/* * The RSA PK cryptosystem * * Copyright (C) 2006 Christophe Devine * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License, version 2.1 as published by the Free Software Foundation. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02110-1301 USA */ /* * RSA was designed by Ron Rivest, Adi Shamir and Len Adleman. * * http://theory.lcs.mit.edu/~rivest/rsapaper.pdf * http://www.cacr.math.uwaterloo.ca/hac/about/chap8.pdf */ #ifndef _CRT_SECURE_NO_DEPRECATE #define _CRT_SECURE_NO_DEPRECATE 1 #endif #include #include #if !defined(NO_GENPRIME) /* * Generate an RSA keypair */ int rsa_gen_key( rsa_context *ctx, int nbits, int exponent, int (*rng_f)(void *), void *rng_d ) { int ret; mpi P1, Q1, H, G; if( nbits < 128 || exponent < 3 || rng_f == NULL ) return( ERR_RSA_BAD_INPUT_DATA ); mpi_init( &P1, &Q1, &H, &G, NULL ); memset( ctx, 0, sizeof( rsa_context ) ); /* * find primes P and Q with Q < P so that: * GCD( E, (P-1)*(Q-1) ) == 1 */ CHK( mpi_lset( &ctx->E, exponent ) ); nbits >>= 1; do { CHK( mpi_gen_prime( &ctx->P, nbits, 0, rng_f, rng_d ) ); CHK( mpi_gen_prime( &ctx->Q, nbits, 0, rng_f, rng_d ) ); if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) < 0 ) mpi_swap( &ctx->P, &ctx->Q ); if( mpi_cmp_mpi( &ctx->P, &ctx->Q ) == 0 ) continue; CHK( mpi_mul_mpi( &ctx->N, &ctx->P, &ctx->Q ) ); CHK( mpi_sub_int( &P1, &ctx->P, 1 ) ); CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) ); CHK( mpi_mul_mpi( &H, &P1, &Q1 ) ); CHK( mpi_gcd( &G, &ctx->E, &H ) ); } while( mpi_cmp_int( &G, 1 ) != 0 ); /* * D = E^-1 mod ((P-1)*(Q-1)) * DP = D mod (P - 1) * DQ = D mod (Q - 1) * QP = Q^-1 mod P */ CHK( mpi_inv_mod( &ctx->D , &ctx->E, &H ) ); CHK( mpi_mod_mpi( &ctx->DP, &ctx->D, &P1 ) ); CHK( mpi_mod_mpi( &ctx->DQ, &ctx->D, &Q1 ) ); CHK( mpi_inv_mod( &ctx->QP, &ctx->Q, &ctx->P ) ); ctx->len = ( mpi_size( &ctx->N ) + 7 ) >> 3; cleanup: mpi_free( &P1, &Q1, &H, &G, NULL ); if( ret != 0 ) { rsa_free( ctx ); return( ERR_RSA_KEY_GEN_FAILED | ret ); } return( 0 ); } #endif /* * Perform an RSA public key operation */ int rsa_public( rsa_context *ctx, unsigned char *input, int ilen, unsigned char *output, int *olen ) { int ret; mpi T; // if( ilen != ctx->len || olen != ctx->len ) // return( ERR_RSA_BAD_INPUT_DATA ); mpi_init( &T, NULL ); CHK( mpi_import( &T, input, ilen ) ); if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 ) { mpi_free( &T, NULL ); return( ERR_RSA_BAD_INPUT_DATA ); } CHK( mpi_exp_mod( &T, &T, &ctx->E, &ctx->N, &ctx->RN ) ); CHK( mpi_export( &T, output, olen ) ); cleanup: mpi_free( &T, NULL ); if( ret != 0 ) return( ERR_RSA_PUBLIC_FAILED | ret ); return( 0 ); } /* * Perform an RSA private key operation */ int rsa_private( rsa_context *ctx, unsigned char *input, int ilen, unsigned char *output, int *olen ) { int ret; mpi T, T1, T2; //if( ilen != ctx->len || olen != ctx->len ) // return( ERR_RSA_BAD_INPUT_DATA ); mpi_init( &T, &T1, &T2, NULL ); CHK( mpi_import( &T, input, ilen ) ); if( mpi_cmp_mpi( &T, &ctx->N ) >= 0 ) { mpi_free( &T, NULL ); return( ERR_RSA_BAD_INPUT_DATA ); } #if 0 CHK( mpi_exp_mod( &T, &T, &ctx->D, &ctx->N, &ctx->RN ) ); #else /* * faster decryption using the CRT * * T1 = input ^ dP mod P * T2 = input ^ dQ mod Q */ CHK( mpi_exp_mod( &T1, &T, &ctx->DP, &ctx->P, &ctx->RP ) ); CHK( mpi_exp_mod( &T2, &T, &ctx->DQ, &ctx->Q, &ctx->RQ ) ); /* * T = (T1 - T2) * (Q^-1 mod P) mod P */ CHK( mpi_sub_mpi( &T, &T1, &T2 ) ); CHK( mpi_mul_mpi( &T1, &T, &ctx->QP ) ); CHK( mpi_mod_mpi( &T, &T1, &ctx->P ) ); /* * output = T2 + T * Q */ CHK( mpi_mul_mpi( &T1, &T, &ctx->Q ) ); CHK( mpi_add_mpi( &T, &T2, &T1 ) ); #endif CHK( mpi_export( &T, output, olen ) ); cleanup: mpi_free( &T, &T1, &T2, NULL ); if( ret != 0 ) return( ERR_RSA_PRIVATE_FAILED | ret ); return( 0 ); } /* * Check if the public key is valid */ int rsa_check_pubkey( rsa_context *ctx ) { if( ( ctx->N.p[0] & 1 ) == 0 || ( ctx->E.p[0] & 1 ) == 0 ) return( ERR_RSA_KEY_CHK_FAILED ); if( mpi_size( &ctx->N ) < 128 || mpi_size( &ctx->N ) > 4096 ) return( ERR_RSA_KEY_CHK_FAILED ); if( mpi_size( &ctx->E ) < 2 || mpi_size( &ctx->E ) > 64 ) return( ERR_RSA_KEY_CHK_FAILED ); return( 0 ); } /* * Check if the private key is valid */ int rsa_check_privkey( rsa_context *ctx ) { int ret = 0; mpi TN, P1, Q1, H, G; mpi_init( &TN, &P1, &Q1, &H, &G, NULL ); CHK( mpi_mul_mpi( &TN, &ctx->P, &ctx->Q ) ); CHK( mpi_sub_int( &P1, &ctx->P, 1 ) ); CHK( mpi_sub_int( &Q1, &ctx->Q, 1 ) ); CHK( mpi_mul_mpi( &H, &P1, &Q1 ) ); CHK( mpi_gcd( &G, &ctx->E, &H ) ); if( mpi_cmp_mpi( &TN, &ctx->N ) == 0 && mpi_cmp_int( &G, 1 ) == 0 ) { mpi_free( &TN, &P1, &Q1, &H, &G, NULL ); return( 0 ); } cleanup: mpi_free( &TN, &P1, &Q1, &H, &G, NULL ); return( ERR_RSA_KEY_CHK_FAILED | ret ); } /* * Add the PKCS#1 v1.5 padding and do a public RSA */ int rsa_pkcs1_encrypt( rsa_context *ctx, unsigned char *input, int ilen, unsigned char *output, int *olen ) { int nb_pad; unsigned char *p = output; if( *olen != ctx->len || *olen < ilen + 11 ) { return( ERR_RSA_BAD_INPUT_DATA ); } nb_pad = *olen - 3 - ilen; *p++ = 0; *p++ = RSA_CRYPT; while( nb_pad-- > 0 ) { do { *p = rand(); } while( *p == 0 ); p++; } *p++ = 0; memcpy( p, input, ilen ); return( rsa_public( ctx, output, *olen, output, olen ) ); } /* * Do a private RSA, removes the PKCS#1 v1.5 padding */ int rsa_pkcs1_decrypt( rsa_context *ctx, unsigned char *input, int ilen, unsigned char *output, int *olen ) { int ret; unsigned char *p, buf[512]; if( ilen != ctx->len || ilen < 16 || ilen > 512 ) return( ERR_RSA_BAD_INPUT_DATA ); if( ( ret = rsa_private( ctx, input, ilen, buf, &ilen ) ) != 0 ) return( ret ); p = buf; if( *p++ != 0 || *p++ != RSA_CRYPT ) return( ERR_RSA_INVALID_PADDING ); while( *p != 0 ) { if( p >= buf + ilen - 1 ) return( ERR_RSA_INVALID_PADDING ); p++; } p++; if( *olen < ilen - (int)(p - buf) ) return( ERR_RSA_INVALID_PADDING ); *olen = ilen - (int)(p - buf); memcpy( output, p, *olen ); return( 0 ); } /* * Perform a private RSA to sign a message digest */ int rsa_pkcs1_sign( rsa_context *ctx, int alg_id, unsigned char *hash, int hashlen, unsigned char *sig, int siglen ) { int nb_pad; unsigned char *p = sig; if( siglen != ctx->len || siglen < 16 ) return( ERR_RSA_BAD_INPUT_DATA ); switch( alg_id ) { case RSA_RAW: nb_pad = siglen - 3 - hashlen; break; case RSA_MD2: case RSA_MD4: case RSA_MD5: nb_pad = siglen - 3 - 34; break; case RSA_SHA1: nb_pad = siglen - 3 - 35; break; default: return( ERR_RSA_BAD_INPUT_DATA ); } if( nb_pad < 8 ) return( ERR_RSA_BAD_INPUT_DATA ); *p++ = 0; *p++ = RSA_SIGN; memset( p, 0xFF, nb_pad ); p += nb_pad; *p++ = 0; switch( alg_id ) { case RSA_RAW: memcpy( p, hash, hashlen ); break; case RSA_MD2: memcpy( p, ASN1_HASH_MDX, 18 ); memcpy( p + 18, hash, 16 ); p[13] = 2; break; case RSA_MD4: memcpy( p, ASN1_HASH_MDX, 18 ); memcpy( p + 18, hash, 16 ); p[13] = 4; break; case RSA_MD5: memcpy( p, ASN1_HASH_MDX, 18 ); memcpy( p + 18, hash, 16 ); p[13] = 5; break; case RSA_SHA1: memcpy( p, ASN1_HASH_SHA1, 15 ); memcpy( p + 15, hash, 20 ); break; default: return( ERR_RSA_BAD_INPUT_DATA ); } return( rsa_private( ctx, sig, siglen, sig, &siglen ) ); } /* * Perform a public RSA and check the message digest */ int rsa_pkcs1_verify( rsa_context *ctx, int alg_id, unsigned char *hash, int hashlen, unsigned char *sig, int siglen ) { int ret, len; unsigned char *p, c, buf[512]; if( siglen != ctx->len || siglen < 16 || siglen > 512 ) return( ERR_RSA_BAD_INPUT_DATA ); if( ( ret = rsa_public( ctx, sig, siglen, buf, &siglen ) ) != 0 ) return( ret ); p = buf; if( *p++ != 0 || *p++ != RSA_SIGN ) return( ERR_RSA_INVALID_PADDING ); while( *p != 0 ) { if( p >= buf + siglen - 1 || *p != 0xFF ) return( ERR_RSA_INVALID_PADDING ); p++; } p++; len = siglen - (int)( p - buf ); if( len == 34 ) { c = p[13]; p[13] = 0; if( memcmp( p, ASN1_HASH_MDX, 18 ) != 0 ) return( ERR_RSA_VERIFY_FAILED ); if( ( c == 2 && alg_id == RSA_MD2 ) || ( c == 4 && alg_id == RSA_MD4 ) || ( c == 5 && alg_id == RSA_MD5 ) ) { if( memcmp( p + 18, hash, 16 ) == 0 ) return( 0 ); else return( ERR_RSA_VERIFY_FAILED ); } } if( len == 35 && alg_id == RSA_SHA1 ) { if( memcmp( p, ASN1_HASH_SHA1, 15 ) == 0 && memcmp( p + 15, hash, 20 ) == 0 ) return( 0 ); else return( ERR_RSA_VERIFY_FAILED ); } if( len == hashlen && alg_id == RSA_RAW ) { if( memcmp( p, hash, hashlen ) == 0 ) return( 0 ); else return( ERR_RSA_VERIFY_FAILED ); } return( ERR_RSA_INVALID_PADDING ); } /* * Free the components of an RSA key */ void rsa_free( rsa_context *ctx ) { mpi_free( &ctx->N, &ctx->E, &ctx->D, &ctx->P, &ctx->Q, &ctx->DP, &ctx->DQ, &ctx->QP, &ctx->RN, &ctx->RP, &ctx->RQ, NULL ); } //#include "md5.h" #define PTLEN 24 #define CTLEN 128 /* * Checkup routine */ int main ( void ) { int len; rsa_context rsa; unsigned char md5sum[16]; unsigned char rsa_plaintext[PTLEN]; unsigned char rsa_decrypted[PTLEN]; unsigned char rsa_ciphertext[CTLEN]; memset( &rsa, 0, sizeof( rsa ) ); rsa.len = 128; mpi_read( &rsa.N , "9292758453063D803DD603D5E777D788" \ "8ED1D5BF35786190FA2F23EBC0848AEA" \ "DDA92CA6C3D80B32C4D109BE0F36D6AE" \ "7130B9CED7ACDF54CFC7555AC14EEBAB" \ "93A89813FBF3C4F8066D2D800F7C38A8" \ "1AE31942917403FF4946B0A83D3D3E05" \ "EE57C6F5F5606FB5D4BC6CD34EE0801A" \ "5E94BB77B07507233A0BC7BAC8F90F79", 16 ); mpi_read( &rsa.E , "10001", 16 ); mpi_read( &rsa.D , "24BF6185468786FDD303083D25E64EFC" \ "66CA472BC44D253102F8B4A9D3BFA750" \ "91386C0077937FE33FA3252D28855837" \ "AE1B484A8A9A45F7EE8C0C634F99E8CD" \ "DF79C5CE07EE72C7F123142198164234" \ "CABB724CF78B8173B9F880FC86322407" \ "AF1FEDFDDE2BEB674CA15F3E81A1521E" \ "071513A1E85B5DFA031F21ECAE91A34D", 16 ); mpi_read( &rsa.P , "C36D0EB7FCD285223CFB5AABA5BDA3D8" \ "2C01CAD19EA484A87EA4377637E75500" \ "FCB2005C5C7DD6EC4AC023CDA285D796" \ "C3D9E75E1EFC42488BB4F1D13AC30A57", 16 ); mpi_read( &rsa.Q , "C000DF51A7C77AE8D7C7370C1FF55B69" \ "E211C2B9E5DB1ED0BF61D0D9899620F4" \ "910E4168387E3C30AA1E00C339A79508" \ "8452DD96A9A5EA5D9DCA68DA636032AF", 16 ); mpi_read( &rsa.DP, "C1ACF567564274FB07A0BBAD5D26E298" \ "3C94D22288ACD763FD8E5600ED4A702D" \ "F84198A5F06C2E72236AE490C93F07F8" \ "3CC559CD27BC2D1CA488811730BB5725", 16 ); mpi_read( &rsa.DQ, "4959CBF6F8FEF750AEE6977C155579C7" \ "D8AAEA56749EA28623272E4F7D0592AF" \ "7C1F1313CAC9471B5C523BFE592F517B" \ "407A1BD76C164B93DA2D32A383E58357", 16 ); mpi_read( &rsa.QP, "9AE7FBC99546432DF71896FC239EADAE" \ "F38D18D2B2F0E2DD275AA977E2BF4411" \ "F5A3B2A5D33605AEBBCCBA7FEB9F2D2F" \ "A74206CEC169D74BF5A8C50D6F48EA08", 16 ); printf( " RSA key validation: " ); if( rsa_check_pubkey( &rsa ) != 0 || rsa_check_privkey( &rsa ) != 0 ) { printf( "failed\n" ); return( 1 ); } printf( "passed\n PKCS#1 encryption : " ); memcpy( rsa_plaintext, "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \ "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD", PTLEN ); len = CTLEN; if( rsa_pkcs1_encrypt( &rsa, rsa_plaintext, PTLEN, rsa_ciphertext, &len ) != 0 ) { printf( "failed\n" ); return( 1 ); } printf( "passed\n PKCS#1 decryption : " ); len = sizeof( rsa_decrypted ); if( rsa_pkcs1_decrypt( &rsa, rsa_ciphertext, CTLEN, rsa_decrypted, &len ) != 0 || memcmp( rsa_decrypted, rsa_plaintext, len ) != 0 ) { printf( "failed\n" ); return( 1 ); } printf( "passed\n" ); #if 0 md5_csum( rsa_plaintext, PTLEN, md5sum ); if( rsa_pkcs1_sign( &rsa, RSA_MD5, md5sum, 16, rsa_ciphertext, CTLEN ) != 0 ) { printf( "failed\n" ); return( 1 ); } printf( "passed\n PKCS#1 sig. verify: " ); if( rsa_pkcs1_verify( &rsa, RSA_MD5, md5sum, 16, rsa_ciphertext, CTLEN ) != 0 ) { printf( "failed\n" ); return( 1 ); } printf( "passed\n\n" ); #endif rsa_free( &rsa ); return( 0 ); }