinor->flash->n_sectors, spinor->flash->n_pages); return 0; } /* Description: Erase whole flash chip. * Reference : P60, 8.2.32 Chip Erase (C7h / 60h) */ int spinor_erase_chip(struct spinor_info *spinor) { struct spi_info *spi = spinor->spi; while (spinor->lock == 1) mdelay(1); spinor->lock = 1; #ifdef CONFIG_DEBUG_W25Q uint32_t StartTime = HAL_GetTick(); printf("Norflash EraseChip Begin...\r\n"); #endif spinor_write_enable(spi); spi->select(spi); spi->xfer(spi, SPINOR_OP_CHIP_ERASE); spi->deselect(spi); spinor_WaitForWriteEnd(spi); #ifdef CONFIG_DEBUG_W25Q printf("Norflash EraseChip done after %ld ms!\r\n", HAL_GetTick() - StartTime); #endif mdelay(10); spinor->lock = 0; return 0; } /* Description: Erase blocks by 64KiB, * Reference : P59, 8.2.31 64KB Block Erase with 4-Byte Address (DCh) * @address is the erase start physical address, which can be not block alignment such as 0x10001. * @size is the erase size, which can be larger than a block such as 4097, and it will erase 2 blocks; */ int spinor_erase_block(struct spinor_info *spinor, uint32_t address, uint32_t size) { struct spi_info *spi = spinor->spi; struct flash_info *flash = spinor->flash; uint32_t block, first, last; uint32_t addr; while (spinor->lock == 1) mdelay(1); spinor->lock = 1; /* find first and last erase block */ first = address / flash->block_size; last = (address+size-1) / flash->block_size; #ifdef CONFIG_DEBUG_W25Q printf("Norflash Erase %ld Bytes Block@0x%lx Begin...\r\n", size, address); uint32_t StartTime = HAL_GetTick(); #endif /* start erase all the blocks */ for( block=first; block<=last; block++) { addr = block * flash->sector_size; #ifdef CONFIG_DEBUG_W25Q printf("Norflash Erase Block@%lx ...\r\n", addr); #endif spinor_WaitForWriteEnd(spi); spinor_write_enable(spi); spi->select(spi); if (spinor->flash->n_blocks >= 512 ) /* larger than W25Q256 */ { spi->xfer(spi, SPINOR_OP_BE_4K_4B); spi->xfer(spi, (addr & 0xFF000000) >> 24); } else { spi->xfer(spi, SPINOR_OP_BE_4K); } spi->xfer(spi, (addr & 0xFF0000) >> 16); spi->xfer(spi, (addr & 0xFF00) >> 8); spi->xfer(spi, addr & 0xFF); spi->deselect(spi); spinor_WaitForWriteEnd(spi); } #ifdef CONFIG_DEBUG_W25Q printf("Norflash EraseBlock@0x%lx done after %ld ms\r\n", address, HAL_GetTick() - StartTime); mdelay(100); #endif mdelay(1); spinor->lock = 0; return 0; } /* Description: Erase sectors by 4KiB * Reference : P56, 8.2.28 Sector Erase with 4-Byte Address (21h) * @address is the erase start physical address, which can be not sector alignment such as 0x1001. * @size is the erase size, which can be larger than a sector such as 4097, and it will erase 2 sectors; */ int spinor_erase_sector(struct spinor_info *spinor, uint32_t address, uint32_t size) { struct spi_info *spi = spinor->spi; struct flash_info *flash = spinor->flash; uint32_t sector, first, last; uint32_t addr; while (spinor->lock == 1) mdelay(1); spinor->lock = 1; /* find first and last erase sector */ first = address / flash->sector_size; last = (address+size-1) / flash->sector_size; #ifdef CONFIG_DEBUG_W25Q uint32_t StartTime = HAL_GetTick(); printf("Norflash Erase %ld Bytes Sector@0x%lx Begin...\r\n", size, address); #endif /* start erase all the sectors */ for( sector=first; sector<=last; sector++) { addr = sector * flash->sector_size; #ifdef CONFIG_DEBUG_W25Q printf("Norflash Erase Sector@%lx ...\r\n", addr); #endif spinor_WaitForWriteEnd(spi); spinor_write_enable(spi); spi->select(spi); if (spinor->flash->n_blocks >= 512 ) /* larger than W25Q256 */ { spi->xfer(spi, SPINOR_OP_SE_4B); spi->xfer(spi, (addr & 0xFF000000) >> 24); } else { spi->xfer(spi, SPINOR_OP_SE); } spi->xfer(spi, (addr & 0xFF0000) >> 16); spi->xfer(spi, (addr & 0xFF00) >> 8); spi->xfer(spi, addr & 0xFF); spi->deselect(spi); spinor_WaitForWriteEnd(spi); } #ifdef CONFIG_DEBUG_W25Q printf("Norflash EraseSector@0x%lx done after %ld ms\r\n", address, HAL_GetTick() - StartTime); #endif mdelay(1); spinor->lock = 0; return 0; } /* P32: 10.2.14 Page Program (02h) */ int spinor_write(struct spinor_info *spinor, uint32_t address, uint8_t *data, uint32_t bytes) { struct spi_info *spi = spinor->spi; struct flash_info *flash = spinor->flash; uint32_t page, first, last; uint32_t addr, ofset, len; while (spinor->lock == 1) mdelay(1); spinor->lock = 1; /* find first and last write page */ first = address / flash->page_size; last = (address+bytes-1) / flash->page_size; #ifdef CONFIG_DEBUG_W25Q uint32_t StartTime = HAL_GetTick(); printf("Norflash Write %ld Bytes to addr@0x%lx Begin...\r\n", bytes, address); #endif /* address in page and offset in buffer */ addr = address; ofset = 0; /* start write all the pages */ for( page=first; page<=last; page++) { len = flash->page_size - (addr%flash->page_size); len = len > bytes ? bytes : len; #ifdef CONFIG_DEBUG_W25Q printf("Norflash write addr@0x%lx, %lu bytes\r\n", addr, len); #endif spinor_WaitForWriteEnd(spi); spinor_write_enable(spi); spi->select(spi); if (spinor->flash->n_blocks >= 512 ) { spi->xfer(spi, SPINOR_OP_PP_4B); spi->xfer(spi, (addr & 0xFF000000) >> 24); } else { spi->xfer(spi, SPINOR_OP_PP); } spi->xfer(spi, (addr & 0xFF0000) >> 16); spi->xfer(spi, (addr & 0xFF00) >> 8); spi->xfer(spi, addr & 0xFF); /* send data */ spi->send(spi, data+ofset, len); spi->deselect(spi); spinor_WaitForWriteEnd(spi); addr += len; ofset += len; bytes -= len; } #ifdef CONFIG_DEBUG_W25Q printf("Norflash WriteByte@0x%lx done after %ld ms\r\n", address, HAL_GetTick() - StartTime); #endif mdelay(1); spinor->lock = 0; return 0; } /* Description: The Fast Read instruction can read the entire memory chip. * Reference : P41, 8.2.13 Fast Read with 4-Byte Address (0Ch) * @address is the read start physical address, which can be not page alignment such as 0x101. * @size is the read size, which can be larger than a page such as 257, and it will read 2 pages; */ int spinor_read(struct spinor_info *spinor, uint32_t address, uint8_t *buf, uint32_t bytes) { struct spi_info *spi = spinor->spi; while (spinor->lock == 1) mdelay(1); spinor->lock = 1; #ifdef CONFIG_DEBUG_W25Q uint32_t StartTime = HAL_GetTick(); printf("Norflash Read %ld Bytes from addr@0x%lx Begin...\r\n", bytes, address); #endif spi->select(spi); /* send instruction and address */ if (spinor->flash->n_blocks >= 512 ) { spi->xfer(spi, SPINOR_OP_READ_FAST_4B); spi->xfer(spi, (address & 0xFF000000) >> 24); } else { spi->xfer(spi, SPINOR_OP_READ_FAST); } spi->xfer(spi, (address & 0xFF0000) >> 16); spi->xfer(spi, (address & 0xFF00) >> 8); spi->xfer(spi, address & 0xFF); /* read data */ spi->xfer(spi, SPI_DUMMY_BYTE); spi->recv(spi, buf, bytes); spi->deselect(spi); #ifdef CONFIG_DEBUG_W25Q printf("Norflash ReadBytes@0x%lx done after %ld ms\r\n", address, HAL_GetTick() - StartTime); #endif spinor->lock = 0; return 0; } /*+-------------------------------+ *| SPI Norflash LowLevel API | *+-------------------------------+*/ /* Detect the norflash by JEDEC ID */ int spinor_detect_by_jedec(struct spinor_info *spinor) { uint32_t jedec_id; int i, found = 0; jedec_id = spinor_read_jedecid(spinor->spi); for(i=0; iflash = &spinor_ids[i]; break; } } printf("Detect JEDEC ID[0x%lx], Norflash %s found\r\n", jedec_id, found?spinor->flash->name:"not"); return found; } /* Description: Read the chipset UNIQUE ID. * Reference : P68, 8.2.40 Read Unique ID Number (4Bh) */ int spinor_read_uniqid(struct spi_info *spi, uint8_t *uniq_id) { uint8_t i; uint8_t id; if( !uniq_id ) return -1; spi->select(spi); spi->xfer(spi, SPINOR_OP_RDUID); /* Skip 4 bytes dummy bytes */ for (i=0; i<4; i++) spi->xfer(spi, SPI_DUMMY_BYTE); for (i=0; i<8; i++) { id = spi->xfer(spi, SPI_DUMMY_BYTE); uniq_id[i] = id; } spi->deselect(spi); return 0; } /* Description: Read the chipset JEDEC ID. * Reference : P69, 8.2.41 Read JEDEC ID (9Fh) */ uint32_t spinor_read_jedecid(struct spi_info *spi) { uint32_t jedec_id = 0x0; uint8_t id[3]; spi->select(spi); spi->xfer(spi, SPINOR_OP_RDID); id[0] = spi->xfer(spi, SPI_DUMMY_BYTE); /* Vendor ID */ id[1] = spi->xfer(spi, SPI_DUMMY_BYTE); /* Memory Type */ id[2] = spi->xfer(spi, SPI_DUMMY_BYTE); /* Storage Capacity */ spi->deselect(spi); jedec_id = (id[0] << 16) | (id[1] << 8) | id[2]; return jedec_id; } /* Description: Write Enable * Reference : P31, 8.2.1 Write Enable (06h) */ void spinor_write_enable(struct spi_info *spi) { spi->select(spi); spi->xfer(spi, SPINOR_OP_WREN); spi->deselect(spi); mdelay(1); } /* Description: Write Disable * Reference : P32, 8.2.3 Write Disable (04h) */ void spinor_write_disable(struct spi_info *spi) { spi->select(spi); spi->xfer(spi, SPINOR_OP_WRDI); spi->deselect(spi); mdelay(1); } /* Description: Read Status Register * Reference : P32, 8.2.4 Read Status Register-1 (05h), Status Register-2 (35h) & Status Register-3 (15h) */ uint8_t spinor_read_status_reg(struct spi_info *spi, uint8_t reg) { uint8_t value = 0; uint8_t cmd[REG_STATUS_MAX] = { SPINOR_OP_RDSR1 , SPINOR_OP_RDSR2, SPINOR_OP_RDSR3 }; /* Status Register 1~3 */ if( reg>= REG_STATUS_MAX ) return 0xFF; spi->select(spi); spi->xfer(spi, cmd[reg]); value = spi->xfer(spi, SPI_DUMMY_BYTE); spi->deselect(spi); return value; } /* Description: Write Status Register * Reference : P33, 8.2.5 Write Status Register-1 (01h), Status Register-2 (31h) & Status Register-3 (11h) */ void spinor_write_status_reg(struct spi_info *spi, uint8_t reg, uint8_t value) { uint8_t cmd[REG_STATUS_MAX] = { SPINOR_OP_WRSR1 , SPINOR_OP_WRSR2, SPINOR_OP_WRSR3 }; /* Status Register 1~3 */ if( reg>= REG_STATUS_MAX ) return ; spi->select(spi); spi->xfer(spi, cmd[reg]); value = spi->xfer(spi, value); spi->deselect(spi); } /* Description: Wait flash program/erase finished by read Status Register for BUSY bit * Reference : P15, 7.1 Status Registers */ void spinor_WaitForWriteEnd(struct spi_info *spi) { uint8_t value = 0; mdelay(1); spi->select(spi); spi->xfer(spi, SPINOR_OP_RDSR1); do { value = spi->xfer(spi, SPI_DUMMY_BYTE); mdelay(1); } while ((value & 0x01) == 0x01); spi->deselect(spi); }